
Deployment & Virtualization

Joseph Chazalon, Clément Demoulins {firstname.lastname@lrde.epita.fr}

February 2022

EPITA Research & Development Laboratory (LRDE)

1 / 68

About this course

Agenda

This is a course about containers using Docker Some OCI1-compatible solution

• What it is.
• How to use it for simple, then less simple cases.
• Practice.

Course outline: 3 sessions of 4 hours

• session #1: Docker basics – Using containers (run in isolation)
• session #2: Write Dockerfiles and create images (package)
• session #3: Dockerize some piece of software to distribute it (deploy)

1Open Container Initiative
2 / 68

Tools and Grading

Tools

• Website: Where all resources are
• https://www.lrde.epita.fr/~jchazalo/teaching/DEVI/
• Find the subdirectory for your session: 202202_IMAGE_S8

• Moodle: Where you need to go for grading
• https://moodle.cri.epita.fr/course/view.php?id=726
• Enrol ASAP to be able to complete the first quiz

Graded content for each session, using Moodle.

• For sessions 1 and 2: 15 minutes quiz on Moodle at the end of each session
• opens approx. 20 mn before session end
• closes approx. 5 mn after session end
• 15 mn to answer all questions once you started the quiz
• 10 questions about both lecture and practice

• Session 3: Mini-project
• results for final session must be submitted through Moodle
• Deadline: Sunday, March 20th, 23:59

3 / 68

https://www.lrde.epita.fr/~jchazalo/teaching/DEVI/
https://moodle.cri.epita.fr/course/view.php?id=726

Development and Deployment
challenges

Software stack illustrated

A real case of two incompatible software stacks we had to handle.

Figure 1: Incompatible software stacks

4 / 68

Many solutions, sometimes good, sometimes bad…

• Use libs with forward/backward compatibility (not so common)
• Fix bad dependency declarations in packages (ex: 2.2 vs 2.1+)
• Use language compatibility layer (Python six)
• Rebuild stuff manually
opencv 4.0 > ffmpeg > h.264 > some weird assembler > libc issue

• Install various versions of libs at different places
• Heavy use of $LD_LIBRARY_PATH
• Tricky build issues with Python packages
• Use complicated tools to manage that (env_modules)

• Use virtual environment with Python
• Then try to use matplotlib and say adios to display windows
• Or try to install PyQt4 and start using miniConda

• Force everyone to use the same version of CUDA / CUDNN
• Become a distro package maintainer
• …

5 / 68

Dependency hell

When you have to rebuild manually, step by step, all your software stack checking
each dependency.

You end up doing the job of distribution maintainers, which is hard and painful.

It takes you ages and a lot of computing power to recompile everything.

6 / 68

What are you paid for?

But what you really want is simply to separate:

• your development & product software stack
• your OS & userland software stack

And what about deployment?

7 / 68

What are you paid for?

But what you really want is simply to separate:

• your development & product software stack
• your OS & userland software stack

And what about deployment?

7 / 68

Deployment challenge

Credit: J. Petazzoni

8 / 68

Deployment matrix of hell

Credit: J. Petazzoni

9 / 68

Solutions

Containers and Virtual Machines (1/2)

Containers

Containers are an abstraction at the app layer that
packages code and dependencies together.
Multiple containers can run on the same machine
and share the OS kernel with other containers,
each running as isolated processes in user space.
Containers take up less space than VMs (container
images are typically tens of MBs in size), and start
almost instantly.

Virtual Machines

Virtual machines (VMs) are an abstraction of
physical hardware turning one server into many
servers. The hypervisor allows multiple VMs to run
on a single machine. Each VM includes a full copy
of an operating system, one or more apps,
necessary binaries and libraries - taking up tens of
GBs. VMs can also be slow to boot.

10 / 68

Containers and Virtual Machines (2/2)

Containers and virtual machines:

• are two good solutions to isolate software stacks
• have similar resource isolation and allocation benefits (CPU, mem, net &
disk IO)

• but function differently because
• containers virtualize the operating system (the kernel)
• instead of hardware (the machine)

So containers are

• lighter and faster than VMs (minimal storage and memory overhead,
negligible CPU overhead)

• more portable (arguably) and efficient (better density)
• but less secure.

11 / 68

Plus it is great; with containers:

• You can start specific programs directly from the host.
Ok, you can with Vagrant, but it is ugly.

• It is easier to use and share GPUs with the host.
GPU pass-through and virtualization is possible but more complex with VMs.

• More generally, resource sharing with the host is a bit easier.
Single file sharing, device sharing, etc.

12 / 68

Docker promise #1: easy SW stack

Image credit: Docker.com

13 / 68

Docker promise #2: easy deployment

Remind the challenge?

Credit: J. Petazzoni

14 / 68

And the matrix from hell?

Credit: J. Petazzoni

15 / 68

Before 1960, cargo shipping had this issue

Credit: J. Petazzoni

16 / 68

With their own matrix of hell

Credit: J. Petazzoni

17 / 68

They found a solution

Credit: J. Petazzoni

18 / 68

And software containers apply the same idea

Credit: J. Petazzoni

19 / 68

To solve the same problem

Credit: J. Petazzoni

20 / 68

Benefits for developers

Build once… run anywhere2

• Portable runtime environment for your app.
• No worries about missing dependencies, packages and other pain points
during subsequent deployments.

• Run each app in its own isolated container, so you can run various versions
of libraries and other dependencies for each app without worrying.

• Automate testing, integration, packaging…anything you can script.
• Reduce/eliminate concerns about compatibility on different platforms,
either your own or your customers.

• Cheap, zero-penalty containers to deploy services. A VM without the
overhead of a VM. Instant replay and reset of image snapshots.

Developers focus in the inside of the container: code, libs, data…
All Linux servers look the same!
Credit: J. Petazzoni

2Where “anywhere” usually means a x86 server running a modern Linux kernel
21 / 68

Benefits for administrators

Configure once… run anything3

• Make the entire lifecycle more efficient, consistent, and repeatable
• Increase the quality of code produced by developers.
• Eliminate inconsistencies between development, test, production, and
customer environments.

• Support segregation of duties.
• Significantly improves the speed and reliability of continuous deployment
and continuous integration systems.

• Because the containers are so lightweight, address significant performance,
costs, deployment, and portability issues normally associated with VMs.

Administrators focus on the outside of the container: logging, networking…
All containers can be started, stopped, migrated… the same way!
Credit: J. Petazzoni

3Where “anything” usually means an ELF binary with libs.
22 / 68

Docker adoption

Docker was launched in 2013 and became a massive trend.

Github project search “docker” → > 450,000 projects

Moby project on Github (Docker container management system) → > 56k ⋆
Docker Hub (Image sharing) → > 3M images

According to Stackoverflow’s 2019 survey:

• Docker was the third platform developers deploy on:
Linux 53%, Windows 51%, Docker 32%…

• It was the second most loved platform, after Linux.
• More than half of developers use containers.

23 / 68

https://github.com/search?q=docker
https://github.com/moby/moby
https://hub.docker.com/
https://insights.stackoverflow.com/survey/2019

Reasons for NOT using (Docker) containers (currently)

• Archive your program (because it is not made for that)
• Your program uses OSX primitives
• Your program runs on Windows only
• You need to deploy many containers on clusters
• You cannot get root-like access on your machine
• You do not want to use Linux, and hate terminals
• You use your own custom schroot-based technique with a layered
filesystem and custom SELinux rules, and manage network bridging by hand

• You like having dozens of VMs running, and/or you are a Qubes OS user
• You like to write shell.nix files

Bold = reasons you may actually have

24 / 68

http://qubes-os.org/

Demo 1: VSCode Remote Container

Source: https://code.visualstudio.com/docs/remote/containers

25 / 68

https://code.visualstudio.com/docs/remote/containers

Docker internals

Implementation of Virtual Machines (for reference)

Virtualization is performed by a special software: a hypervisor.
Virtualization requires hardware support like Intel-VT, AMD-V, etc.

Type-1, native or bare-metal hypervisors
These hypervisors run directly on the host’s
hardware to control the hardware and to
manage guest operating systems.

Examples: Nutanix AHV, AntsleOs, Xen,
XCP-ng, Oracle VM Server, Microsoft Hyper-V,
VMware ESXi

Type-2 or hosted hypervisors
These hypervisors run on a conventional
operating system (OS) just as other computer
programs do. A guest operating system runs
as a process on the host.

Examples: VMware Workstation, VMware
Player, VirtualBox, Parallels Desktop for Mac,
QEMU

26 / 68

Implementation of Docker containers

Under the hood, Docker is built on the following components:

• The Go programming language
• The following features of the Linux kernel:

• namespaces,
• cgroups
• capabilities
• (Seccomp, SELinux, AppArmor)…

• The following Open Container Initiative specifications:
• runtime (ie container)
• image
• distribution

Let us have a brief look at them to better understand what containers are and
how to use them.

You can also check this good presentation by Jérôme Petazzoni (link).
27 / 68

https://golang.org
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.opencontainers.org/
https://github.com/opencontainers/runtime-spec/blob/master/spec.md
https://github.com/opencontainers/image-spec/blob/master/spec.md
https://github.com/opencontainers/distribution-spec/blob/master/spec.md
https://www.slideshare.net/jpetazzo/cgroups-namespaces-and-beyond-what-are-containers-made-from-dockercon-europe-2015

namespaces

According to man namespaces:
A namespace wraps a global system resource in an abstraction that
makes it appear to the processes within the namespace that they have
their own isolated instance of the global resource. Changes to the global
resource are visible to other processes that are members of the names-
pace, but are invisible to other processes.

namespaces supported by Docker

pid processes inside the container will only be able to see other processes
inside the same container / pid namespace.

network the container will have its own network stack.
mount the container will have an isolated mount table.
ipc processes inside the container will only be able to communicate to

other processes inside the same container via system level IPC.
uts the container will have its own hostname and domain name.
user the container will be able to remap user and group IDs from the host to

local users and groups within the container.
cgroup the container will have an isolated view of the cgroup hierarchy.

To better understand: ls -lA /proc/$PID/ns/ for a given process 28 / 68

cgroups (1/2)

According to man cgroups:
cgroups (abbreviated from control groups) is a Linux kernel feature that
limits, accounts for, and isolates the resource usage (CPU, memory, disk
I/O, network, etc.) of a collection of processes.

Features
Resource limiting groups can be set to not exceed a configured memory limit,

which also includes the file system cache
Prioritization some groups may get a larger share of CPU utilization or disk I/O

throughput
Accounting measures a group’s resource usage, which may be used, for

example, for billing purposes
Control freezing, checkpointing and restarting groups of processes

To better understand

• Explore /sys/fs/cgroup, cgroups virtual file system
• docker inspect some container
• for each process: /proc/$PID/cgroup

29 / 68

cgroups (2/2)

Available controllers

memory Report and limit of process memory, kernel memory, and swap used.
devices Control which processes may create (mknod) devices as well as open

them for reading or writing.
cpu, cpuacct Account for CPU usage by groups of processes.

cpuset Bind the processes in a cgroup to a specified set of CPUs and NUMA
nodes.

freezer Suspend and restore (resume) all processes in a cgroup.
net_cls Place a classid on network packets created by a cgroup. Can then be

used in firewall rules.
blkio, io Control and limit access to specified block devices by applying IO

control in the form of throttling and upper limits.
perf_event Allow perf monitoring of the set of processes grouped in a cgroup.
net_prio Allow priorities to be specified, per network interface, for cgroups.
hugetlb Limit the use of huge pages by cgroups.

pids Limit the number of process that may be created in a cgroup (and its
descendants).

rdma Limit the use of RDMA/IB-specific resources per cgroup.
30 / 68

Capabilities

According to man capabilities:
Traditional UNIX implementations distinguish two categories of pro-
cesses: privileged (PID = 0) and unprivileged processes (PID ≠ 0).
Privileged processes bypass all kernel permission checks, while unpriv-
ileged processes are subject to full permission checking based on the
process’s credentials (usually: effective UID, effective GID, and supple-
mentary group list).
Starting with kernel 2.2, Linux divides the privileges traditionally associ-
ated with superuser into distinct units, known as capabilities, which can
be independently enabled and disabled. Capabilities are a per-thread
attribute.

Capabilities list
• CAP_AUDIT_CONTROL
• CAP_AUDIT_READ
• CAP_AUDIT_WRITE
• CAP_BLOCK_SUSPEND
• CAP_CHOWN
• CAP_DAC_OVERRIDE
• CAP_DAC_READ_SEARCH
• CAP_FOWNER
• CAP_FSETID
• CAP_IPC_LOCK

• CAP_IPC_OWNER
• CAP_KILL
• CAP_LEASE
• CAP_LINUX_IMMUTABLE
• CAP_MAC_ADMIN
• CAP_MAC_OVERRIDE
• CAP_MKNOD
• CAP_NET_ADMIN
• CAP_NET_BIND_SERVICE
• CAP_NET_BROADCAST

• CAP_NET_RAW
• CAP_SETFCAP
• CAP_SETGID
• CAP_SETPCAP
• CAP_SETUID
• CAP_SYS_ADMIN
• CAP_SYS_BOOT
• CAP_SYS_CHROOT
• CAP_SYS_MODULE
• CAP_SYS_NICE

• CAP_SYS_PACCT
• CAP_SYS_PTRACE
• CAP_SYS_RAWIO
• CAP_SYS_RESOURCE
• CAP_SYS_TIME
• CAP_SYS_TTY_CONFIG
• CAP_SYSLOG
• CAP_WAKE_ALARM

31 / 68

Open Container Initiative runtime (container) specifications

Container configuration (namespace, cgroups, capabilities, etc.), lifecycle, and
how to represent them using JSON files.

A container, when existing, can be in the following states:

creating the container is being created: namespace, cgroups, mounts,
capabilities, etc. are initialized based on configuration

created the runtime has finished the create operation, and the container
process has neither exited nor executed the user-specified
program

running the container process has executed the user-specified program
but has not exited

stopped the container process has exited (killed or graceful exit)

Abstract operations: create, start, kill, delete

A container has a base image (root FS).

32 / 68

Open Container Initiative image specifications

An image stores the files for the root FS of a container, ie the files our
containerized program will see.

Problem(s):

• Many containers share the same basis (like Ubuntu, Alpine, Debian, etc.)
• because we do not want to rebuild a complete software stack by hand down
to the kernel4

Solution :

• Split images into meaningful layers
Ubuntu base, Python dependencies, App…

• Share common layers between containers in read-only
• Add a thin writable layer on top of this stack of layers
• View this stack as a single, consistent and writable filesystem

4Go and Rust are pretty good tools for this, but this is not a very common case.
33 / 68

Image Layers

Efficiently implemented using Copy-on-Write (CoW) storage.

Layers have lower (base, RO), upper (prev. changes, RO) and diff (current, RW — if
applicable) contents.

Existing implementations
• Unioning filesystems
Default solution with Docker
Ex: AUFS, overlayFS

• Snapshotting (CoW)
filesystems
Good idea to test in production
Ex: btrfs, ZFS

• copy-on-write block devices
Not appropriate for containers?
Ex: thin snapshots with LVM or
device-mapper

34 / 68

Open Container Initiative distribution specifications

API protocol to facilitate distribution of images:

• What is a repository
• How to list, pull, push images
• HTTP API

35 / 68

Images and containers

When using Docker, you think about images and containers.

(base) Image original content of the filesystem of a container

Container kernel-backed sandbox for programs with optional interfaces
with the host OS

36 / 68

Images and containers illustrated

Figure 2: Container and base image

37 / 68

Good to remember

• A (Docker) container is just:
• a root filesystem with some bind mounts (more on that later), containing all
the software stack down to (but not including) the kernel;

• a control policy enforced by the kernel with some isolation mechanisms: PID,
network, etc.;

• some environment variables, kernel configuration and automatically
generated files: for hostname, DNS resolution, etc.

• an abstract view of a group of processes, not even a single kernel object!

• Programs run “inside” containers
• Such programs are “jailed” with limited capabilities (such as file writes,
network, memory, etc.)

• They see the container’s filesystem, processes, networks, users…
• and have some environment variables defined automatically

• Docker uses tricks to limit disk usage: layered filesystem in particular
• Docker containers are supposed to be transient and to encapsulate only
one running program (but nothing forces you to do so)

38 / 68

Docker (as a product) is just a few things

• A framework to run programs with different software stacks and capabilities.
• Using existing Linux Kernel features.

• A layered filesystem trick.
• A set of tools to create those stacks, manage them and run programs.

• Everything can be done by hand with standard tools, but Docker it much much
easier and quicker to use.

• An ecosystem: Hub, Dockerfiles, specifications, community, etc.

39 / 68

Using Docker

Documentation

Installation
• under Linux
https://docs.docker.com/install/linux/docker-ce/ubuntu/

• Windows / Mac
http://docker.com/

More generally, the official documentation
https://docs.docker.com/engine and http://docker.com/

Stackoverflow, docker tag

Command line help
• docker help COMMAND [SUBCOMMAND]
• docker COMMAND [SUBCOMMAND] --help

Man pages
• man docker
• man Dockerfile

40 / 68

https://docs.docker.com/install/linux/docker-ce/ubuntu/
http://docker.com/
https://docs.docker.com/engine
http://docker.com/

Demo 2: Command-line

1. Obtain an image
2. Create a container to run a program (a shell) with this image
3. Launch this program (a shell)
4. Inspect and alter the content of the image
5. Quit the program and check what is left
More about all of this during the practice session.

41 / 68

Regular workflow

1. Obtain an image | ∅ → image on local disk
= Build a filesystem for the programs to run within the container

• Pull from Docker Hub or private hub
• Import from dump

• Build it from Dockerfile

2. Create a container from image | image → container
= Define isolation policy: File sharing with host? Ports exposed? Transient?

3. Start the container | container → container started
= Start custom isolation enforcement by the kernel and run default/custom program

4. (opt.) Execute more programs within the container | cont. started
= Run a binary withing the custom isolation context

5. Attach your console to the container | cont. started → cont. w/ console
= See what is sent to STDOUT & STDERR (and write to STDIN)

6. Manage/monitor the container
= Pause, stop, destroy it – you cannot change the isolation policy once started

42 / 68

Commands to manage containers

1. Obtain an image | ∅ → image on local disk

• docker image pull USER/IMAGENAME:TAG
• docker image import ARCHIVE

• docker image build ...

2. Create a container from image | image → container
docker container create --name CONTAINER_NAME IMAGE

3. Start the container | container → container started
docker container start CONTAINER_NAME

4. (opt.) Execute more programs within the container | cont. started
docker container exec CONTAINER_NAME command commandargs

5. Attach your console to the container | cont. started → cont. w/ console
docker container attach CONTAINER_NAME

6. Manage/monitor the container
docker system ... / docker container ... / docker image ...

The docker container run command handles steps 1 to 5 directly.
43 / 68

Monitor and manage containers

• List local images
docker images ls

• Show disk space used by Docker
docker system df

• Show container (running and stopped + space)
docker container ls -as

• Show processes running inside a container
docker container top CONT_NAME

• Search for some image on Docker Hub
docker search KEYWORD

• Remove image
docker image rm IMAGE_NAME

• Remove container (but not the persistent storage)
docker container rm CONT_NAME # must be stopped

• Remove stopped container + unused images
docker system prune

44 / 68

Container storage explained

Storage overview

Figure 3: Storage spaces for a container

Image credit: Docker.com

45 / 68

Where is Docker data stored?

Under /var/lib/docker which can get big (podman: ~/.local/...)

ls -lA /var/lib/docker/
total 56
drwx------ 2 root root 4096 sept. 23 12:30 builder
drwx--x--x 4 root root 4096 sept. 23 12:30 buildkit
drwx------ 2 root root 4096 oct. 1 20:06 containers
drwx------ 3 root root 4096 sept. 23 12:30 image
drwxr-x--- 3 root root 4096 sept. 23 12:30 network
drwx------ 49 root root 12288 oct. 1 20:06 overlay2
drwx------ 4 root root 4096 sept. 23 12:30 plugins
drwx------ 2 root root 4096 sept. 27 09:31 runtimes
drwx------ 2 root root 4096 sept. 23 12:30 swarm
drwx------ 2 root root 4096 sept. 30 22:42 tmp
drwx------ 2 root root 4096 sept. 23 12:30 trust
drwx------ 2 root root 4096 sept. 30 23:26 volumes

In what follows, we assume we use the overlay2 storage driver.
46 / 68

Base image content

Figure 4: Container layers vs base image

Image credit: Docker.com

What
• read only image
• changes go to external mount
points or container storage (“thin
layer”)

Where
• Under
/var/lib/docker/overlay2/

• As stack of layers

Use docker inspect to locate the files.

47 / 68

Container thin layer storage

Figure 5: Container layers vs base image

Image credit: Docker.com

What
• Top layer above the stack of layers
forming the image

• Writable, eventually transient if
container started with --rm flag

Where
• Under
/var/lib/docker/overlay2/

• As a single layer

Use docker inspect to locate the files.

48 / 68

Bind mounts

Figure 6: Bind mounts

Image credit: Docker.com

What
• Share folder or files with host
• Use --mount type=bind,...
on start/run to activate, can be
read only or writable

Where
• Host path and container mount
path

49 / 68

Volumes (1/3)

Figure 7: Volumes

Image credit: Docker.com

What
• Shareable space managed by
Docker.

• Can be used to share data between
container (instead of manually
managed bind mounts)

• Create using docker volume
create VOLNAME or --volume
or --mount type=volume on
start/run.

• Survive container removal: must
be removed manually

Where
• Stored under
/var/lib/docker/volumes/ +
name or unique id

50 / 68

Volumes (2/3)

Named volumes

To name a volume:

• create it before using it
• or specify a name in the --volume or --mount command

Example:

$ docker run --rm -it --mount type=volume,src=vol1,dst=/store busybox
...
$ docker volume ls
DRIVER VOLUME NAME
local vol1

51 / 68

Volumes (3/3)

Anonymous volumes

• Like named, but created automatically when requested.
• Do not provide a name.

Example:

$ docker run --rm -it --mount type=volume,dst=/store busybox
...
$ docker volume ls
DRIVER VOLUME NAME
local c56a1620b60ea3c549cebfb2...

52 / 68

Temporary RAM filesystem

Figure 8: Tmpfs

Image credit: Docker.com

What
• simple temporary RAM storage
• Use --tmpfs or --mount
type=tmpfs (more options) on
start/run

• Size can be limited

Where
• Mountpoint of the container
• RAM, and not under
/var/lib/docker

53 / 68

Reusing volumes from another container

It is possible to mount volumes from another container.

This can be convenient in several cases:

• get a shell in a super minimal container (without shell)
• migrate a database (mount storage volume with migration container)
• upgrade a container and keep the volumes
• …

To do so, run a container with the --volumes-from OTHER_CONTAINER
parameter.

54 / 68

Networking

Access exposed ports in the container

By default, when an application listen to a particular port in the container, it is
not possible to access it from outside.

We need to explicitly add a port-forwarding rule when creating the container
using the --publish (or -p) flag.

Examples:

host-all-interfaces:80 -> container:80
docker run -p 80:80 nginx

loopback-if:8080 -> container:80
docker run -p 127.0.0.1:8080:80 nginx

55 / 68

DNS service, hostname, etc.

Likewise, it is possible to specify DNS servers, hostname, etc. upon container
creation.

Docker automatically creates and configures the appropriate files in the
container file system.

56 / 68

Networks (1/2)

Like VM hypervisors, Docker supports several network modes (called “drivers”)

No network none
Use by specifying --network none at container creation.
Disables networking for the container: no incoming nor outgoing
connexions.

Host networks host
Use by specifying --network host at container creation.
Disables network isolation with host: no need to --publish
ports. The container shares the network stack (therefore the IP
addresses) of the host.

57 / 68

Networks (2/2)

User-defined bridge networks bridge
Use by creating a network (docker network create my_net)
and select it --network my_net at container creation.
Docker-managed bridge networks (like a private LAN between
containers) with DNS resolution based on container names.
Container can be added and removed on the fly.
Usually messes up you iptables configuration.

Other network types:

• overlay: like bridge but among several machines;
• macvlan: creates a virtual physical network device.

58 / 68

Networks Default configuration (1/2)

By default, Docker configures 3 networks bridge, host and none:

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
55a7d0e08c57 bridge bridge local
10e259ce5c67 host host local
ff25cfaea7dd none null local

Their names are a bit misleading:

• host and none: only 1 network instance possible (meaningful) for each
driver

• but the bridge is just one possible bridge network!

59 / 68

Networks Default configuration (2/2)

$ ifconfig -a
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255
inet6 fe80::42:60ff:fe72:a2b6 prefixlen 64 scopeid 0x20<link>

ether 02:42:60:72:a2:b6 txqueuelen 0 (Ethernet)
RX packets 102076 bytes 30590113 (30.5 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 115278 bytes 748404709 (748.4 MB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
...

Also check docker network inspect bridge

60 / 68

Docker security

Fragile isolation with host

• Relies on kernel security
• Do you have this buggy strange driver for this old serial card loaded?
• Less secure than virtual machines (esp. fully virtualized ones)

• You can share a lot of things with host
• Read-write bind mounts
• --net=host
• --privileged

• Many public images run services as root within the container
• Any breach compromises the whole container

61 / 68

Not for every user

docker group == root group

1 liner to be root on host machine:

docker run --rm -it -v /:/host busybox chroot /host

62 / 68

Rootless options

Docker rootless

• still requires a daemon running as root
• kind of API wrapper

podman ← deployed on EPITA’s machines

• OCI-compliant, almost a drop-in Docker replacement
• no daemon
• requires UID namespace
• will eventually fill up your AFS storage (~/.local/)

63 / 68

To remember

To remember

• VM vs Container
• image vs container
• components of OCI spec: runtime, image, repository
• how to create/run/stop a container
• storage: thin layer vs base image vs volume
• how to restrict what programs running inside a container can to

64 / 68

Extra tricks

How to display windows?

You can bind the X11 socket to display windows!

• You also have to export a couple of environment variables
• The procedure is a bit different with OSX hosts, and I do not know if it can
work under Windows hosts

docker run MYIMAGE xeyes --interactive --tty \
--volume "/tmp/.X11-unix:/tmp/.X11-unix:ro" \
--env "DISPLAY=$DISPLAY" \
--env "QT_X11_NO_MITSHM=1" # opt, for QT

Bold = old syntax, you should use --mount now

65 / 68

How to avoid running programs as root inside the container?

By default the programs are run as root inside the container

This can be annoying for various reasons

• Some programs refuse to be run as root
• If the container writes to a directory shared with the host, the files will be
owned by root

Some possible solutions:

• Create and use another user in the container;

• Run programs as nobody within the container;

• Use some particular UID/GID when running a command in the container by
using:

docker [run|exec] -it --user UID --group GID IMAGE COMMAND

66 / 68

Can I use the webcam(s) inside my container?

Sure, you just need to share them when creating the container, using --device

Careful though: like mounts and volumes, device bindings cannot be changed
after container creation.

USB webcams can cause issues when they are absent upon container restart

• Bind failure or dummy file creation on host OS
• Manual fix is simple but annoying
• Maybe it is better in recent versions

67 / 68

Can I use a Nvidia GPU with CUDA inside a container?

• Yes, you need to use nvidia-docker or the new --gpus, --runtime and
other run parameters

• This sets up appropriate permissions (if needed) and bind mounts the GPU
device(s)

• The host machine needs to have Nvidia drivers (and GPU!) installed

68 / 68

	About this course
	Development and Deployment challenges
	Solutions
	Docker internals
	Using Docker
	Container storage explained
	Networking
	Docker security
	To remember
	Extra tricks

