
Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Revisiting the Visitor: the “Just Do It” Pattern

Didier Verna

didier@lrde.epita.fr
http://www.lrde.epita.fr/˜didier

ACCU 2009 – Friday, April 24th

1/25

mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/~didier

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Introduction

Necessary literature
The GOF Book: Design Patterns, Elements of
Reusable Object-Oriented Software. Gamma, Helm,
Johnson, Vlissides.
The POSA Book: Pattern-Oriented Software
Architecture. Buschmann, Meunier, Rohnert,
Sommerlad, Stal.

What is a software design pattern ?
I Context (POSA)
I Problem
I Solution
I Consequences (GOF)

2/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

A constatation

Peter Norvig (Object World, 1996)

About the GOF book:
16 of 23 patterns are either invisible or simpler

[...] in Dylan or Lisp

Peter Norvig is right, so
I is the GOF book (70%) wrong ?
I are patterns (70%) useless ?

3/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Some clues from the GOF book itself

Although design patterns describe
object-oriented designs, they are based on
practical solutions that have been implemented in
mainstream object-oriented programming
languages [. . .]

Similarly, some of our patterns are supported
directly by the less common object-oriented
languages.

I That’s what people usually miss

4/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Patterns descriptions / organizations

GOF: Creational, Structural, Behavioral
I usage-oriented

POSA: Architectural, Design, Idioms
I abstraction-oriented

Idioms according to POSA

An idiom is a low-level pattern specific to a
programming language. An idiom describes how to
implement particular aspects of components or the
relationships between them using the features of
the given language. [. . .] They address aspects of
both design and implementation.

I GOF’s design patterns are closer to POSA’s idioms

5/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

The risk: blind pattern application

POSA’s advice:
[. . .] sometimes, an idiom that is useful for one

programming language does not make sense into
another.

GOF’s Visitor example:
Use the Visitor pattern when [. . .] many distinct

and unrelated operations need to be performed on
objects in an object structure, and you want to
avoid “polluting” their classes with these
operations.

I But who said operations belong to classes ?

6/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Table of contents

1 Visiting in C++

2 Visiting in LISP

Step 1: plain LISP

Step 2: brute force visiting
Step 3: first class generic functions
Step 4: mapping
Step 5: generic mapping

3 Visiting with state
Step 6: objects
Step 7: lexical closures
Step 8: dynamic visitation schemes

7/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Visiting in C++

Problems:
Original hierarchy R/O
Abstract the visiting process away

Solution:
1 Equip original hierarchy for visits

I A Visitable abstract class
I An accept method in each visitable component

2 Write independent visitors
I A Visitor abstract class
I A visit method for each visitable component

9/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Step 1: plain LISP

Classes
(defclass c lass (superc lass1 superc lass2 . . .)

((s l o t : i n i t f o r m <form > : i n i t a r g : s l o t : accessor s l o t)
. . .)

op t ions . . .)

(make−instance ’ c lass : s l o t <value > . . .)

Generic functions, methods
(defgeneric func (arg1 arg2 . . .)

(: method ((arg1 c lass1) arg2 . . .)
body)

op t ions . . .)

(defmethod func ((arg1 class1) arg2 . . .)
body)

I Methods are outside the classes (ordinary function calls)
I Multiple dispatch (multi-methods)

11/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Summary of step 1

1 Original hierarchy untouched
I Generic function model (outside the classes)

2 Abstract the visiting process away
I Still needs to be done

12/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Step 2: brute force visiting

Abstract the visiting process away
I OK: the accept generic function

But what’s wrong with this picture ?

obj visitor

obj visitor

obj visitor

... ...

visitaccept

obj visitor

I One indirection too many

13/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Step 3: first class (generic) functions

Notion of first class / order
(Christopher Strachey, 1916–1975)

storage (in variables)
aggregation (in structures)
argument (to functions)
return value (from functions)
anonymous manipulation
dynamic creation
. . .

I Generic functions are first class objects in LISP

14/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

The better picture

obj

...

obj

obj

visitoraccept

obj

Retrieving function objects in LISP

(f u n c t i o n func) ; ; => #<FUNCTION FUNC>
’ func ; ; => #<FUNCTION FUNC>

15/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Step 4: mapping

Prominent concept in functional programming
I Along with folding (reduction), filtering etc.

Thanks to first class functions
I Argument passing

Typical mapping example
(mapcar # ’ str ing−upcase ’ ("foo" "bar" "baz"))
; ; => ("FOO" "BAR" "BAZ")

I “visiting” is a form of structural mapping

16/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Step 5: generic mapping

Having to specialize mapobject is boring
I Mapping over lists, vectors, arrays, even class slots

should be written only once

The CLOS Meta-Object Protocol (MOP)
CLOS itself is object-oriented

I The CLOS MOP: a de facto implementation standard
I The CLOS components (classes etc.) are

(meta-)objects of some (meta-)classes

I We have reflexive (introspective) access to class slots

17/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Step 6: objects

How about a component counter visitor ?
C++: left as an exercise. . .
LISP: how does that fit with first class functions ?

I Global state (yuck !)
I Behavior + state = objects !

So we’re back to visitor objects ?

I There has got to be a better way. . .

19/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Step 7: lexical closures

Behavior + State without the OO machinery

Typical functional example (with anonymous function)
(defun make−adder (n)

(lambda (x) (+ n x)))

(funcal l (make−adder 3) 5) ; ; => 8

Closures with mutation (impure functional programming)
(l e t ((count 0))

(defun increment ()
(incf count)))

(increment) ; ; => 1
(increment) ; ; => 2
; ; . . .

20/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Step 8: dynamic visitation schemes

How about a component nesting counter visitor ?

C++: left as an exercise. . .
LISP: modification of the visit process required

1 increment nesting level before visiting an object
2 actual visit
3 decrement nesting level afterwards

Do we need a dedicated mapobject for that ?

I No ! We have the MOP’s generic function protocol

21/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

The generic function protocol

Generic function invocation

Return valuecall−next−method

Before Method

Primary Method

After Method

Around Method

Methods are CLOS meta-objects
Methods can be added/removed dynamically

22/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Summary

Decoupling from original hierarchy: n/a
I Generic function model (outside the classes)

Visiting infrastructure:
I First class generic functions (as argument)
I CLOS MOP (introspection)

I Generic machinery in 10 lines of code
Visiting with state:

I Lexical closures
I First class functions (anonymous)
I Generic function protocol (before/after)-methods

I 5–10 more lines of code (original code untouched)

23/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Conclusion
The “iceberg” metaphor

Programming Language

Programmer’s Application

DESIGN PATTERN

What you need to write

What’s already here

Lisp

Notice the difference ?

24/25

Visitor:
Just Do It

Didier Verna

Introduction

C++

LISP
Step 1: plain LISP

Step 2: brute force

Step 3: first class

Step 4: mapping

Step 5: generic map

State
Step 6: objects

Step 7: closures

step 8: visit schemes

Conclusion

Next LISP Events

ELS’09: 2nd European LISP Symposium
May 27-29 2009, Milan, Italy
http://www.european-lisp-symposium.org

ELW’09: 6th European LISP Workshop
July 6 2009, Genova, Italy
co-located with ECOOP.
http://elw.bknr.net/2009

25/25

http://www.european-lisp-symposium.org
http://elw.bknr.net/2009

	Introduction
	Visiting in C++
	Visiting in Lisp
	Step 1: plain Lisp
	Step 2: brute force visiting
	Step 3: first class generic functions
	Step 4: mapping
	Step 5: generic mapping

	Visiting with state
	Step 6: objects
	Step 7: lexical closures
	Step 8: dynamic visitation schemes

	Conclusion

