
Deployment & Virtualization

Joseph Chazalon, Clément Demoulins {firstname.lastname@lrde.epita.fr}

March 2022

EPITA Research & Development Laboratory (LRDE)

1 / 33

Dockerfile

What is it?

Dockerfile = recipe to build a container image

• Base image
• Metadata
• Build steps
• Run some commands
• Copy some files
• Etc.

2 / 33

Simple example

FROM debian:buster

COPY sources.list /etc/apt/sources.list

install build dependencies
RUN apt-get update \

&& RUNLEVEL=1 DEBIAN_FRONTEND=noninteractive \
apt-get install -y --force-yes --no-install-recommends \

packages… \
&& apt-get autoremove && apt-get clean \
&& sed -i 's/# \+\(en_US.UTF.*\)/\1/' /etc/locale.gen \
&& locale-gen

ENV LANG=en_US.UTF-8 \
LANGUAGE=en_US:en \
LC_ALL=C

Dockerfile reference : https://docs.docker.com/engine/reference/builder/

3 / 33

https://docs.docker.com/engine/reference/builder/

Multistage build

FROM golang:1.7.3 AS builder
WORKDIR /go/src/github.com/alexellis/href-counter/
RUN go get -d -v golang.org/x/net/html
COPY app.go .
RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o app .

FROM alpine:latest
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=builder /go/src/github.com/alexellis/href-counter/app .
CMD ["./app"]

Documentation : https://docs.docker.com/develop/develop-images/multistage-build/

4 / 33

https://docs.docker.com/develop/develop-images/multistage-build/

FROM

The first instruction must be FROM (there is one exception). It define the parent
image on which we will construct the new image.

FROM <image>[:<tag>] [AS <name>]
FROM <image>[@<digest>] [AS <name>]

Examples:

FROM python:slim
FROM debian

5 / 33

ARG

You can pass variables at build time using the ARG instruction and the –build-arg
option.

If you define an ARG before a FROM, it will be available only for the FROM :

ARG version=stable
FROM debian:$version

6 / 33

MAINTAINER / LABEL (deprecated)

You can add metadata to an image with the LABEL instruction. A LABEL is a
key-value pair.

Example :

LABEL version="1.0"
LABEL description="purpose of the image for example"
LABEL label1="value1" \

label2="value2"

The MAINTAINER instruction set the Author field but is officially deprecated. The
recommended way is to set a LABEL “maintainer”.

7 / 33

RUN

The RUN instruction is one of the 3 instructions that create new layers.

RUN <command>
RUN ["executable", "arg1", "arg2"]

As it creates a new layer each time, it is recommended to group multiple
commands in one RUN, and sort the package names for installation commands
(build cache optimization).

RUN <command> \
&& <command> \
&& <command>

Example :

RUN pip install -r requirements.txt

8 / 33

COPY / ADD

The 2 instructions COPY and ADD are very similar and create also new layers.

ADD [--chown=<user>:<group>] <src>… <dest>
COPY [--chown=<user>:<group>] <src>… <dest>

src path accept go file matching like shell expansion (*, ?) and must be in the
build context. If src is a local tar archive, it will be automatically extracted. In the
case of ADD, if src is an url, it will be fetched but be careful with the layer cache.

By default, use COPY.

9 / 33

About the build cache (aka layer cache)

Docker builder keeps a cache of image layers which were generated during
previous builds.

The image is indexed by the hash of the line which generated it (and the parent
image).

If you change the line, then the image will not be reused.

But if you have the same sequence of lines in two Dockerfiles, then the cache be
come into action.

If you do not want to use the cache at all, you can use the --no-cache=true
option on the docker build command.

For more details see the official documentation.

10 / 33

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#leverage-build-cache

USER

The USER instruction sets the user name (or UID). The following instruction will
use that user and the default user in the final image will be changed.

USER <user>[:<group>]
USER <UID>[:<GID>]

The USER instruction doesn’t create the user so you have to create it first :

RUN useradd -d /data -m -r web
USER web

11 / 33

WORKDIR

The WORKDIR instruction sets the working directory for the following instructions.
The directory will be created if it doesn’t exist.

Example :

WORKDIR /data
Create empty file in /data
RUN touch index.html

12 / 33

ENV

The ENV instruction sets the environment variable to the value .

ENV <key> <value>
ENV <key>=<value>
ENV <key>=<value> \

<key>=<value>

One common use case is to set locales variables :

ENV LANG=en_US.UTF-8 \
LANGUAGE=en_US:en \
LC_ALL=en_US.UTF-8

13 / 33

EXPOSE

The EXPOSE instruction informs Docker that the image listens on the specified
ports.

EXPOSE <port>[/<protocol>]

Examples :

default is tcp
EXPOSE 80
EXPOSE 80/udp

It doesn’t automatically export the exposed ports of a running containers. You
can use the option “–publish-all” or “-P” to do that but the host port will be
random. A more commonly used option is “–publish” or “-p” which requires that
you specify host and container ports.

14 / 33

VOLUME

The VOLUME instruction creates a mount point with the specified name and marks
it as holding externally mounted volumes from native host or other containers.

VOLUME ["PATH1", "PATH2", …]
VOLUME PATH1 PATH2 …

Example :

FROM ubuntu
files before the volume instruction will be copied on the volume
when creating the container
RUN mkdir /database \
&& initialize_database.sh /database

VOLUME /database
after, they will be ignored
COPY other_file.db /database/

15 / 33

ONBUILD

The ONBUILD instruction adds to the image a trigger instruction to be executed at
a later time, when the image is used as the base for another build. The trigger
will be executed in the context of the downstream build, as if it had been
inserted immediately after the FROM instruction in the downstream Dockerfile.

Example from golang onbuild image :

FROM golang:1.6

RUN mkdir -p /go/src/app
WORKDIR /go/src/app

this will ideally be built by the ONBUILD below ;)
CMD ["go-wrapper", "run"]

ONBUILD COPY . /go/src/app
ONBUILD RUN go-wrapper download
ONBUILD RUN go-wrapper install

16 / 33

CMD

CMD provides a default program to run when executing a container,
or parameters to a previously defined ENTRYPOINT if not executable.

There can only be one CMD instruction in a Dockerfile.
If you list more than one CMD then only the last CMD will take effect.

The CMD instruction has three forms:

1. CMD ["executable","param1","param2"] (exec form, this is the
preferred form)

2. CMD ["param1","param2"] (as default parameters to ENTRYPOINT)
3. CMD command param1 param2 (shell form)

In doubt, use the first case and no ENTRYPOINT.

17 / 33

ENTRYPOINT

An ENTRYPOINT allows you to configure a container that will run as an executable.

There can only be one ENTRYPOINT instruction in a Dockerfile.
If you list more than one ENTRYPOINT then only the last ENTRYPOINT will take
effect.

Actual cases were using ENTRYPOINT makes sense:

• Use a custom init program for the container, forcing everything to be run by
this program which will have container’s PID 1 and handle all the signals.

• Use a weird custom script to handle signals, but, really, avoid it.

18 / 33

Interactions between CMD and ENTRYPOINT

No ENTRYPOINT
ENTRYPOINT
exec_entry p1_entry

ENTRYPOINT [“exec_entry”,
“p1_entry”]

No CMD error, not allowed /bin/sh -c
exec_entry p1_entry

exec_entry p1_entry

CMD [“exec_cmd”,
“p1_cmd”]

exec_cmd p1_cmd /bin/sh -c
exec_entry p1_entry

exec_entry p1_entry exec_cmd
p1_cmd

CMD [“p1_cmd”,
“p2_cmd”]

p1_cmd p2_cmd /bin/sh -c
exec_entry p1_entry

exec_entry p1_entry p1_cmd
p2_cmd

CMD exec_cmd
p1_cmd

/bin/sh -c
exec_cmd p1_cmd

/bin/sh -c
exec_entry p1_entry

exec_entry p1_entry /bin/sh -c
exec_cmd p1_cmd

For more details see the official documentation

19 / 33

https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact

Build process

The single command line

There is only one command:

docker image build \
--tag user/imagename:tag \
[-f path/to/dockerfile] \
BUILD_CONTEXT

usually looks like

docker image build -t myimage .

because:

• the current directory is the build context we want to send to the builder,
• and there is a file named Dockerfile in this directory.

20 / 33

Build context

What is it and why the hell a Dockerfile is not sufficient?

The build is run by the Docker daemon, not by the CLI (client)! They can be on
separate machines.

The build context can be a path (like .), an URL or even the standard input (-).

The first thing a build process does is send the entire context (recursively) to the
daemon. (Think of it as a distant build.)

In most cases, it’s best to start with an empty directory as context and keep your
Dockerfile in that directory. Add only the files needed for building the Dockerfile.

21 / 33

Build context

What is it and why the hell a Dockerfile is not sufficient?

The build is run by the Docker daemon, not by the CLI (client)! They can be on
separate machines.

The build context can be a path (like .), an URL or even the standard input (-).

The first thing a build process does is send the entire context (recursively) to the
daemon. (Think of it as a distant build.)

In most cases, it’s best to start with an empty directory as context and keep your
Dockerfile in that directory. Add only the files needed for building the Dockerfile.

21 / 33

.dockerignore files

Regardless of where the Dockerfile actually lives, all recursive contents of files
and directories of the context directory are sent to the Docker daemon as the
build context.

This may slow the build process, cause extra files to be added to the image, etc.

You can filter the files from the build context to transmit to the builder using a
.dockerignore.

This file supports exclusion patterns similar to .gitignore files.

22 / 33

A closer look at build command options

Image/layer management
--build-arg list Set build-time variables
--cache-from strings Images to consider as cache sources
--compress Compress the build context using gzip
--disable-content-trust Skip image verification (default true)
-f, --file string Name of the Dockerfile (Default is 'PATH/Dockerfile')
--force-rm Always remove intermediate containers
--label list Set metadata for an image
--no-cache Do not use cache when building the image
--pull Always attempt to pull a newer version of the image
--rm Remove intermediate containers after a successful

build (default true)
-t, --tag list Name and optionally a tag in the 'name:tag' format
--target string Set the target build stage to build.

23 / 33

Build container management
--add-host list Add a custom host-to-IP mapping (host:ip)
--cgroup-parent string Optional parent cgroup for the container
--cpu-period int Limit the CPU CFS (Completely Fair Scheduler) period
--cpu-quota int Limit the CPU CFS (Completely Fair Scheduler) quota
-c, --cpu-shares int CPU shares (relative weight)
--cpuset-cpus string CPUs in which to allow execution (0-3, 0,1)
--cpuset-mems string MEMs in which to allow execution (0-3, 0,1)
--iidfile string Write the image ID to the file
--isolation string Container isolation technology
-m, --memory bytes Memory limit
--memory-swap bytes Swap limit equal to memory plus swap: '-1' to

enable unlimited swap
--network string Set the networking mode for the RUN instructions

during build (default "default")
--security-opt strings Security options
--shm-size bytes Size of /dev/shm
--ulimit ulimit Ulimit options (default [])

24 / 33

How images are built

1. The client sends the build context to the builder
2. The engine checks the syntax of the Dockerfile
3. It creates a new container (customisable isolation!) based on the image you
chose

4. For each of your commands / changes in the Dockerfile:
• If the cache is active (default), it checks for a cached image to use
• It applies the changes, writing content to the container thin storage layer
• It commits the changes, adding another layer to the resulting image
• It sends progress to the client

5. It cleans up the context and return the final image id to the client

Remember:

• Each RUN, ADD, COPY instruction creates another layer, hence those ugly
one-line commands.

• The others just update the container configuration which will be used at
run-time.

• Docker leaves the unfinished image of failed build lying around.
25 / 33

How to debug a failed build?

Have the unfinished image is actually useful: we can perform an autopsy on it.

docker image history can help locate the failing line

You can start a container from the latest working layer to investigate: 1. Find the
image id using docker image or docker container 2. Run a shell in a
container based on this image (last working layer)

You can also check the content of the unfinished layer

• by showing changes:

docker container diff CONTAINER

• or by inspecting the container, find the storage path and inspect it from the
host.

26 / 33

Best practices

Hadolint

Hadolint is a Dockerfile linter that can give some hints to enhance your
Dockerfiles.

Example:

> docker run --rm -i hadolint/hadolint < Dockerfile
/dev/stdin:2 DL4000 MAINTAINER is deprecated
/dev/stdin:8 DL3008 Pin versions in apt get install. Instead of `apt-
get install <package>` use `apt-get install <package>=<version>`
/dev/stdin:8 DL3009 Delete the apt-get lists after installing something
/dev/stdin:53 DL3003 Use WORKDIR to switch to a directory

27 / 33

Stateless

Separation between process and data allow to scale horizontally easily.
Your complex web process can be put behind a load balancer and a cluster of
docker container.

It allow also help in the process of releasing, testing and upgrading.
The exact same code can be tested on a copy of your production database

28 / 33

Minimal

In terms of size
because pulling a 1GB image is a waste of electricity

In terms of layers
because it tends to make the filesystem slower, and there are limits anyway

In terms of complexity
because you may have to maintain it

In terms of attack surface
because “fragiledatabase” does not need “bazookadebugger” to be installed with
it

29 / 33

Some tips

Group changes
Group related commands in RUN instructions, or even use separate script to
avoid multiplying layers

Smallest possible image
If you add files from a distribution bootstrap, or use static binaries, you may use
the scratch image as base. It is a special image with no layer.

30 / 33

Separate build and runtime images

No pain, no gain: by using two images you will ensure that the runtime image
contains the bare minimum. Lighter, smaller attack surface.

You can even use the multi-stage build (see the practice session).

31 / 33

Tagging images

Use semantic versioning.

You can use multiple tags.

$ docker build -t me/myapp:1.0.2 -t me/myapp:latest .

32 / 33

Use private images / registries

You can pull images from private / custom registries.

They are pretty simple to setup: the registry application can be run in a Docker
container!

Usage:

1. (opt.) Use docker login to login to a registry
2. Pull images using docker image pull registry/user/image:tag or
simply docker run

3. Build new images
4. Push them using docker image push registry/user/image:tag

33 / 33

	Dockerfile
	Build process
	Best practices

