
Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Referential Transparency is Overrated
But let’s keep this between us. . .

Didier Verna

didier@lrde.epita.fr
http://www.lrde.epita.fr/˜didier

http://www.facebook.com/didierverna
@didierverna

ACCU 2015 – Thursday, April 23rd

1/54

mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/~didier
http://www.facebook.com/didierverna
@didierverna

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Table of contents

1 Introduction

2 Scoping

3 Syntax Extension (RTMP)

4 Symbol Macros / Generalized Variables

5 Macros (CTMP)

6 Conclusion

2/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Natural Languages (Analytical Philosophy)
Origins

Quine
reference ≈ meaning
replacing an expression by another one which refers to
the same thing doesn’t alter the meaning

Example: “Wallace’s dog” ≡ “Gromit”

4 Tomorrow, I’ll go feed Wallace’s dog.
6 Gromit isn’t Wallace’s dog anymore.

4/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Programming Languages (Semantics)
Inspired from Quine

Strachey1

If we wish to find the value of an expression which
contains a sub-expression, the only thing we need
to know about the sub-expression is its value.

Reade2

Only the meaning of immediate sub-expressions is
significant in determining the meaning of a
compound expression. Since expressions are
equal if and only if they have the same meaning,
[it] means that substitutivity of equality holds.

1Fundamental Concept of Programming Languages, 1967
2Elements of Functional Programming, 19895/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Purely Functional Languages
A more extremist view

Take your pick
An expression which can be replaced with its value
without changing the behavior of a program.

Evaluation of the expression simply changes the
form of the expression but never its value.

All references to a value are equivalent to the value
itself.

There are no other effects in any procedure for
obtaining the value.

6/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

The original points
Quine and Strachey agreed

Quine’s point
Natural languages are complicated because they need to
be practical.

Strachey’s point
The same! And BTW, he was talking about imperative
languages.

A sound denotational semantics would render even
imperative languages referentially transparent (by telling you
when two expressions are equal).

7/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Purity vs. Referential Transparency
Are we talking about the same thing ?

What purely functional programmers talk about

values instead of meaning
evaluation process becomes relevant
side effects (or lack thereof)

8/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

The Typical PFP’s argument
Which is refutable

This is referentially transparent
i n t plus_one (x) { return x + 1; } /∗ plus_one (1) i s always 2 ∗ /

This is not
i n t foo = 10;
i n t plus_foo (x) { return x + foo ; } /∗ plus_foo (1) depends on foo ∗ /

Really? What about this?
foo : : I n t
foo = 10

plus_foo : : I n t −> I n t
plus_foo x = x + foo −− plus_foo 1 i s always 1 1 . . .

l e t foo = 20 in l e t plus_foo x = x + foo in plus_foo 1 −− 21. Woops !

14/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

One final definition
Gotta stop somewhere

Gelernter & Jagannathan

A language is referentially transparent if (a)
every subexpression can be replaced by any other
that’s equal to it in value and (b) all occurrences of
an expression within a given context yield the
same value.

Applies to languages, not expressions
Mostly rules mutation out

15/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Intermediate Conclusion
Where to go from here

There is always some form of context dependency
(lexical / dynamic definitions, free / bound variables,
side effects etc)
PFPs disregard their own contexts (lexical and purity)
PFPs reduce the notion of “meaning” to that of “value”
(result of a λ -calculus evaluation process)

Consequently, I hereby claim that the expression “referential
transparency” is not referentially transparent :-).

16/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Optimization, Safety, Expressiveness. . .
Why referential transparency is profitable

Optimization:
I Memoization
I Parallelism (Cf. Erlang)

Safety:
I Localized semantics (hence localized bugs)
I Program reasoning and proof

Expressiveness:
I Lazy evaluation

17/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Safety with Program Proof
Formal reasoning

Demonstrate (please) that ∀n,ssq(n)> 0

Purely functional
ssq : : I n t −> I n t
ssq 1 = 1
ssq n = n∗n + ssq (n−1)

True for N = 1

Assuming it holds for
N−1. . .

Imperative
i n t ssq (i n t n)
{

i n t i = 1 , a = 0;

while (i <= n)
{

a += i∗ i ;
i += 1 ;

}

return a ;
}

Ahem. . .

18/54

Referential
Transparency
is Overrated

Didier Verna

Introduction
Views

Confusion

Benefits

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Expressiveness with Lazy Evaluation
Thank you Church-Rosser

Explicit representation of infinite data structures

Haskell
i n t l i s t : : I n t −> [I n t]
i n t l i s t s = s : i n t l i s t (s + 1)

−− (i n t l i s t 0) ! ! 3 −> 3.

Lisp
(defun i n t l i s t (s)

(cons s (i n t l i s t (1+ s))))

; ; (e l t (i n t l i s t 0) 3) −> ^C^C

20/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping
Definitions

Lexical Scope

Dynamic Scope

Interlude

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Where to Look for Bindings?
Scoping

Lexical Scoping: in the defining context
Dynamic Scoping: in the calling context

Lexical Scope
(l e t ((x 10))

(defun foo ()

x))

(l e t ((x 20))
(foo)) ; ; −> 10

Dynamic Scope
(l e t ((x 10))

(defun foo ()
(dec lare (spec ia l x))
x))

(l e t ((x 20))
(foo)) ; ; −> 20

First Lisp was dynamically scoped
Lexical scope since Scheme (except Emacs Lisp!)
Common Lisp still offers both (Emacs Lisp now does)

22/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping
Definitions

Lexical Scope

Dynamic Scope

Interlude

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Lexical Closures
Brought to you by lexical scope

Definition:
Combination of function definitions and their defining
environment (free variables values at define-time)
Benefits:

I 1st order functional (anonymous) arguments
I 1st order functional (anonymous) return values
I . . . (e.g. encapsulation)

Lisp note: lexical state is mutable

23/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping
Definitions

Lexical Scope

Dynamic Scope

Interlude

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Why lexical closures are crucial
They’re everywhere!

1st order functional (anonymous) arguments
(defun l i s t + (l s t n)

(mapcar (lambda (x) (+ x n))
l s t))

1st order functional (anonymous) return values
(defun make−adder (n)

(lambda (x) (+ x n)))

Mutable lexical state
(l e t ((cn t 0))

(defun newtag () (incf cnt))
(defun rese t tag () (setq cnt 0)))

24/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping
Definitions

Lexical Scope

Dynamic Scope

Interlude

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Why is dynamic scoping dangerous ?
But also useful

Problems:
I Name clashes on free variables
I Very difficult to debug
I Mc Carthy’s first example of higher order function

(1958) was wrong!
Advantages:

I Dynamic paradigms (e.g. COP)
I Global variables!

As per defvar and defparameter
E.g. Emacs user options

29/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping
Definitions

Lexical Scope

Dynamic Scope

Interlude

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Mc Carthy’s bugged example
Transcribed in Common Lisp

The first mapping function
(defmacro whi le (t e s t &rest body)

‘ (do () ((not , t e s t))
,@body))

(defun my−mapcar (func l s t)
(l e t (e l t n)

(wh i le (setq e l t (pop l s t))
(push (funcal l func e l t) n))

(nreverse n)))

(defun l i s t + (l s t n)
(my−mapcar (lambda (x)

(dec lare (spec ia l n))
(+ x n)) ; ; Bar f ! !

l s t))

30/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping
Definitions

Lexical Scope

Dynamic Scope

Interlude

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Intermediate Conclusion
Remember when I asked you about (let ((x 10)) (foo)) ?

Duality of syntax (intentional):

Lexical scope
(l e t ((lock n i l))

(defun l ock () (test−and−set lock))
(defun unlock () (setq l ock n i l)))

Dynamic scope
(l e t ((case−fold−search n i l))

(search− forward "^Bcc: "))

Going further
Semantics-agnostic macros (e.g. being-true)

32/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension
Reader Macros

Applications

Symbol
Macros

Macros

Conclusion

Reader Macros
Hijacking the Lisp syntax

Hooking into the Lisp reader
readtable: currently active syntax extension table
macro character: special syntactic meaning
reader macro: implements macro character behavior

Note: RTMP

Standard syntactic extensions
’ quote

#’ function

#c complex

. . .

34/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension
Reader Macros

Applications

Symbol
Macros

Macros

Conclusion

Why is RTMP useful?
Not only for syntactic sugar

Examples
; ; Of course , the comment syntax i s implemented wi th macro charac te rs . . .
(asdf : defsystem :com. d v l s o f t . c lon

: d e s c r i p t i o n "The Command-Line Options Nuker."
: author "Didier Verna <didier@lrde.epita.fr>"
: ma in ta iner "Didier Verna <didier@lrde.epita.fr>"
: l i cense "BSD"
: ve rs ion # . (vers ion : shor t)
: depends−on (#+ sbc l : sb−posix

#+(and c l i s p com. d v l s o f t . c lon . te rmio) : c f f i)
: s e r i a l t
| . . . | #)

35/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension
Reader Macros

Applications

Symbol
Macros

Macros

Conclusion

Application to DSLs
The embedded homogeneous kind

From a previous talk:
; ; Going from t h i s :
{ op t ion : foreground whi te

: face { syntax : bold t : foreground cyan }
: face { usage : foreground ye l low }

}
; ; To t h a t :
(def ine− face op t ion : foreground whi te

: face (def ine− face syntax : bold t : foreground cyan)
: face (def ine− face usage : foreground ye l low))

What kind of underlying data structure would you like ?
{ : key1 va l1 : key2 val2 # | . . . | # }

What about this?
(defun random− f f i −br idge (foo bar) { struct wins ize window ; /∗ . . . ∗ / })

36/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros
Symbol Macros

Generalized
Variables

Application

Macros

Conclusion

Symbol Macros
A special kind of macros

Macro-expanded symbols
(define−symbol−macro foo expansion−form)
; ; Loca l l y w i th SYMBOL−MACROLET

Expansion then subject to regular macro-expansion

Example
(defun compute−thing () # | . . . | #)
(define−symbol−macro t h i ng (compute−thing))

; ; Using THING i s c leaner than using (COMPUTE−THING) .

38/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros
Symbol Macros

Generalized
Variables

Application

Macros

Conclusion

Generalized Variables
l-values vs. r-values

The problem
(setq l s t ’ (1 2 3)) ; ; −> (1 2 3)
(nth 1 l s t) ; ; −> 2

(defun se tn th (nth l s t newval)
"Replace the NTH element in list LST with NEWVAL."
(rplaca (nthcdr l s t nth) newval)
newval)

(se tn th 1 l s t 20) ; ; −> 20
l s t ; ; −> (1 20 3)

Different setters for every data structure ?
How boring. . .

The solution
(set f (nth 1 l s t) 20)

39/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros
Symbol Macros

Generalized
Variables

Application

Macros

Conclusion

Making your own
Setf expanders

50 or so expanders in the Lisp standard
Accessors (struct or class instances)
Make your own with

I (defun (setf foo) ...)
I defsetf
I define-setf-expander

40/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros
Symbol Macros

Generalized
Variables

Application

Macros

Conclusion

Application
Combining symbol macros and generalized variables

with-slots / with-accessors
(with−accessors ((o r i g i n c i r c l e−o r i g i n) (rad ius c i r c l e− r a d i u s)) c i r c l e

; ; . . .
(set f o r i g i n (+ o r i g i n t r a n s l a t i o n− f a c t o r))
(incf rad ius 3)
| . . . | #)

41/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros
Crash Course

Variable Capture

Variable Injection

Lexical channels

Conclusion

Crash Course
What are Lisp macros exactly?

Ordinary Lisp functions (almost)
Macro arguments: chunks of code (seen as data)
Non-strict: arguments not evaluated
Transform expressions into new expressions

43/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros
Crash Course

Variable Capture

Variable Injection

Lexical channels

Conclusion

Why are macros useful?
CTMP, factoring, non-strict idioms etc

Will this work?
(defun i f n o t (t e s t then else)

(i f t e s t e lse then))

; ; (i f n o t t (e r r o r "Kaboum ! ") ’ okay) −> Kaboum !

This will
(defmacro i f n o t (t e s t then else)

(l i s t (quote i f) t e s t e lse then))

; ; (i f n o t t (e r r o r "Kaboum ! ") ’ okay) −> (i f t ’ okay (e r r o r "Kaboum ! "))

Even better, and even more better
(defmacro i f n o t (t e s t then else)

(l i s t ’ i f t e s t e lse then))

(defmacro i f n o t (t e s t then else)
‘ (i f , t e s t , e lse , then))

44/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros
Crash Course

Variable Capture

Variable Injection

Lexical channels

Conclusion

Macro pitfalls
Evaluation control, unwanted variable capture

Does this work?
(defmacro maybe−push (ob jec t place)

‘ (when , ob jec t (push , ob jec t , p lace)))

And this?
(defmacro maybe−push (ob jec t place)

‘ (l e t ((ob j , ob jec t))
(when ob j (push ob j , p lace))))

At last!
(defmacro maybe−push (ob jec t place)

(l e t ((the−object (gensym)))
‘ (l e t ((, the−object , ob jec t))

(when , the−object (push , the−object , p lace)))))

45/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros
Crash Course

Variable Capture

Variable Injection

Lexical channels

Conclusion

Intentional variable capture I
By example

This screams for abstraction
(defun s igns (l i s t)

(mapcar (lambda (x) (i f (= −1 (signum x)) ’− ’ +))
(remove− i f (lambda (x)

(or (not (numberp x)) (complexp x)))
l i s t)))

This screams a little less
(defun f i l t e r−map (term f i l t e r l i s t)

(mapcar term (remove− i f f i l t e r l i s t)))

(defun s igns (l i s t)
(f i l t e r−map (lambda (x) (i f (= −1 (signum x)) ’− ’ +))

(lambda (x) (or (not (numberp x)) (complexp x)))
l i s t))

46/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros
Crash Course

Variable Capture

Variable Injection

Lexical channels

Conclusion

Intentional variable capture II
By example

This doesn’t scream anymore
(defmacro f i l t e r−map (term f i l t e r l i s t)

‘ (mapcar (lambda (x) , term) (remove− i f (lambda (x) , f i l t e r) , l i s t)))

(defun s igns (l i s t)
(f i l t e r−map (i f (= −1 (signum x)) ’− ’ +)

(or (not (numberp x)) (complexp x))
l i s t))

Exercise: write a Haskell-like list comprehension
facility.

47/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros
Crash Course

Variable Capture

Variable Injection

Lexical channels

Conclusion

Side Note: Alternatives with Syntax Extension
More than one way. . .

With capture
(defun brace−reader (stream subchar arg)

(dec lare (ignore subchar))
(l e t ((body (read−de l im i ted− l i s t # \ } stream t)))

(push (cond ((or (nul l arg) (= 1 arg)) ’ (x))
((= 2 arg) ’ (x y))
((= 3 arg) ’ (x y z))
((= 4 arg) ’ (x y z t)))

body)
(push ’ lambda body)
body))

(set−dispatch−macro−character #\# # \ { # ’ brace−reader)

; ; (#2{ (∗ x y) } 3 4) −> 12

Without capture (unicode Lisp)
(set−macro−character # \λ (lambda (stream char) ’ lambda))

; ; ((λ (x y) (∗ x y)) 3 4) −> 12

48/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros
Crash Course

Variable Capture

Variable Injection

Lexical channels

Conclusion

Anaphora
In the grammatical sense

Graham’s classical examples
(defmacro a i f (t e s t then &o p t i o n a l e lse)

‘ (l e t ((i t , t e s t))
(i f i t , then , e lse)))

; ; awhen , acond , awhi le , aand etc .

(defmacro alambda (args &body body)
‘ (labels ((s e l f , args ,@body))

’ s e l f))

And the all-mighty and highly controversial loop
macro!

49/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros
Crash Course

Variable Capture

Variable Injection

Lexical channels

Conclusion

Pure (Free Variable) Injection
Lexical trojans

In its simplest form
(defmacro i n j e c t () ’ x)

50/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros
Crash Course

Variable Capture

Variable Injection

Lexical channels

Conclusion

Application: Lexical Communication Channels
Under the hood. . .

Principle:
Two or more macros communicating with each other by
injecting / capturing lexical bindings (variables, macros,
symbol macros etc)
This lexical communication channel does not even have
to be visible in the source code

51/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros
Crash Course

Variable Capture

Variable Injection

Lexical channels

Conclusion

Examples
Cf. live demo (if it works. . .)

Tracing anaphora
(t r a c i n g−c o n d i t i o n a l s

; ; . . .
(i f t h i s do− this do−that)
| . . . | #)

Alternate version
(t r a c i n g−c o n d i t i o n a l s . . .

; ; . . .
(i f t h i s (progn do− this . . . here) do−that)
| . . . | #)

52/54

Referential
Transparency
is Overrated

Didier Verna

Introduction

Scoping

Syntax
Extension

Symbol
Macros

Macros

Conclusion

Conclusion
Bringing programming languages closer to natural ones

Referential transparency is useful
Breaking it is also useful (readability, concision)
Breaking it is dangerous (safety vs. expressiveness)

54/54

	Introduction
	Views
	Confusion
	Benefits

	Scoping
	Definitions
	Lexical Scope
	Dynamic Scope
	Interlude

	Syntax Extension (RTMP)
	Reader Macros
	Applications

	Symbol Macros / Generalized Variables
	Symbol Macros
	Generalized Variables
	Application

	Macros (CTMP)
	Crash Course
	Variable Capture
	Variable Injection
	Lexical channels

	Conclusion

