
Transformers
from text to images to anything

DLIM 2025-01-28
J. Chazalon

Main sources
Lecture

● https://www.tensorflow.org/text/tutorials/transformer
● T. B. Brown et al., “Language Models are Few-Shot Learners,” Jul. 2020, http://arxiv.org/abs/2005.14165
● Y. Hao et al., “Language Models are General-Purpose Interfaces,” Jun. 13, 2022, 10.48550/arXiv.2206.06336
● A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017, pp.

6000–6010. http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
● Alammar, J (2018). The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/
● Alammar, J (2018). The Illustrated BERT. https://jalammar.github.io/illustrated-bert/
● Alammar, J (2019). The Illustrated GPT-2. https://jalammar.github.io/illustrated-gpt2/
● Voigt Godoy, D. (2022), Deep Learning with PyTorch Step-by-Step — A Beginner's Guide, https://pytorchstepbystep.com/

https://github.com/dvgodoy/PyTorchStepByStep

Lab?

● https://huggingface.co/docs/transformers/v4.48.0/en/model_doc/vision-encoder-decoder#transformers.VisionEncoderDecod
erModel

● https://huggingface.co/microsoft/trocr-base-handwritten

https://www.tensorflow.org/text/tutorials/transformer
http://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2206.06336
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-gpt2/
https://pytorchstepbystep.com/
https://github.com/dvgodoy/PyTorchStepByStep
https://huggingface.co/docs/transformers/v4.48.0/en/model_doc/vision-encoder-decoder#transformers.VisionEncoderDecoderModel
https://huggingface.co/docs/transformers/v4.48.0/en/model_doc/vision-encoder-decoder#transformers.VisionEncoderDecoderModel
https://huggingface.co/microsoft/trocr-base-handwritten

1. Introduction

Deep architecture

Suitable for many tasks
Both extractive and abstractive – a form of general seq2seq / translation / QA framework

Used in latest LLMs

Revolution in 2017, Vaswani et al. (Google) pushed the boundaries of attention models
Key contributions include:

- Encoder-decoder model
- Self-attention
- Positional embedding

Require large amounts of training data and computation power
O(n²) wrt input length for base, full-precision attention

10k feet view

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Vocabulary warning: “attention”

“Attention” usually refers to a process to dynamically select which part of an
input should be considered in a later process, but many variants exist.

Source: K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”. http://proceedings.mlr.press/v37/xuc15.pdf
Good read with variants illustrated: https://en.wikipedia.org/wiki/Attention_(machine_learning)

http://proceedings.mlr.press/v37/xuc15.pdf
https://en.wikipedia.org/wiki/Attention_(machine_learning)

Vocabulary warning: “encoder-decoder”

Not the “encoder-decoder” we sometimes ear about
in U-Net.
Note that in their original paper, U-Net authors do
not use these words, and neither should you.

We can also sometimes ear these words in the
context of autoencoders, which is not appropriate
either.

We will see what “encoder-decoder” is about in a few slides.

http://link.springer.com/chapter/10.1007/978-3-319-24574-4_28

Why Transformers are significant

Key points emphasized in Tensorflow’s Transformer tutorial
● Transformers excel at modeling sequential data, such as natural language.
● Unlike recurrent neural networks (RNNs), Transformers are parallelizable. This makes them efficient on

hardware like GPUs and TPUs. The main reasons is that Transformers replaced recurrence with attention,
and computations can happen simultaneously. Layer outputs can be computed in parallel, instead of a
series like an RNN.

● Unlike RNNs (such as seq2seq, 2014) or convolutional neural networks (CNNs) (for example, ByteNet),
Transformers are able to capture distant or long-range contexts and dependencies in the data between
distant positions in the input or output sequences. Thus, longer connections can be learned. Attention allows
each location to have access to the entire input at each layer, while in RNNs and CNNs, the information
needs to pass through many processing steps to move a long distance, which makes it harder to learn.

● Transformers make no assumptions about the temporal/spatial relationships across the data. This is ideal
for processing a set of objects (for example, StarCraft units).

Source: https://www.tensorflow.org/text/tutorials/transformer

https://www.tensorflow.org/text/tutorials/text_generation
https://www.tensorflow.org/guide/keras/rnn
https://arxiv.org/abs/1409.3215
https://www.tensorflow.org/tutorials/images/cnn
https://arxiv.org/abs/1610.10099
https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii

What you can do with transformers

Regular ML tasks: classification, embedding, segmentation…

But also sequence-oriented tasks: summarization, translation…

With advanced capabilities: question answering, planification…

All of this for text, image, sound, video… at the same time (multimodal
capabilities).

1. Transformer Architecture Overview

Looking at a translation example…

Ref. paper: A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017, pp. 6000–6010.
Image source: Alammar, J (2018). The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://jalammar.github.io/illustrated-transformer/

And opening the box…

Ref. paper: A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017, pp. 6000–6010.
Image source: Alammar, J (2018). The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

Encoder Mission:
Create a contextualized

representation of the input,
in order to condition the
generation of the output

(i.e., decoders’ work)

Decoder Mission:
Auto-regressively

(≈ iteratively)
generate the output, given

1. Previous predictions
2. Encoder’s output

Handles words’ polysemy, i.e.,
models information fragments

unambiguously

Has the ability to produce
sequences of variable length

and to be triggered for various
tasks.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://jalammar.github.io/illustrated-transformer/

Attention in action (input → input)

Image source: https://research.google/blog/transformer-a-novel-neural-network-architecture-for-language-understanding/

https://research.google/blog/transformer-a-novel-neural-network-architecture-for-language-understanding/

Inference (simplified illustration)

Je su
is

ét
ud

ia
nt

ENCODERS DECODERS

E
1

E
2

E
3

<s
ta

rt>📝 Memo:
Illustrate i→i,
o→i, o→o
attn on board

I

I am a st
ud

en
t

<e
nd

>

am a st
ud

en
t

💡 Note that |in| ≠ |out|

Digging one step further…

Image source: Alammar, J (2018). The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Here is what cross-attention is

Image source: Alammar, J (2018). The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Here is what cross-attention is

Image source: Alammar, J (2018). The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

Each
decoder
block can
look at the
entire
embedded
version of
the input*.

Funny fact: if you
manage to take an
image as input, you get
the SotA architecture
for 2024
OCR/HTR/HDR
systems.

* input tokens (see later slides)

https://jalammar.github.io/illustrated-transformer/

Cross attention is a form of attention

We’ll see how it is computed once

- We have studied encoder and decoder layers
- And understood self-attention principles

So we have encoder and decoder blocks…

Image source: Alammar, J (2018). The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

Same structure,
different weights

Same structure,
different weights

https://jalammar.github.io/illustrated-transformer/

Encoder and decoder blocks are almost identical

Image source: Alammar, J (2018). The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

2. Opening the boxes

ENCODERS

Starting with the encoder side

Self-Attention

Réseau non récurrent

Encodeur

Encodeur

Encodeur

Je suis étudiant.Input

…

2.1. Tokens

Neural nets can only process numerical data

So we need to encode textual information.

Bad strategy: 1 word → 1 number (problems with new words, with typos…)

Sometimes OK: 1 unicode char → 1 number (costly)

Modern tokenization: 1 text fragment → 1 number
- Deterministic process
- Efficient mapping “learned” over training set + tricks (numbers, punctuation…)
- Standard techniques: SentencePiece, Byte Pair Encoding (BPE)

- Techniques from the compression community!
- Must be applied to inputs, and un-applied to outputs
- Has to be fast
- Will fail to encode unknown characters

https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1508.07909

In practice

Good tutorial: https://huggingface.co/learn/nlp-course/chapter6/3

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("almanach/camembertv2-base")

example = "On fait des tests à l'EPITA !"

encoding = tokenizer(example)

print(" | ".join(encoding.tokens()))

-> "[CLS] | On | fait | des | tests | à | l' | EP | ##IT | ##A | ! | [SEP]"

print(encoding.input_ids)

−> [1, 5444, 4973, 4730, 10643, 177, 4736, 11856, 7194, 3244, 8, 2]

❓ So, can we now feed these numbers into our network? Not yet…

https://huggingface.co/learn/nlp-course/chapter6/3

Embedding

We have to project the token ids (integer, scalars) to a higher dimension.

We use a learned embedding as the first layer of the network.

Then, the real input of the network is made of a sequence of float vectors.

2.2. self-attention

What is the necessary context to disambiguate a token?

Many techniques, always the same underlying motivation:
→ create a new, more discriminative representation for each token

Contextual representation

We will add “context” to isolated embeddings.

So, |in| = |out| for any encoder!!!

“Context” is information from neighbors, but not all of them.

Check these two important historical techniques (not used in Transformers) if you have time:
Word2vec and GloVe: Global Vectors for Word Representation

https://en.wikipedia.org/wiki/Word2vec
https://nlp.stanford.edu/projects/glove/

It is all about blending xi with xj≠i

https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Encoder_Decoder_Model.ipynb

Bad option: dense layer 👎

La contribution majeure de Transformersl’ architecture est la self -attention .

❌ Nombre de paramètres trop important

❌ impose taille fixe input

✔ Contexte complet

✔calcul parallèle possible

⇒ Pas utilisable

…

Previous option 1: Recurrent Network

✔ Nombre de paramètres réduit

✔ Adapté aux chaînes longues

❌ Vanishing information

❌ Sequential processing

⇒ Limited information flow, and very slow (and directional, requiring forward/backward passes)

Previous option 2: CNNs

La contribution majeure de Transformersl’ architecture est la self -attention .

✔ Nombre de paramètres réduit

✔ Parallel evaluation

❌ Contexte limité

⇒ Impossible de relier deux termes éloignés (pas considérés simultanément — limited receptive field)

Entering self-attention

La contribution majeure de Transformersl’ architecture est la self -attention .

Processus en 2 étapes

1. Pondération du voisinage
2. Fusion selon la pondération

À présent : Couche de self-attention

✔ Nombre de paramètres réduit

✔ Contexte très large

✔ Calcul parallèle

⇒ Possible de relier deux termes éloignés précisément

1

2

Implementation: use Queries, Keys and Values

Image source: Voigt Godoy, D. dvgodoy / CC BY / https://github.com/dvgodoy/dl-visuals/?tab=readme-ov-file

https://github.com/dvgodoy/dl-visuals
https://creativecommons.org/licenses/by/4.0/
https://github.com/dvgodoy/dl-visuals/?tab=readme-ov-file

But keep in mind that we need to compare all xi to xj≠i

So, complexity of attention computation is O(n²) wrt the size of the sequence.

This is one of the reasons why Transformers can be slow to train.

Many tricks to mitigate this:

- Limited attention span
- Architecture variants
- Better implementation (Flash Attention)

2.3. Multi-Head Attention

Different contexts for different purposes

Uses several attention heads in parallel
to capture different aspects of the relation
between tokens, automatically.

Can be linked to

- relative positions in sentence*
- Coreferences
- Same polarity
- subject-object relationship
- and many others…
- and a blend of all of this.

*more on position in a moment

Aggregating values from multiple heads

Concatenate. Mix/select. Done.

Almost finished an encoder block…

Image source: Voigt Godoy, D. dvgodoy / CC BY / https://github.com/dvgodoy/dl-visuals/?tab=readme-ov-file

Multi-headed attention

https://github.com/dvgodoy/dl-visuals
https://creativecommons.org/licenses/by/4.0/
https://github.com/dvgodoy/dl-visuals/?tab=readme-ov-file

2.4. Feed forward network

A simple 2-layer network

FFN(x) = σ(XW1+B1)W2+B2

Applied on each xi separately: not a dense layer

Mixes information feature-wise for each token.

Linear

Linear

Activation

2.5. Residuals

Residuals are standard since ResNet

Makes it easier to capture complex, uncommon,
high-frequency patterns:

1. Model the general case
2. Add the output to the original signal

The model will learn to perform a difference if
needed.

In any case, it helps gradient flow!

2.6. Normalization

Keep value domains sane using LayerNorm

Can be applied either before or after the
main layers (attention, FFN).

Several techniques, BatchNorm was
common before Transformers which
uses LayerNorm.

Image source: Voigt Godoy, D. dvgodoy / CC BY / https://github.com/dvgodoy/dl-visuals/

https://github.com/dvgodoy/dl-visuals
https://creativecommons.org/licenses/by/4.0/
https://github.com/dvgodoy/dl-visuals/?tab=readme-ov-file

Effect of LayerNorm

LayerNorm: Layer Normalization by Lei Ba, J. et al. (2016)
Image source: Voigt Godoy, D. dvgodoy / CC BY / https://github.com/dvgodoy/dl-visuals/?tab=readme-ov-file

Before LayerNorm

After LayerNorm

BatchNorm vs LayerNorm

https://arxiv.org/abs/1607.06450
https://github.com/dvgodoy/dl-visuals
https://creativecommons.org/licenses/by/4.0/
https://github.com/dvgodoy/dl-visuals/?tab=readme-ov-file

2.7. Positional Embeddings

Wait, where does this comes from?

Attention reminder: note that there is no ordering in the fusion operation!

How can we focus on left vs right, close vs distant elements?

The solution: add Positional Embeddings

Because we have embedded our tokens into a high-dimensional space, we have
room for more information!

We will add (literally) extra information about the position of the token in the
sequence.

We must encode this information in a useful way so the network can easily assess
the distance and direction between two tokens.

The original, complicated way: sin & cos signals

http://jalammar.github.io/illustrated-transformer/

Variants

Learned: token_id → FFN → embedding

No positional embeddings: position-invariance!

The modern way: RoPE
Su, Jianlin; Lu, Yu; Pan, Shengfeng; Murtadha, Ahmed; Wen, Bo; Liu, Yunfeng
(2021-04-01). "RoFormer: Enhanced Transformer with Rotary Position
Embedding". arXiv:2104.09864

https://arxiv.org/abs/2104.09864

2.8. Full picture

The full picture…

Image source: Voigt Godoy, D. dvgodoy / CC BY / https://github.com/dvgodoy/dl-visuals/?tab=readme-ov-file

Multiheaded attention

FFN(x) = σ(XW1+B1)W2+B2

https://github.com/dvgodoy/dl-visuals
https://creativecommons.org/licenses/by/4.0/
https://github.com/dvgodoy/dl-visuals/?tab=readme-ov-file

2.9. Masked attention in decoder

The decoder can only look at the past

Because it generates the output in a auto-regressive manner,
the decoder can only look at previous elements, contrary to the encoder.

This is implemented by adding a mask to the attention matrix which zeroes
attention to futur tokens.

This implementation has two benefits:

- It make the implementation similar between causal and non causal
self-attention

- It enables efficient parallel training of the decoder using “teacher forcing”*

*more about this later

It is only takes a triangular matrix

https://www.tensorflow.org/text/tutorials/transformer

Self-attention vs masked self-attention for a token

https://jalammar.github.io/illustrated-gpt2/

2.10. Cross attention in decoder

Cross attention is self-attention, but to encoder outputs

So at each decoder layer, the decoder:

1. Looks at previous tokens it predicted
→ Masked Multi-Head Self-Attention

2. Looks at all the contextual representations of the
input produced by the encoder
→ Multi-Head Cross-Attention

3. Transforms information using a Feed-Forward Net.

Cross-attention vs (masked) self-attention

A 1-layer transformer

A 4-layer transformer

https://www.tensorflow.org/text/tutorials/transformer

2.11. Architecture summary

So, in the end you get:

- Encoder and decoder
- Cross- and self-attention
- Multiple heads
- Positional embeddings

Embeddings and positional encodings are
computed only at the beginning of the process.

Softmax is used to select the id of the token to
predict at each stage.

Image source: A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017, pp. 6000–6010.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

One last thing…

From: https://thegradient.pub/mamba-explained/

