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Abstract. We revisit the problem of reducing incompletely specified
Mealy machines with reactive synthesis in mind. We propose two tech-
niques: the former is inspired by the tool MeMin Abel and Reineke
[1] and solves the minimization problem, the latter is a novel approach
derived from simulation-based reductions but may not guarantee a mini-
mized machine. However, we argue that it offers a good enough compro-
mise between the size of the resulting Mealy machine and performance.
The proposed methods are benchmarked against MeMin on a large col-
lection of test cases made of well-known instances as well as new ones.

1 Introduction

Program synthesis is a well-established formal method: given a logical specifi-
cation of a system, it allows one to automatically generate a provably correct
implementation. It can be applied to reactive controllers (Fig. 1a): circuits that
produce for an input stream of Boolean valuations (here, over Boolean variables
a and b) a matching output stream (here, over x and y).

The techniques used to translate a specification (say, a Linear Time Logic
formula that relates input and output Boolean variables) into a circuit often
rely on automata-theoretic intermediate models such as Mealy machines. These
transducers are labeled graphs whose edges associate input valuations to a choice
of one or more output valuations, as shown in Fig. 1b.

Since Mealy machines with fewer states result in smaller circuits, reducing
and minimizing the size of Mealy machines are well-studied problems Alberto
and Simao [2], Paull and Unger [12].
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Fig. 1: Minimizing a Mealy machine that models a reactive controller

https://orcid.org/0000-0002-5066-1726
https://orcid.org/0000-0002-6611-9659
https://orcid.org/0000-0002-6623-2512
https://orcid.org/0000-0001-5530-152X


2 F. Renkin, P. Schlehuber-Caissier, A. Duret-Lutz, A. Pommellet

However, vague specifications may cause incompletely specified machines:
for some states (i.e., nodes of the graph) and inputs, there may not exist a
unique, explicitly defined output, but a set of valid outputs. Resolving those
choices to a single output (among those allowed) will produce a fully specified
machine that satisfies the initial specification, however those different choices
may have an impact on the minimization of the machine. While minimizing
fully specified machines is efficiently solvable Hopcroft [8], the problem is NP-
complete for incompletely specified machines Pfleeger [14]. Hence, it may also
be worth exploring faster algorithms that seek to reduce the number of states
without achieving the optimal result.

Consider Fig. 1b: this machine is incompletely specified, as for instance state
0 allows multiple outputs for input ab (i.e., when both input variables a and b
are true) and implicitly allows any output for input āb (i.e., only b is true) as
it isn’t constrained in any way by the specification. We can benefit from this
flexibility in unspecified outputs to help reduce the automaton. For instance if
we constrain state 2 to behave exactly as state 0 for inputs ab and ab̄, then these
two states can be merged. Adding further constraints can lead to the single-state
machine shown in Fig. 1c. These smaller machines are not equivalent, but they
are compatible: for any input stream, they can only produce output streams that
could also have been produced by the original machine.

We properly define Incompletely specified Generalized Mealy Machines in
Section 2 and provide a SAT-based minimization algorithm in Section 3. Since
the minimization of incompletely specified Mealy machines is desirable but not
crucial for reactive synthesis, we propose a faster reduction technique yielding
“small enough” machines in Section 4. Finally, in Section 5 we benchmark these
techniques against the state-of-the-art tool MeMin Abel and Reineke [1].

2 Definitions

Given a set of propositions (i.e., Boolean variables) X, let BX be the set of all
possible valuations on X, and let 2B

X

be its set of subsets. Any element of 2B
X

can be expressed as a Boolean formula over X. The negation of proposition p
is denoted p̄. We use ⊤ to denote the Boolean formula that is always true, or
equivalently the set BX , and assume that X is clear from the context. A cube is
a conjunction of propositions or their negations (i.e., literals). As an example,
given three propositions a, b and c, the cube a∧ b̄, written ab̄, stands for the set
of all valuations such that a is true and b is false, i.e. {ab̄c, ab̄c̄}. Let KX stand for
the set of all cubes over X. KX contains the cube ⊤, that stands for the set of all
possible valuations over X. Note that any set of valuations can be represented
as a disjunction of disjoint cubes (i.e., not sharing a common valuation).

Definition 1. An Incompletely specified Generalized Mealy Machine (IGMM)
is a tuple M = (I,O,Q, qinit , δ, λ), where I is a set of input propositions, O
a set of output propositions, Q a finite set of states, qinit an initial state,
δ :

(
Q,BI

)
→ Q a partial transition function, and λ :

(
Q,BI

)
→ 2B

O \ {∅} an
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output function such that λ(q, i) = ⊤ when δ(q, i) is undefined. If δ is a total
function, we then say that M is input-complete.

It is worth noting that the transition function is input-deterministic but
not complete with regards to Q as δ(q, i) could be undefined. Furthermore, the
output function may return many valuations for a given input valuation and
state. This is not an unexpected definition from a reactive synthesis point of
view, as a given specification may yield multiple compatible output valuations
for a given input.

Definition 2 (Semantics of IGMMs). Let M = (I,O,Q, qinit , δ, λ) be an

IGMM. For all u ∈ BI and q ∈ Q, if δ(q, u) is defined, we write that q
u/v−−→ δ(q, u)

for all v ∈ λ(q, u). Given two infinite sequences of valuations ι = i0 · i1 · i2 · · · ∈
(BI)ω and o = o0 · o1 · o2 · · · ∈ (BO)ω, (ι, o) |= Mq if and only if:

– either there is an infinite sequence of states (qj)j≥0 ∈ Qω such that q = q0

and q0
i0/o0−−−→ q1

i1/o1−−−→ q2
i2/o2−−−→ · · · ;

– or there is a finite sequence of states (qj)0≤j≤k ∈ Qk+1 such that q = q0,

δ(qk, ik) is undefined, and q0
i0/o0−−−→ q1

i1/o1−−−→ · · · qk.

We then say that starting from state q, M produces output o given the input ι.

Note that if δ(qk, ik) is undefined, the machine is allowed to produce an
arbitrary output from then on. Furthermore, given an input word ι, there may
be several output words o such that (ι, o) |= Mq (in accordance with a lax
specification).

As an example, consider the input sequence ι = ab · āb̄ · ab · āb̄ · · · applied to
the initial state 0 of the machine shown in Figure 1b. We have (ι, o) |= M0 if
and only if for all j ∈ N, o2j ∈ x and o2j+1 ∈ ȳ, where x and ȳ are cubes that
respectively represent {xy, xȳ} and {xȳ, x̄ȳ}.

Definition 3 (Variation and specialization). Let M = (I,O,Q, qinit , δ, λ)
and M ′ = (I,O,Q′, q′init , δ

′, λ′) be two IGMMs. Given two states q ∈ Q, q′ ∈ Q′,
we say that q′ is a:
– variation of q if ∀ι ∈ (BI)ω,

{
o | (ι, o) |= M ′

q′

}
∩ {o | (ι, o) |= Mq} ≠ ∅;

– specialization of q if ∀ι ∈ (BI)ω,
{
o | (ι, o) |= M ′

q′

}
⊆ {o | (ι, o) |= Mq}.

We say that M ′ is a variation (resp. specialization) of M if q′init is a variation
(resp. specialization) of qinit .

Intuitively, all the input-output pairs accepted by a specialization q′ in M ′

are also accepted by q in M . Therefore, if all the outputs produced by state q in
M comply with the original specification, then so do the outputs produced by
state q′ in M ′. In order for two states to be a variation of one another, for all
possible inputs they must be able to agree on a common output behaviour.

We write q′ ≈ q (resp. q′ ⊑ q) if q′ is a variation (resp. specialization) of q.
Note that ≈ is a symmetric but non-transitive relation, while ⊑ is transitive (⊑
is a preorder).

Our goal in this article is to solve the following problems:
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Reducing an IGMM M : finding a specialization of M having at most the
same number of states, preferably fewer.

Minimizing an IGMM M : finding a specialization of M having the least
number of states.
Consider again the IGMM shown in Figure 1b. The IGMM shown in Figure 1c

is a specialization of this machine and has a minimal number of states.

Generalizing inputs and outputs. Note that the output function of an
IGMM returns a set of valuations, but it can be rewritten equivalently to out-
put a set of cubes as λ :

(
Q,BI

)
→ 2K

O

. As an example, consider I = {a} and
O = {x, y, z}; the set of valuations v = {x̄yz, x̄yz̄, xȳz, xȳz̄} ∈ 2B

O

is equivalent
to the set of cubes vc = {x̄y, xȳ} ∈ 2K

O

.
In the literature, a Mealy machine commonly maps a single input valua-

tion to a single output valuation: its output function is therefore of the form
λ :

(
Q,BI

)
→ BO. The tool MeMin Abel and Reineke [1] uses a slight general-

ization by allowing a single output cube, hence λ :
(
Q,BI

)
→ KO. Thus, unlike

our model, neither the common definition nor the tool MeMin can feature an
edge outputting the aforementioned set v (or equivalently vc), as it cannot be
represented by a single cube or valuation. Our model is therefore strictly more
expressive, although it comes at a price for minimization.

Note that, in practice, edges with identical source state, output valuations,
and destination state can be merged into a single transition labeled by the set
of allowed inputs. Both our tool and MeMin feature this optimization. While it
does not change the expressiveness of the underlying model, this more succinct
representation of the machines does improve the efficiency of the algorithms
detailed in the next section, as they depend on the total number of transitions.

3 SAT-Based Minimization of IGMM

This section builds upon the approach presented by Abel and Reineke [1] for
machines with outputs constrained to cubes, and generalizes it to the IGMM
model (with more expressive outputs).

3.1 General approach

Definition 4. Given an IGMM M = (I,O,Q, qinit , δ, λ), a variation class C ⊆
Q is a set of states such that all elements are pairwise variations, i.e. ∀q, q′ ∈ C,
q′ ≈ q. For any input i ∈ BI , we define:
– the successor function Succ(C, i) =

⋃
q∈C {δ(q, i) | δ(q, i) is defined};

– the output function Out(C, i) =
⋂

q∈C λ(q, i).

Intuitively, the successor function returns the set of all states reachable from
a given class under a given input symbol. The output function returns the set
of all shared output valuations between the various states in the class.
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In the remainder of this section we will call a variation class simply a class, as
there is no ambiguity. We consider three important notions concerning classes,
or rather sets thereof, of the form S = {C0, . . . , Cn−1}.

Definition 5 (Cover condition). We say that a set of classes S covers the
machine M if every state of M appears in at least one of the classes.

Definition 6 (Closure condition). We say that a set of classes S is closed
if for all Cj ∈ S and for all inputs i ∈ BI there exists a Ck ∈ S such that
Succ(Cj , i) ⊆ Ck.

Definition 7 (Nonemptiness condition). We say that a class C has a
nonempty output if Out(C, i) ̸= ∅ for all inputs i ∈ BI .

The astute reader might have observed that the nonempty output condition
is strictly stronger than the condition that all elements in a class have to be
pairwise variations of one another. We will see that this distinction is however
important, as it gives rise to a different set of clauses in the SAT problem,
reducing the total runtime.

Combining these conditions yields the main theorem for this approach. This
extends a similar theorem by Abel and Reineke [1, Thm 1] by adding the
nonemptiness condition to support the more expressive IGMM model.

Theorem 1. Let M = (I,O,Q, qinit , δ, λ) be an IGMM and S = {C0, . . . , Cn−1}
be a minimal (in terms of size) set of classes such that (1) S is closed, (2)
S covers every state of the machine M and (3) each of the classes Cj has a
nonempty output. Then the IGMM M ′ = (I,O, S, q′init , δ

′, λ′) where:
– q′init = C for some C ∈ S such that qinit ∈ C;

– δ′(Cj , i) =

{
Ck for some k s.t. Succ(Cj , i) ⊆ Ck if Succ(Cj , i) ̸= ∅
undefined else;

– λ′(Cj , i) =

{
Out(Cj , i) if Succ(Cj , i) ̸= ∅
⊤ else;

is a specialization of minimal size (in terms of states) of M .

Figure 2a illustrates this construction on an example with a single input
proposition I = {a} (hence two input valuations BI = {a, ā}), and three output
propositions O = {x, y, z}. To simplify notations, elements of 2B

O

are represented
as Boolean functions (happening to be cubes in this example) rather than sets.

States have been colored to indicate their possible membership to one of the
three variational classes. The SAT solver needs to associate each state to at least
one of them in order to satisfy the cover condition (5), while simultaneously
respecting conditions (6)–(7). A possible choice would be: C0 = {0}, C1 =
{1, 3, 6}, and C2 = {2, 4, 5}. For this choice, the violet class C0 has only a single
state, so the closure condition (6) is trivially satisfied. All transitions of the states
in the orange class C1 go to states in C1, also satisfying the condition. The same
can be said of the green class C2.
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Fig. 2: Minimization example

Finally, we need to check the nonempty output condition (7). Once again, it
is trivially satisfied for the violet class C0. For the orange and green classes, we
need to compute their respective output. We get Out(C1, a) = z̄, Out(C1, ā) = z,
Out(C2, a) = z̄ and Out(C2, ā) = z. None of the output sets is empty, thus
condition (7) is satisfied as well. Note that, since the outgoing transitions of
states 4 and 6 are self-loops compatible with all possible output valuations,
another valid choice is: C0 = {0, 4, 6}, C1 = {1, 3, 4, 6}, and C2 = {2, 4, 5, 6}.

The corresponding specialization, constructed as described in Theorem 1, is
shown in Figure 2b. Note that this machine is input-complete, so the incomplete-
ness of the specification only stems from the possible choices in the outputs.

3.2 Proposed SAT Encoding

We want to design an algorithm that finds a minimal specialization of a given
IGMM M . To do so, we will use the following approach, starting from n = 1:
– Posit that there are n classes, hence, n states in the minimal machine.
– Design SAT clauses ensuring cover, closure and nonempty outputs.
– Check if the resulting SAT problem is satisfiable.
– If so, construct the minimal machine described in Theorem 1.
– If not, increment n by one and apply the whole process again, unless n =
|Q|−1, which serves as a proof that the original machine is already minimal.

Encoding the cover and closure conditions. In order to guarantee that the
set of classes S = {C0, . . . , Cn−1} satisfies both the cover and closure conditions
and that each class Cj is a variation class, we need two types of literals:
– sq,j should be true if and only if state q belongs to the class Cj ;
– zi,k,j should be true if Succ(Ck, i) ⊆ Cj for i ∈ BI .

The cover condition, encoded by Equation (1), guarantees that each state
belongs to at least one class.∧

q∈Q

∨
0≤j<n

sq,j (1)
∧

0≤j<n

∧
q,q′∈Q
q ̸≈q′

sq,j ∨ sq′,j (2)
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Equation (2) ensures that each class is a variational class: two states q and
q′ that are not variations of each other cannot belong to the same class.

The closure condition must ensure that for every class Ck and every input
symbol i ∈ BI , there exists at least one class that contains all the successor states:
∀k,∀i,∃j, Succ(Ck, i) ⊆ Cj . This is expressed by the constraints (3) and (4).

∧
0≤k<n

∧
i∈BI

∨
0≤j<n

zi,k,j (3)
∧

0≤j,k<n

∧
q,q′∈Q,i∈BI

q′=δ(q,i)

(zi,k,j ∧ sq,k)→ sq′,j (4)

The constraint (3) ensures that at least one Cj contains Succ(Ck, i), while (4)
ensures this mapping of classes matches the transitions of M .

Encoding the nonempty output condition. Each class in S being a varia-
tion class is necessary but not sufficient to satisfy the nonempty output condition.
We indeed want to guarantee that for any input i, all states in a given class can
agree on at least one common output valuation.

However it is possible to have three or more states (like 0 a/{xy, xȳ},
1 a/{x̄y, xȳ}, and 2 a/{xy, x̄y}) that are all variations of one another,

but still cannot agree on a common output.
This situation cannot occur in MeMin since their model uses cubes as out-

puts rather than arbitrary sets of valuations as in our model. A useful property
of cubes is that if the pairwise intersections of all cubes in a set are nonempty,
then the intersection of all cubes in the set is necessarily nonempty as well.

Since cubes are not expressive enough for our model, we will therefore gen-
eralize the output as discussed earlier in Section 2: we represent the arbitrary
set of valuations produced by the output function λ as a set of cubes whose
disjunction yields the original set. For q ∈ Q and i ∈ BI , we partition the set of
valuations λ(q, i) into cubes, relying on the Minato [11] algorithm, and denote
the obtained set of cubes as CS(λ(q, i)).

Our approach for ensuring that there exists a common output is to search
for disjoint cubes and exclude them from the possible outputs by selectively
deactivating them if necessary; an active cube is a set in which we will be looking
for an output valuation that the whole class can agree on. To express this, we
need two new types of literals:

– ac,q,i should be true iff the particular instance of the cube c ∈ CS(λ(q, i))
used in the output of state q when reading i is active;

– scq,q′ should be true iff ∃Cj ∈ S such that q ∈ Cj and q′ ∈ Cj

The selective deactivation of a cube can then be expressed by the following:

∧
q,q′∈Q
0≤j<n

(sq,j ∧ sq′,j)→ scq,q′ (5)
∧

q∈Q, i∈BI

δ(q,i) is defined

∨
c∈CS(λ(q,i))

ac,q,i (6)
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∧
q,q′∈Q, i∈BI

δ(q,i) is defined
δ(q′,i) is defined

∧
c∈CS(λ(q,i))
c′∈CS(λ(q′,i))

c∩c′=∅

(ac,q,i ∧ ac′,q′,i)→ scq,q′ . (7)

Constraint (5) ensures that scq,q′ is true if there exists a class containing
both q and q′, in accordance with the expected definition.

Constraint (6) guarantees that at least one of the cubes in the output λ(q, i)
is active, causing the restricted output to be nonempty.

Constraint (7) expresses selective deactivation and only needs to be added
for a given q, q′ ∈ Q and i ∈ BI if δ(q, i) and δ(q′, i) are properly defined. This
formula guarantees that if there exists a class to which q and q′ belong to (i.e.,
scq,q′ is true) but there also exist disjoint cubes in the partition of their respective
outputs, then we deactivate at least one of these: only cubes that intersect can be
both activated. Thus, this constraint guarantees the nonempty output condition.

Since encoding an output set requires a number of cubes exponential in |O|,
the above encoding uses O(|Q|(2|I|+|O| + |Q|) + n2 · 2|I|) variables as well as
O(Q2(n+22|O|)+n2 ·2|I|+|δ|(2|O|+n2)) clauses. We use additional optimizations
to limit the number of clauses, and make the algorithm more practical despite
its frightening theoretical worst case. In particular the CEGAR approach of
Section 3.3 strives to avoid introducing constraints (5)–(7).

3.3 Adjustment of Prior Optimizations

Constructing the SAT problem iteratively starting from n = 1 would be grossly
inefficient. We can instead notice that two states that are not variations of each
other can never be in the same class. Thus, assuming we can find k states that
are not pairwise variations of one another, we can infer that we need at least as
many classes as there are states in this set, providing a lower bound for n. This
idea was first introduced in Abel and Reineke [1]; however, performing a more
careful inspection of the constraints with respect to this “partial solution” allows
us to reduce the number of constraints and literals needed.

The nonemptiness condition involves the creation of many literals and clauses
and necessitates an expensive preprocessing step to decompose the arbitrary out-
put sets returned by output function (λ :

(
Q,BI

)
→ 2B

O \ {∅}) into disjunctions
of cubes (λ :

(
Q,BI

)
→ 2K

O \{∅}). We avoid adding unnecessary nonempty out-
put clauses in a counter-example guided fashion. Violation of these conditions
can easily be detected before constructing the minimized machine. If detected, a
small set of these constraints is added to SAT problem excluding this particular
violation. In many cases, this optimization greatly reduces the number of literals
and constraints needed, to the extent we can often avoid their use altogether.

From now on, we consider an IGMM with N states Q = {q0, q1, . . . , qN−1}.

Variation matrix. We first need to determine which states are not pairwise
variations of one another in order to extract a partial solution and perform
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simplifications on the constraints. We will compute a square matrix of size N×N
called mat such that mat[k][ℓ] = 1 if and only if qk ̸≈ qℓ in the following fashion:

1. Initialize all entries of mat to 0.
2. Iterate over all pairs (k, ℓ) with 0 ≤ k < ℓ < N . If the entry mat[k][ℓ] is 0,

check if ∃i ∈ BI such that λ(qk, i) ∩ λ(ql, i) = ∅. If it exists, mat[k][ℓ]← 1.
3. For all pairs (k, ℓ) whose associated value mat[k][ℓ] changed from 0 to 1, set

all existing predecessor pairs (m,n) with m < n under the same input to 1
as well, that is, ∃i ∈ BI such that δ(qm, i) = qk and δ(qn, n) = ql. Note that
we may need to propagate these changes to the predecessors of (m,n).

As “being a variation of” is a symmetric, reflexive relation, we only compute
the elements above the main diagonal of the matrix. The intuition behind this
algorithm is that two states q and q′ are not variations of one another if either:

– There exists an input symbol for which the output sets are disjoint.
– There exists a pair of states which are not variations of one another and that

can be reached from q and q′ under the same input sequence.

The complexity of this algorithm is O(|Q|2 · 2|I|) if we assume that the dis-
jointness of the output sets can be checked in constant time; see Abel and Reineke
[1]. This assumption is not correct in general: testing disjointness for cubes has
a complexity linear in the number of input propositions. On the other hand,
testing disjointness for generalized Mealy machines that use arbitrary sets of
valuations has a complexity exponential in the number of input propositions.
This increased complexity is however counterbalanced by the succinctness the
use of arbitrary sets allows.

As an example, given 2m output propositions o0, . . . , o2m−1, consider the
set of output valuations expressed as a disjunction of cubes

∨
0≤k<m o2k o2k+1 ∨

o2k o2k+1. Exponentially many disjoint cubes are needed to represent this set.
Thus, a non-deterministic Mealy machine labeled by output cubes will incur an
exponential number of computations performed in linear time, whereas a gener-
alized Mealy machine will only perform a single test with exponential runtime.

Computing a partial solution. The partial solution corresponds to a set of
states such that none of them is a variation of any other state in the set. Thus,
none of these states can belong to the same (variation) class. The size of this set
is therefore a lower bound for the number of states in the minimal machine.

Finding the largest partial solution is an NP-hard problem; we therefore use
the greedy heuristic described in Abel and Reineke [1]. For each state q of M ,
we count the number of states q′ such that q is not a variation of q′; call this
number nvcq. We then successively add to the partial solution the states that
have the highest nvcq but are not variations of any state already inserted.

CEGAR approach to ensure the nonempty output condition. Assuming
a solution satisfying the cover and closure constraints has already been found,
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Data: a machine M = (I,O,Q, qinit , δ, λ)
Result: a minimal specialization M ′

/* Computing the variation matrix */
bool[][] mat ← isNotVariationOf(M);
/* Looking for a partial solution P */
set P ← extractPartialSol(mat);
clauses ← empty list;
/* Using the lower bound inferred from P */
for n← |P | to |Q| − 1 do

addCoverCondition(clauses, M , P , mat, n);
addClosureCondition(clauses, M , P , mat, n);
/* Solving the cover and closure conditions */
(sat, solution) ← satSolver(clauses);
while sat do

if verifyNonEmpty(M , solution) then
return buildMachine(M , solution);

/* Adding the relevant nonemptiness clauses */
addNonemptinessCondition(clauses, M , solution);
(sat, solution) ← satSolver(clauses);

/* If no solution has been found, return M */
return copyMachine(M);

Algorithm 1: SAT-based minimization

we then need to check if said solution satisfies the nonempty output condition.
If this is indeed the case, we can then construct and return a minimal machine.

If the condition is not satisfied, we look for one or more combinations of
classes and input symbols such that Succ(Ck, i) = ∅. We add for the states in Ck

and the input symbol i the constraints described in Section 3.2, and for these
states and input symbols only. Then we check if the problem is still satisfiable.

If it is not, then we need to increase the number of classes to find a valid
solution. If it is, the solution either respects condition (7) and we can return a
minimal machine, or it does not and the process of selectively adding constraints
is repeated. Either way, this counter-example guided abstraction refinement (CE-
GAR) scheme ensures termination, as the problem is either shown to be unsat-
isfiable or solved through iterative exclusion of all violations of condition (7).

3.4 Algorithm

The optimizations described previously yield Algorithm 1.

Further optimizations and comparison to MeMin. The proposed algo-
rithm relies on the general approach outline in Abel and Reineke [1], as well as
the SAT encoding for the cover and closure conditions. We find a partial solution
by using a similar heuristic and adapt some optimizations found in their source
code, which are neither detailed in their paper nor here due to a lack of space.
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The main difference lies in the increased expressiveness of the input and
output symbols that causes some significant changes. In particular, we added
the nonemptiness condition to guarantee correctness, as well as a CEGAR-based
implementation to maintain performance. Other improvements mainly stem from
a better usage of the partial solution.

For instance, each state q of the partial solution is associated to “its own”
class Cj . Since the matching literal sq,j is trivially true, it can be omitted by
replacing all its occurrences by true. States belonging to the partial solution
have other peculiarities that can be leveraged to reduce the number of possible
successor classes, further reducing the amount of literals and clauses needed.

We therefore require fewer literals and clauses, trading a more complex con-
struction of the SAT problem for a reduced memory footprint. The impact of
these improvements is detailed in Section 5.

The Mealy machine described by Abel and Reineke [1] come in two flavors:
One with an explicit initial state and a second one where all states are considered
to be possible initial states. While our approach does explicit an initial state, it
does not further influence the resulting minimal machine when all original states
are reachable.

4 Bisimulation with Output Assignment

We introduce in this section another approach tailored to our primary use case,
that is, efficient reduction of control strategies in the context of reactive synthesis.
This technique, based on the ⊑ specialization relation, yields non-minimal but
“relatively small” machines at significantly reduced runtimes.

Given two states q and q′ such that q′⊑ q, one idea is to restrict the possible
outputs of q to match those of q′. Concretely, for all inputs i ∈ BI , we restrict
λ(q, i) to its subset λ(q′, i); q and q′ thus become bisimilar, allowing us to merge
them. In practice, rather than restricting the output first then reducing bisimilar
states to their quotient, we instead directly build a machine that is minimal with
respect to ⊑ where all transitions going to q are redirected to q′.

Note that if two states q and q′ are bisimilar, then necessarily q′ ⊑ q and
q⊑ q′: therefore, both states will be merged by our approach. As a consequence,
the resulting machine is always smaller than the bisimulation quotient of the
original machine (as shown in Section 5).

4.1 Reducing Machines with ⊑

Our algorithm builds upon the following theorem:

Theorem 2. Let M = (I,O,Q, qinit , δ, λ) be an IGMM, and r : Q → Q be a
mapping satisfying r(q) ⊑ q. Define M ′ = (I,O,Q′, q′init , δ

′, λ) as an IGMM
where Q′ = r(Q), q′init = r(qinit) and δ′(q, i) = r(δ(q, i)) for all states q and
input i. Then M ′ is a specialization of M .
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Fig. 3: Specialization graph
of the IGMM of Fig. 2a
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Fig. 4: Chosen represen-
tative mapping.
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Fig. 5: IGMM obtained by
reducing that of Fig. 2a

Intuitively, if a state q is remapped to a state q′⊑ q, then the set of words w
that can be output for an input i is simply reduced to a subset of the original
output. The smaller the image r(Q), the more significant the reduction performed
on the machine. Thus, to find a suitable function r, we map each state q to one
of the minimal elements of the ⊑ preorder, also called the representative states.

Definition 8 (Specialization graph). A specialization graph of an IGMM
M = (I,O,Q, qinit , δ, λ) is the condensation graph of the directed graph repre-
senting the relation ⊑: the vertices of the specialization graph are sets that form
a partition of Q such that two states q and q′ belong to the same vertex if q⊑ q′

and q′ ⊑ q; there is an edge {q1, q2, ...} −→ {q′1, q′2, ...} if and only if q′i ⊑ qj for
some (or equivalently all) i, j. Note that this graph is necessarily acyclic.

Fig. 3 shows the specialization graph associated to the machine of Fig. 2a.

Definition 9 (Representative of a state). Given two states q and q′ of an
IGMM, q′ is a representative of q if, in the specialization graph of M , q′ belongs
to a leaf that can be reached from the vertex containing q. In other words, q′ is
a representative of q if q′ ⊑ q and q′ is a minimal element of the ⊑ preorder.

Note that any state has at least one representative. In Fig. 3 we see that 0
represents 0, 3, 4, and 6. States 3, 4, and 6 can be represented by 0 or 1.

By picking one state in each leaf, we obtain a set of representative states
that cover all states of the IGMM. We then apply Theorem 2 to a function r
that maps each state to its representative in this cover. In Fig. 3, all leaves are
singletons, so the set {0, 1, 2, 5} contains representatives for all states. Applying
Th. 2 using r from Fig. 4 yields the machine shown in Fig. 5. Note that while this
machine is smaller than the original, it is still bigger than the minimal machine
of Fig. 2b, as this approach does not appraise the variation relation ≈.

4.2 Implementing ⊑

We now introduce an effective decision procedure for q⊑ q′. Note that ⊑ can be
defined recursively like a simulation relation. Assuming, without loss of general-
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ity, that the IGMM is input-complete, ⊑ is the coarsest relation satisfying:

q′ ⊑ q =⇒ ∀i ∈ BI ,

{
λ(q′, i) ⊆ λ(q, i)

δ(q′, i)⊑ δ(q, i)

As a consequence, ⊑ can be decided using any technique that is suitable for
computing simulation relations Henzinger et al. [7], Etessami and Holzmann [6].
Our implementation relies on a straightforward adaptation of the technique of
signatures described by Babiak et al. [4, Sec. 4.2]: for each state q, we compute
its signature sig(q), that is, a Boolean formula (represented as a BDD) encoding
the outgoing transitions of that state such that sig(q) ⇒ sig(q′) if and only if
q ⊑ q′. Using these signatures, it becomes easy to build the specialization graph
and derive a remapping function r.

Note that, even if ⊑ can be computed like a simulation, we do not use it to
build a bisimulation quotient. The remapping applied in Th. 2 does not corre-
spond to the quotient of M by the equivalence relation induced by ⊑.

5 Benchmarks

The two approaches described in Sections 3 and 4 have been implemented within
Spot 2.10 Duret-Lutz et al. [5], a toolbox for ω-automata manipulation, and used
in our SyntComp’21 submission Renkin et al. [15]. The following benchmarks are
based on a development version of Spot1 that features efficient variation checks
(verifying whether q ≈ q′) thanks to an improved representation of cubes.

We benchmark the two proposed approaches against MeMin, against a sim-
ple bisimulation-based approach, and against one another. The MeMin tool has
already been shown Abel and Reineke [1] to be superior to existing tools like
Bica Pena and Oliveira [13], Stamina Rho et al. [16], and Cosme Alberto and
Simao [3]; we are not aware of more recent contenders. For this reason, we only
compare our approaches to MeMin.

In a similar manner to Abel and Reineke [1], we use the ISM benchmarks Kam
et al. [10] as well as the MCNC benchmark suite Yang [17]. These benchmarks
share a severe drawback: they only feature very small instances. MeMin is able
to solve any of these instances in less than a second. We therefore extend the
set of benchmarks with our main use-cases: Mealy machines corresponding to
control strategies obtained from SYNTCOMP LTL specifications Jacobs and
Bloem [9].

As mentioned in Section 2, MeMin processes Mealy machines, encoded using
the the KISS2 input format Yang [17], whose output can be chosen from a
cube. However, the IGMM formalism we promote allows an arbitrary set of
output valuations instead. This is particularly relevant for the SYNTCOMP
benchmark, as the LTL specifications from which the sample’s Mealy machines
are derived often fail to fully specify the output. In order to (1) show the benefits
of the generalized formalism while (2) still allowing comparisons with MeMin,
1 For instructions to reproduce, see https://www.lrde.epita.fr/~philipp/forte22/

https://www.lrde.epita.fr/~philipp/forte22/
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we prepared two versions of each SYNTCOMP input: the “full” version features
arbitrary sets of output valuations that cannot be processed by MeMin, while
in the “cube” version said sets have been replaced by the first cube produced
by the Minato algorithm Minato [11] on the original output set. The ACM and
MCNC benchmarks, on the other hand, already use a single output cube in the
first place.

Figure 6 displays a log-log plot comparing our different methods to MeMin,
using only the “cube” instances.2. The label “bisim. w/ o.a.” refers to the ap-
proach outlined in Section 4, “bisim.”, to a simple bisimulation quotient, and
“SAT ”, to the approach of Section 3. Points on the black diagonal stand for cases
where MeMin and the method being tested had equal runtime; cases above this
line favor MeMin, while cases below favor the aforementioned methods. Points
on the dotted line at the edges of the figure represent timeouts. Only MeMin
fails this way, on 10 instances. Figure 7 compares the maximal number of literals
and clauses used to perform the SAT-based minimization by MeMin or by our
implementation. These two figures only describe “cube” instances, as MeMin
needs to be able to process the sample machines.

To study the benefits of our IGMM model’s generic outputs, Table 1 com-
pares the relative reduction ratios achieved by the various methods w.r.t. other
methods as well as the original and minimal size of the sample machines. We
use the “full” inputs everywhere with the exception of MeMin.

Interpretation. Reduction via bisimulation solves all instances and has been
proven to be by far the fastest method (Fig. 6), but also the coarsest, with a
2 A 30 minute timeout was enforced for all instances. The benchmarks were run on

an Asus G14 with a Ryzen 4800HS CPU with 16GB of RAM and no swap
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size
orig

size
min

size
orig

size
min

>(1) >(2) >(3) >(4) avg. md. avg. md. avg. md. avg. md.

original 114 304 271 314 1.00 1.0 6.56 1.0 1.00 1.00 12.23 1.77
(1) bisim (full) 249 214 275 0.94 1.0 1.85 1.0 0.88 1.00 2.72 1.50
(2) bisim w/ o.a. (full) 0 68 84 0.83 1.0 1.55 1.0 0.66 0.67 2.10 1.00
(3) MeMin (minimal cube) 74 0 77 0.81 1.0 1.13 1.0 0.63 0.69 1.27 1.00
(4) SAT (full) 0 0 0 0.77 1.0 1.00 1.0 0.54 0.56 1.00 1.00

all 634 instances
without timeout

314 non-minimal
instances without timeout

Table 1: Statistics about our three reduction algorithms. The leftmost pane
counts the number of instances where algorithm (y) yields a smaller result than
algorithm (x); as an example, bisimulation with output assignment (2) outper-
forms standard bisimulation (1) in 249 cases. The middle pane presents mean
(avg.) and median (md.) size ratios relative to the original size and the minimal
size of the sample machines. The rightmost pane presents similar statistics while
ignoring all instances that were already minimal in the first place.

mere 0.94 reduction ratio (Tab.1). Bisimulation with output assignment achieves
a better reduction ratio of 0.83, very close to MeMin’s 0.81.

In most cases, the proposed SAT-based approaches remain significantly slower
than approaches based on bisimulation (Fig. 6). Our SAT-based algorithm is
sometimes slower than MeMin’s, as the model’s increased expressiveness re-
quires a more complex method. However, improving the use of partial solutions
and increasing the expressiveness of the input symbols significantly reduce the
size of the encoding of the intermediate SAT problems featured in our method
(Fig. 7), hence, achieve a lower memory footprint. Points on the horizontal line
at the bottom of Figure 7 correspond to instances that have already been proven
minimal, since the partial solution is equal to the entire set of states: in these
cases, no further reduction is required.

Finally, the increased expressiveness of our model results in significantly
smaller minimal machines, as shown by the 1.27 reduction ratio of MeMin’s
cube-based machines compared to the minimisation of generic IGMMs derived
from the same specification. There are also 74 cases where this superior expres-
siveness allows the bisimulation with output assignment to beat MeMin.

6 Conclusion

We introduced a generalized model for incompletely specified Mealy machines,
whose output is an arbitrary choice between multiple possible valuations. We
have presented two reduction techniques on this model, and compared them
against the state-of-the-art minimization tool MeMin (where the output choices
are restricted to a cube).
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The first technique is a SAT-based approach inspired by MeMin Abel and
Reineke [1] that yields a minimal machine. Thanks to this generalized model and
an improved use of the partial solution, we use substantially fewer clauses and
literals.

The second technique yields a reduced yet not necessarily minimal machine
by relying on the notion of state specialization. Compared to the SAT-based
approach, this technique offers a good compromise between the time spent per-
forming the reduction, and the actual state-space reduction, especially for the
cases derived from SYNTCOMP from which our initial motivation originated.

Both techniques are implemented in Spot 2.10. They have been used in our
entry to the 2021 Synthesis Competition Renkin et al. [15]. Spot comes with
Python bindings that make it possible to experiment with these techniques and
compare their respective effects3.
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This appendix contains supplementary material that we could not fit into the
main text. It was part of our submission, but has not been explicitly reviewed.

A Additional Data from our Benchmark

Figures 8a–10a plot the total runtime per instance of the three different bench-
mark suites (SYNTCOMP, MCNC, ISM) and provide a deeper insight into the
results.

Even on “cube” instances, the two bisimulation-based (without and with out-
put assignment) approaches outperform both MeMin and the proposed SAT
approach of Section 3 at the cost of sometimes producing larger non-minimal
machines. The detailed improvements are shown in Figures 8b–10b. The y axis
represents here the ratio size

min , where min is the minimal size of Mealy machines
computed on the “cube” instances (not the “full” ones).

As shown by their size ratio, SYNTCOMP instances (Fig. 8b) significantly
benefit from our bisimulation with output assignment approach compared to the
other benchmark suites, even when the sample machines are restricted to “cube”
instances,

Tables 2–3 complete Table 1 by displaying the corresponding runtime. Since
the average runtime is heavily biased towards the largest instances, we also
provide a geometric mean and a median runtime.

Finally Figure 12 shows sizes ratio of the reduction with the full instances,
for all combined benchmarks. And Figure 11 shows how many instances each
technique can solve under a given time.
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duction techniques.

a.mean g.mean median

bisim. 1.3 0.16 0.14
bisim. w/ o.a. 21.9 0.23 0.17
SAT 347.7 0.39 0.18
MeMin 239.6 0.56 0.28

Table 2: Arithmetic means (a.mean), geometric means (g.mean), and medians of
the runtimes (in ms) of the four approaches on the set of 634 cases that MeMin
was able to minimize.

a.mean g.mean median

bisim. 1.1 0.21 0.18
bisim. w/ o.a. 11.6 0.32 0.21
SAT 602.5 0.73 0.28
MeMin 375.8 0.83 0.37

Table 3: Arithmetic means (a.mean), geometric means (g.mean), and medians
of the runtimes (in ms) of the four approaches on the set of 314 non-minimal
cases that MeMin was able to minimize.
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