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Local feature detectors
Lecture 02 part 04
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The need for local feature detectors
While dense computation of local feature descriptors is possible (grid of points), 
this is rarely used in practice (lots of computations, lots of useless features).

Detection = Find anchors to describe a feature of interest.
- Edge / line
- Area around a corner / a stable point
- Blob (area of variable size)

A good feature of interest is stable over the perturbations our signal will face:
- Translation, rotation, zoom, perspective
- Illumination changes
- Noise, compression
- …
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Some classical detectors
Edge (gradient detectors)

- Sobel 
- Canny

Corner
- Harris & Stephens and variants
- FAST
- Laplacian of Gaussian, Difference of Gaussian, Determinant of Hessian

Blob
-  MSER
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Edge detectors
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What’s an edge?
Image is a function

Edges are rapid changes in this function

The derivative of a function exhibits the edges
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Image derivatives
Recall:

We don’t have an “actual” function, must estimate

Possibility: set h = 1

Apply filter                      to the image 
(x gradient)
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I

-1 0 +1
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Image derivatives
We get terribly spiky results, 
we need to interpolate / smooth.

⇒ Gaussian filter

We get a Sobel filter
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Sobel filter
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Gradient magnitude with Sobel
sqrt(Sobel_x² + Sobel_y²)
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Canny edge detection
Extract real lines!

Algorithm:

- Smooth image (only want “real” edges, not noise)
- Calculate gradient direction and magnitude
- Non-maximum suppression perpendicular to edge
- Threshold into strong, weak, no edge
- Keep only weak pixels connected to strong ones

Sobel operator

11John Canny. A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):679–698, 1986.



Canny: Non-maximum suppression
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Canny: Non-maximum suppression
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Canny: Non-maximum suppression
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Canny: Non-maximum suppression
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Canny: Non-maximum suppression
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Canny: Non-maximum suppression
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Canny: Non-maximum suppression
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Canny: Non-maximum suppression
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Canny: finalization
Threshold edges

- Still some noise

- Only want strong edges

- 2 thresholds, 3 cases

- R > T: strong edge

- R < T but R > t: weak edge

- R < t: no edge

- Why two thresholds?

Connect weak edges to strong edges

- Strong edges are edges!

- Weak edges are edges 

iff they connect to strong

- Look in some neighborhood

(usually 8 closest)
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Corner detectors
Introduction, Harris detector
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Good features
Reminder: 

Good features are unique!
- Can find the “same” feature easily
- Not mistaken for “different” features

Good features are robust under perturbation
- Can detect them under translation, 

rotation…
- Intensity shift…
- Noise…

How close are two patches?

- Sum squared difference
- Images I, J
- Σx,y (I(x,y) - J(x,y))2
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How can we find unique patches?
Say we are stitching a panorama

Want patches in image to match to other image

Need to only match one spot
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How can we find unique patches?

Sky? Bad!
- Very little variation
- Could match any other sky
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How can we find unique patches?

Sky? Bad!
- Very little variation
- Could match any other sky

Edge? OK...
- Variation in one direction
- Could match other patches

along same edge
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How can we find unique patches?

Sky? Bad!
- Very little variation
- Could match any other sky

Edge? OK...
- Variation in one direction
- Could match other patches

along same edge

Corners? good!
- Only one alignment matches

26



How can we find unique patches?
Want a patch that is unique in the image

Can calculate distance between patch 
and every other patch, lot of computation

*
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How can we find unique patches?
Want a patch that is unique in the image

Can calculate distance between patch 
and every other patch, lot of computation

Instead, we could think about 
auto-correlation:

How well does image match shifted 
version of itself?

ΣdΣx,y (I(x,y) - I(x+dx,y+dy))
2

Measure of self-difference (how am I not 
myself?)
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Self-difference
Sky: low everywhere
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Self-difference
Edge: low along edge
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Self-difference
Corner: mostly high
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Self-difference
Corner: mostly high Edge: low along edge Sky: low everywhere
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Self-difference
Naive computation:

Σ
d
Σ
x,y

 (I(x,y) - I(x+d
x
,y+d

y
))2
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(I(x,y) - 
I(x+dx,y+dy))
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Harris corner detector
In practice we pool the previous indicator function over a small region  (𝑢,𝑣)  and 
we use a window  𝑤(𝑢,𝑣)  to weight the contribution of each displacement to the 
global sum. 

34

(I(x,y) - 
I(x+dx,y+dy))
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Harris corner detector

Σ
d
Σ
x,y

 (I(x,y) - I(x+d
x
,y+d

y
))2

Lots of summing => Need an approximation

Look at nearby gradients Ix and Iy
- If gradients are mostly zero, not a lot going on

⇒ Low self-difference
- If gradients are mostly in one direction, edge

⇒ Still low self-difference
- If gradients are in twoish directions, corner!

⇒ High self-difference, good patch!
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Harris corner detector
Trick to precompute the derivatives

can be approximated by a Taylor expansion
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Harris corner detector
This allows us to "simplify" the original equation, 

and more important making it faster to compute, 
thanks to simpler derivatives which can be computed for the whole image.
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Harris corner detector
If we develop the equation and write is as usual matrix form, we get:

where  𝐴(𝑥,𝑦)  is the structure tensor:

This trick is useful because  𝐼𝑥  and  𝐼𝑦  can be precomputed very simply.
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Harris corner detector

39

Illustrations: Robert Collins



Harris corner detector
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Illustrations: Robert Collins

The need for eigenvalues:
If the edge is rotated, 
so are the values of Ix and Iy.

Eigenvalues give us the ellipsis axis len.



Harris corner detector
A corner is characterized by a large variation 
of S in all directions of the vector  (𝑥 𝑦) .

Analyse the eigenvalues of A to check 
whether we have two large variations.

- If  𝜆1≈0  and  𝜆2≈0  then this pixel  (𝑥,𝑦)  
has no features of interest.

- If  𝜆1≈0  and  𝜆2  has some large positive 
value, then an edge is found.

- If  𝜆1  and  𝜆2  have large positive values, 
then a corner is found.

41

𝜆2

𝜆1

Illustrations: Robert Collins



Harris corner detector
To avoid the computation of the eigenvalues, which used to be expensive, Harris 
and Stephens instead suggest the following function  𝑀𝑐 , where  𝜅  is a tunable 
sensitivity parameter:

We will use Noble’s trick to remove 𝜅:

𝜖  being a small positive constant.
42

approximation



Harris corner detector
𝐴  being a 2x2 matrix, we have the following relations:

- det(𝐴)=𝐴1,1𝐴2,2−𝐴2,1𝐴1,2 
- trace(𝐴)=𝐴1,1+𝐴2,2

Using previous definitions, we obtain:

- det(𝐴)=⟨𝐼²𝑥⟩⟨𝐼²𝑦⟩−⟨𝐼𝑥𝐼𝑦⟩²
- trace(𝐴)=⟨𝐼²𝑥⟩+⟨𝐼²𝑦⟩
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Harris corner detector
In summary, given an image, we can compute the Harris corner response image 
by simply computing:

- 𝐼𝑥 :  𝐼 's smoothed (interpolated) partial derivative with respect to  𝑥 ;
- 𝐼𝑦 :  𝐼 's smoothed (interpolated) partial derivative with respect to  𝑦 ;
- ⟨𝐼²𝑥⟩ : the windowed sum of  𝐼²𝑥 ;
- ⟨𝐼²𝑦⟩ : the windowed sum of  𝐼²𝑦 ;
- ⟨𝐼𝑥𝐼𝑦⟩ : the windowed sum of  𝐼𝑥𝐼𝑦 ;
- det(𝐴) ;
- trace(𝐴) ;
- 𝑀″𝑐=det(𝐴) / (trace(𝐴)+𝜖).

Then, we just perform non-maximal suppression to keep local maximas. 44
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Harris & Stephens
Conclusion
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Good features to track aka Shi-Tomasi aka Kanade-Tomasi

Remember the Harris-Stephens trick to avoid computing the eigenvalues?

Well, nowadays, linear algebra is cheap, so compute the real eigenvalues.

Then filter using                                  , 𝜆 being a predefined threshold.

You get the Shi-Tomasi variant.

50Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society 
Conference on, pages 593–600. IEEE, 1994.

approximation



Build your own edge/corner detector
You just need eigenvalues 𝜆1  and  𝜆2 of the structure tensor

dst = cv2.cornerEigenValsAndVecs(src, neighborhood_size, sobel_aperture)
dst = cv2.cornerMinEigenVal(src, neighborhood_size, sobel_aperture)
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Hessian matrix with 
block-wise summing



Harris summary
Pros

Translation invariant
⇒ Large gradients in both directions 
    = stable point
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Cons

Not so fast
⇒ Avoid to compute all those derivatives

Not scale invariant
⇒ Detect corners at different scales

Not rotation invariant
⇒ Normalization orientation



Corner detectors, binary tests
FAST
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Features from accelerated segment test (FAST)
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Keypoint detector used by ORB (described in next lecture)

Segment test: 
compare pixel P intensity Ip
with surrounding pixels
(circle of 16 pixels)

If n contiguous pixels are either
- all darker than Ip - t
- all brighter than Ip + t

then P is a detected as a corner

E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in European conference on computer vision, 2006, pp. 430–443.



Tricks
1. Cascading: If n = 12 (¾ of the circle), then many non-corners can be 

discarded by testing pixels at the 4 compass directions. The full test is only 
applied to the candidates which passed the first test.

2. Machine learning: Learn on a dataset which pixels should be tested first to 
discard a non-corner as quickly as possible.
Learn a decision tree, then compile the decisions as nested if-then rules.

3. How to perform non-maximal suppression?
Need to assign a score V to each corner.
⇒ The sum of the absolute difference between the pixels in the contiguous 
arc and the centre pixel
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FAST summary
Pros

Very fast 
Authors tests:

- 20 times faster than Harris
- 40 times faster than DoG (next slide)

Very robust to transformations (perspective in 
particular)

56

Cons

Very sensitive to blur



Corner detectors at different scales
LoG, DoG, DoH
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Laplacian of Gaussian (LoG)
The theoretical, slow way.

If you need to remember only 1 thing: 
it is a band-pass filter – it detects objects of a certain size.

58T. Lindeberg, “Feature Detection with Automatic Scale Selection,” Int. J. of Computer Vision, vol. 30, no. 2, p. 53, 1998.



Laplacian (plain, not Gaussian here) = second derivative
Second derivative of an image? Like Sobel… with 1 more derivation…

Taylor, again:

New filter: Ixx =                         * I
59
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Second partial derivatives of an image
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Laplacian filter ∇2 I(x,y)
Edge detector, like Sobel but with 2nd derivatives
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Laplacian of Gaussian
Second derivative of a Gaussian: “Mexican hat”
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2D formula = exercise.



LoG = detector of circular shapes
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LoG = detector of circular shapes
LoG filter extrema locates “blobs”

- maxima = dark blobs on light background
- minima = light blobs on dark background

Scale of blob (size ; radius in pixels) is determined by the sigma parameter of the 
LoG filter.

64LoG 𝝈=2 LoG 𝝈=10



Detecting corners / blobs
Build a scale space representation: stack of images (3D) with increasing sigma

65

Then find local extremas in the scale space volume.



Difference of Gaussian (DoG)
Fast approximation of LoG. Used by SIFT (next lecture).

LoG can be approximate by a Difference of two Gaussians (DoG) at different 
scales.
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DoG filter
It is a band-pass filter.
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DoG filter
Intuition

- Gaussian (g) is a low pass filter
- Strongly reduce components with frequency f < σ
- (g*I) low frequency components
- I - (g*I) high frequency components
- g(σ1)*I - g(σ2)*I ⇐ Components in between these frequencies
- g(σ1)*I - g(σ2)*I = [g(σ1) - g(σ2)]*I

68σ = 2 σ = 1



DoG computation in practice
Take a image.

Blur it.

Take the difference.
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DoG scale generation trick
DoG computation: use “octaves”

- “Octave” because frequency 
doubles/halves between octaves

- If sigma = sqrt(2), 
then 3 levels per octave

- Downsample images for next 
octave (like double sized kernel)

- Compute the DoG between 
images

70

Illustration: D. Lowe

Crowley et.al., “Fast Computation of Characteristic Scale using a Half-Octave Pyramid.” Proc International Workshop on Cognitive Vision (CogVis), Zurich, 
Switzerland, 2002.



DoG: Corner selection
Throw out weak responses and edges

Estimate gradients
- Similar to Harris, look at nearby responses
- Not whole image, only a few points! Faster!
- Throw out weak responses

Find cornery things
- Same deal, structure matrix, use det and trace information (SIFT variant)

71

→
D. G. Lowe, “Distinctive image features from 
scale-invariant keypoints,” International 
journal of computer vision, vol. 60, no. 2, pp. 
91–110, 2004., see p. 12



Determinant of Hessian (DoH)
Faster approximation. Used by SURF.
Better resistance to perspective

Computes the scale-normalized 
determinant of the Hessian (strength of the 
curvature at a given point)

⇒ Precompute Lxx, Lyy, Lxy
⇒ Blur them with the right sigma while 
computing det H L: 3 additions
⇒ normalize: different scales – same value 
range 72

Illustration: T. Lindeberg



LoG vs DoG vs DoH

73https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_blob.html



LoG, DoG, DoH summary
Pros

Very robust to transformations
- Perspective
- Blur

Adjustable size detector

74

Cons

Slow



Blob detectors
MSER
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Maximally Stable Extremal Regions (MSER)
Detects regions which are stable over thresholds.

1. Create min- & max-tree of the image
tree of included components
when thresholding the image 
at each possible level

J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from maximally stable extremal regions,” Image and vision computing, vol. 22, no. 
10, pp. 761–767, 2004.



Maximally Stable Extremal Regions (MSER)
2. Select most stable regions between t-𝚫 and t+𝚫

Rt* is maximally stable iif q(t) = | Rt-𝚫 \ Rt+𝚫 |  /  | Rt |
as local minimum at t*

| R | = card(R); 𝚫 = parameter; Rt-𝚫 \ Rt+𝚫 = set difference

77

B \ A

Rt

Rt+𝚫

Rt-𝚫



MSER summary
Pros

Very robust to transformations
- Affine transformations
- Intensity changes

Quite fast

78

Cons

Does support blur



Local feature detectors
Conclusion
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Local feature detectors: Conclusion
Harris Stephens: Can be very stable when combined with DoG

Shi-Tomasi: Assumes affine transformation (avoid it with perspective)

DoG: slow but very robust (perspective, blur, illumination)

DoH: faster than DoG, misses small elements, better with perspective.

FAST: very fast, robust to perspective change (like DoG), but blur quickly kills it

MSER: fast, very stable, good choice when no blur
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Classification

81https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)

Feature detector Edge Corner Blob

Canny X

Sobel X

Harris & Stephens / Plessey / Shi–Tomasi X X

Shi & Tomasi X

FAST X

Laplacian of Gaussian X X

Difference of Gaussians X X

Determinant of Hessian X X

MSER X

https://en.wikipedia.org/wiki/Edge_detection
https://en.wikipedia.org/wiki/Corner_detection
https://en.wikipedia.org/wiki/Blob_detection
https://en.wikipedia.org/wiki/Canny_edge_detector
https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Corner_detection#The_Harris_&_Stephens_/_Plessey_/_Shi%E2%80%93Tomasi_corner_detection_algorithms
https://en.wikipedia.org/wiki/Corner_detection#The_Shi_and_Tomasi_corner_detection_algorithm
https://en.wikipedia.org/wiki/Features_from_accelerated_segment_test
https://en.wikipedia.org/wiki/Blob_detection#The_Laplacian_of_Gaussian
https://en.wikipedia.org/wiki/Difference_of_Gaussians
https://en.wikipedia.org/wiki/Blob_detection#The_determinant_of_the_Hessian
https://en.wikipedia.org/wiki/MSER

