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Natural Languages (Analytical Philosophy)
Origins

Quine
reference ≈ meaning
replacing an expression by another one which refers to
the same thing doesn’t alter the meaning

Example: “Wallace’s dog” ≡ “Gromit”

4 Tomorrow, I’ll go feed Wallace’s dog.
6 Gromit isn’t Wallace’s dog anymore.
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Programming Languages (Semantics)
Inspired from Quine

Strachey1

If we wish to find the value of an expression which
contains a sub-expression, the only thing we need
to know about the sub-expression is its value.

Reade2

Only the meaning of immediate sub-expressions is
significant in determining the meaning of a
compound expression. Since expressions are
equal if and only if they have the same meaning,
[it] means that substitutivity of equality holds.

1Fundamental Concept of Programming Languages, 1967
2Elements of Functional Programming, 19895/54
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Purely Functional Languages
A more extremist view

Take your pick
An expression which can be replaced with its value
without changing the behavior of a program.

Evaluation of the expression simply changes the
form of the expression but never its value.

All references to a value are equivalent to the value
itself.

There are no other effects in any procedure for
obtaining the value.
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The original points
Quine and Strachey agreed

Quine’s point
Natural languages are complicated because they need to
be practical.

Strachey’s point
The same! And BTW, he was talking about imperative
languages.

A sound denotational semantics would render even
imperative languages referentially transparent (by telling you
when two expressions are equal).
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Purity vs. Referential Transparency
Are we talking about the same thing ?

What purely functional programmers talk about

values instead of meaning
evaluation process becomes relevant
side effects (or lack thereof)
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The Typical PFP’s argument
Which is refutable

This is referentially transparent
i n t plus_one ( x ) { return x + 1; } /∗ plus_one ( 1 ) i s always 2 ∗ /

This is not
i n t foo = 10;
i n t plus_foo ( x ) { return x + foo ; } /∗ plus_foo ( 1 ) depends on foo ∗ /

Really? What about this?
foo : : I n t
foo = 10

plus_foo : : I n t −> I n t
plus_foo x = x + foo −− plus_foo 1 i s always 1 1 . . .

l e t foo = 20 in l e t plus_foo x = x + foo in plus_foo 1 −− 21. Woops !
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One final definition
Gotta stop somewhere

Gelernter & Jagannathan

A language is referentially transparent if (a)
every subexpression can be replaced by any other
that’s equal to it in value and (b) all occurrences of
an expression within a given context yield the
same value.

Applies to languages, not expressions
Mostly rules mutation out
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Intermediate Conclusion
Where to go from here

There is always some form of context dependency
(lexical / dynamic definitions, free / bound variables,
side effects etc)
PFPs disregard their own contexts (lexical and purity)
PFPs reduce the notion of “meaning” to that of “value”
(result of a λ -calculus evaluation process)

Consequently, I hereby claim that the expression “referential
transparency” is not referentially transparent :-).
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Optimization, Safety, Expressiveness. . .
Why referential transparency is profitable

Optimization:
I Memoization
I Parallelism (Cf. Erlang)

Safety:
I Localized semantics (hence localized bugs)
I Program reasoning and proof

Expressiveness:
I Lazy evaluation
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Safety with Program Proof
Formal reasoning

Demonstrate (please) that ∀n,ssq(n)> 0

Purely functional
ssq : : I n t −> I n t
ssq 1 = 1
ssq n = n∗n + ssq ( n−1)

True for N = 1

Assuming it holds for
N−1. . .

Imperative
i n t ssq ( i n t n )
{

i n t i = 1 , a = 0;

while ( i <= n )
{

a += i∗ i ;
i += 1 ;

}

return a ;
}

Ahem. . .
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Expressiveness with Lazy Evaluation
Thank you Church-Rosser

Explicit representation of infinite data structures

Haskell
i n t l i s t : : I n t −> [ I n t ]
i n t l i s t s = s : i n t l i s t ( s + 1)

−− ( i n t l i s t 0) ! ! 3 −> 3.

Lisp
( defun i n t l i s t ( s )

( cons s ( i n t l i s t (1+ s ) ) ) )

; ; ( e l t ( i n t l i s t 0) 3) −> ^C^C
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Where to Look for Bindings?
Scoping

Lexical Scoping: in the defining context
Dynamic Scoping: in the calling context

Lexical Scope
( l e t ( ( x 10) )

( defun foo ( )

x ) )

( l e t ( ( x 20) )
( foo ) ) ; ; −> 10

Dynamic Scope
( l e t ( ( x 10) )

( defun foo ( )
( dec lare ( spec ia l x ) )
x ) )

( l e t ( ( x 20) )
( foo ) ) ; ; −> 20

First Lisp was dynamically scoped
Lexical scope since Scheme (except Emacs Lisp!)
Common Lisp still offers both (Emacs Lisp now does)
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Lexical Closures
Brought to you by lexical scope

Definition:
Combination of function definitions and their defining
environment (free variables values at define-time)
Benefits:

I 1st order functional (anonymous) arguments
I 1st order functional (anonymous) return values
I . . . (e.g. encapsulation)

Lisp note: lexical state is mutable
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Why lexical closures are crucial
They’re everywhere!

1st order functional (anonymous) arguments
( defun l i s t + ( l s t n )

( mapcar ( lambda ( x ) (+ x n ) )
l s t ) )

1st order functional (anonymous) return values
( defun make−adder ( n )

( lambda ( x ) (+ x n ) ) )

Mutable lexical state
( l e t ( ( cn t 0 ) )

( defun newtag ( ) ( incf cnt ) )
( defun rese t tag ( ) ( setq cnt 0 ) ) )
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Why is dynamic scoping dangerous ?
But also useful

Problems:
I Name clashes on free variables
I Very difficult to debug
I Mc Carthy’s first example of higher order function

(1958) was wrong!
Advantages:

I Dynamic paradigms (e.g. COP)
I Global variables!

As per defvar and defparameter
E.g. Emacs user options
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Mc Carthy’s bugged example
Transcribed in Common Lisp

The first mapping function
( defmacro whi le ( t e s t &rest body )

‘ ( do ( ) ( ( not , t e s t ) )
,@body ) )

( defun my−mapcar ( func l s t )
( l e t ( e l t n )

( wh i le ( setq e l t (pop l s t ) )
(push ( funcal l func e l t ) n ) )

( nreverse n ) ) )

( defun l i s t + ( l s t n )
(my−mapcar ( lambda ( x )

( dec lare ( spec ia l n ) )
(+ x n ) ) ; ; Bar f ! !

l s t ) )
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Intermediate Conclusion
Remember when I asked you about (let ((x 10)) (foo)) ?

Duality of syntax (intentional):

Lexical scope
( l e t ( ( lock n i l ) )

( defun l ock ( ) ( test−and−set lock ) )
( defun unlock ( ) ( setq l ock n i l ) ) )

Dynamic scope
( l e t ( ( case−fold−search n i l ) )

( search− forward "^Bcc: " ) )

Going further
Semantics-agnostic macros (e.g. being-true)
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Reader Macros
Hijacking the Lisp syntax

Hooking into the Lisp reader
readtable: currently active syntax extension table
macro character: special syntactic meaning
reader macro: implements macro character behavior

Note: RTMP

Standard syntactic extensions
’ quote

#’ function

#c complex

. . .
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Why is RTMP useful?
Not only for syntactic sugar

Examples
; ; Of course , the comment syntax i s implemented wi th macro charac te rs . . .
( asdf : defsystem :com. d v l s o f t . c lon

: d e s c r i p t i o n "The Command-Line Options Nuker."
: author "Didier Verna <didier@lrde.epita.fr>"
: ma in ta iner "Didier Verna <didier@lrde.epita.fr>"
: l i cense "BSD"
: ve rs ion # . ( vers ion : shor t )
: depends−on (#+ sbc l : sb−posix

#+(and c l i s p com. d v l s o f t . c lon . te rmio ) : c f f i )
: s e r i a l t
# | . . . | # )
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Application to DSLs
The embedded homogeneous kind

From a previous talk:
; ; Going from t h i s :
{ op t ion : foreground whi te

: face { syntax : bold t : foreground cyan }
: face { usage : foreground ye l low }

}
; ; To t h a t :
( def ine− face op t ion : foreground whi te

: face ( def ine− face syntax : bold t : foreground cyan )
: face ( def ine− face usage : foreground ye l low ) )

What kind of underlying data structure would you like ?
{ : key1 va l1 : key2 val2 # | . . . | # }

What about this?
( defun random− f f i −br idge ( foo bar ) { struct wins ize window ; /∗ . . . ∗ / } )
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Symbol Macros
A special kind of macros

Macro-expanded symbols
( define−symbol−macro foo expansion−form )
; ; Loca l l y w i th SYMBOL−MACROLET

Expansion then subject to regular macro-expansion

Example
( defun compute−thing ( ) # | . . . | # )
( define−symbol−macro t h i ng ( compute−thing ) )

; ; Using THING i s c leaner than using (COMPUTE−THING) .
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Generalized Variables
l-values vs. r-values

The problem
( setq l s t ’ ( 1 2 3 ) ) ; ; −> (1 2 3)
( nth 1 l s t ) ; ; −> 2

( defun se tn th ( nth l s t newval )
"Replace the NTH element in list LST with NEWVAL."
( rplaca ( nthcdr l s t nth ) newval )
newval )

( se tn th 1 l s t 20) ; ; −> 20
l s t ; ; −> (1 20 3)

Different setters for every data structure ?
How boring. . .

The solution
( set f ( nth 1 l s t ) 20)
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Making your own
Setf expanders

50 or so expanders in the Lisp standard
Accessors (struct or class instances)
Make your own with

I (defun (setf foo) ...)
I defsetf
I define-setf-expander
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Application
Combining symbol macros and generalized variables

with-slots / with-accessors
( with−accessors ( ( o r i g i n c i r c l e−o r i g i n ) ( rad ius c i r c l e− r a d i u s ) ) c i r c l e

; ; . . .
( set f o r i g i n (+ o r i g i n t r a n s l a t i o n− f a c t o r ) )
( incf rad ius 3)
# | . . . | # )
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Crash Course
What are Lisp macros exactly?

Ordinary Lisp functions (almost)
Macro arguments: chunks of code (seen as data)
Non-strict: arguments not evaluated
Transform expressions into new expressions
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Why are macros useful?
CTMP, factoring, non-strict idioms etc

Will this work?
( defun i f n o t ( t e s t then else )

( i f t e s t e lse then ) )

; ; ( i f n o t t ( e r r o r "Kaboum ! " ) ’ okay ) −> Kaboum !

This will
( defmacro i f n o t ( t e s t then else )

( l i s t ( quote i f ) t e s t e lse then ) )

; ; ( i f n o t t ( e r r o r "Kaboum ! " ) ’ okay ) −> ( i f t ’ okay ( e r r o r "Kaboum ! " ) )

Even better, and even more better
( defmacro i f n o t ( t e s t then else )

( l i s t ’ i f t e s t e lse then ) )

( defmacro i f n o t ( t e s t then else )
‘ ( i f , t e s t , e lse , then ) )
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Macro pitfalls
Evaluation control, unwanted variable capture

Does this work?
( defmacro maybe−push ( ob jec t place )

‘ (when , ob jec t (push , ob jec t , p lace ) ) )

And this?
( defmacro maybe−push ( ob jec t place )

‘ ( l e t ( ( ob j , ob jec t ) )
(when ob j (push ob j , p lace ) ) ) )

At last!
( defmacro maybe−push ( ob jec t place )

( l e t ( ( the−object (gensym ) ) )
‘ ( l e t ( ( , the−object , ob jec t ) )

(when , the−object (push , the−object , p lace ) ) ) ) )
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Intentional variable capture I
By example

This screams for abstraction
( defun s igns ( l i s t )

( mapcar ( lambda ( x ) ( i f (= −1 ( signum x ) ) ’− ’ + ) )
( remove− i f ( lambda ( x )

( or ( not (numberp x ) ) ( complexp x ) ) )
l i s t ) ) )

This screams a little less
( defun f i l t e r−map ( term f i l t e r l i s t )

( mapcar term ( remove− i f f i l t e r l i s t ) ) )

( defun s igns ( l i s t )
( f i l t e r−map ( lambda ( x ) ( i f (= −1 ( signum x ) ) ’− ’ + ) )

( lambda ( x ) ( or ( not (numberp x ) ) ( complexp x ) ) )
l i s t ) )
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Intentional variable capture II
By example

This doesn’t scream anymore
( defmacro f i l t e r−map ( term f i l t e r l i s t )

‘ ( mapcar ( lambda ( x ) , term ) ( remove− i f ( lambda ( x ) , f i l t e r ) , l i s t ) ) )

( defun s igns ( l i s t )
( f i l t e r−map ( i f (= −1 ( signum x ) ) ’− ’ + )

( or ( not (numberp x ) ) ( complexp x ) )
l i s t ) )

Exercise: write a Haskell-like list comprehension
facility.
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Side Note: Alternatives with Syntax Extension
More than one way. . .

With capture
( defun brace−reader ( stream subchar arg )

( dec lare ( ignore subchar ) )
( l e t ( ( body ( read−de l im i ted− l i s t # \ } stream t ) ) )

(push (cond ( ( or ( nul l arg ) (= 1 arg ) ) ’ ( x ) )
( (= 2 arg ) ’ ( x y ) )
( (= 3 arg ) ’ ( x y z ) )
( (= 4 arg ) ’ ( x y z t ) ) )

body )
(push ’ lambda body )
body ) )

( set−dispatch−macro−character #\# # \ { # ’ brace−reader )

; ; (#2{ (∗ x y ) } 3 4) −> 12

Without capture (unicode Lisp)
( set−macro−character # \λ ( lambda ( stream char ) ’ lambda ) )

; ; ( ( λ ( x y ) (∗ x y ) ) 3 4) −> 12
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Anaphora
In the grammatical sense

Graham’s classical examples
( defmacro a i f ( t e s t then &o p t i o n a l e lse )

‘ ( l e t ( ( i t , t e s t ) )
( i f i t , then , e lse ) ) )

; ; awhen , acond , awhi le , aand etc .

( defmacro alambda ( args &body body )
‘ ( labels ( ( s e l f , args ,@body ) )

# ’ s e l f ) )

And the all-mighty and highly controversial loop
macro!
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Pure (Free Variable) Injection
Lexical trojans

In its simplest form
( defmacro i n j e c t ( ) ’ x )
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Application: Lexical Communication Channels
Under the hood. . .

Principle:
Two or more macros communicating with each other by
injecting / capturing lexical bindings (variables, macros,
symbol macros etc)
This lexical communication channel does not even have
to be visible in the source code
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Examples
Cf. live demo (if it works. . . )

Tracing anaphora
( t r a c i n g−c o n d i t i o n a l s

; ; . . .
( i f t h i s do− this do−that )
# | . . . | # )

Alternate version
( t r a c i n g−c o n d i t i o n a l s . . .

; ; . . .
( i f t h i s ( progn do− this . . . here ) do−that )
# | . . . | # )
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Conclusion
Bringing programming languages closer to natural ones

Referential transparency is useful
Breaking it is also useful (readability, concision)
Breaking it is dangerous (safety vs. expressiveness)
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