MLRF Lecture 03 J. Chazalon, LRDE/EPITA, 2020

Projective transformations

Lecture 03 part 04

A linear transformation of pixel coordinates

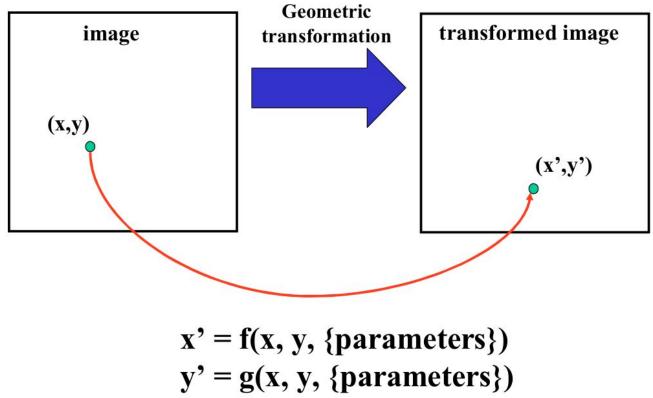
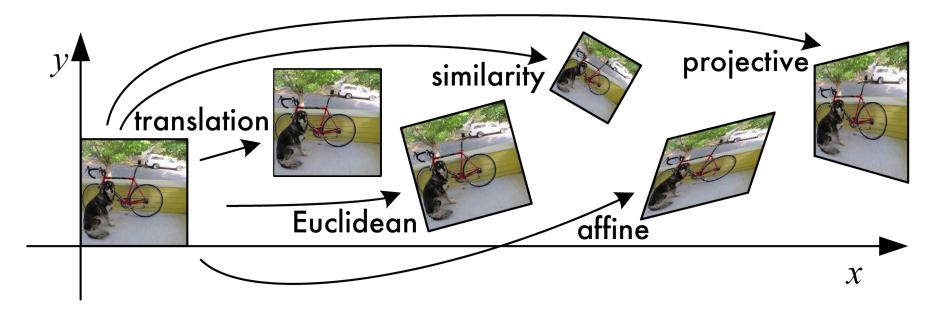


Image Mappings Overview



Math. foundations & assumptions

transformatio

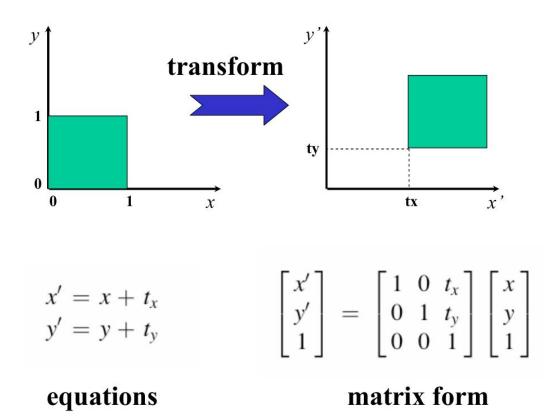
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

For **planar surfaces**, 3D to 2D perspective projection reduces to a 2D to 2D transformation.

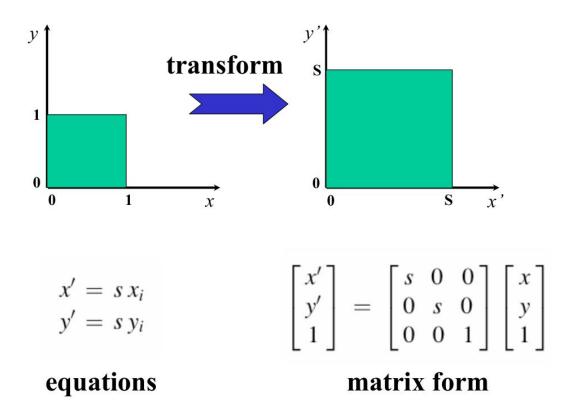
This is just a change of coordinate system.

This transformation is **INVERTIBLE**!

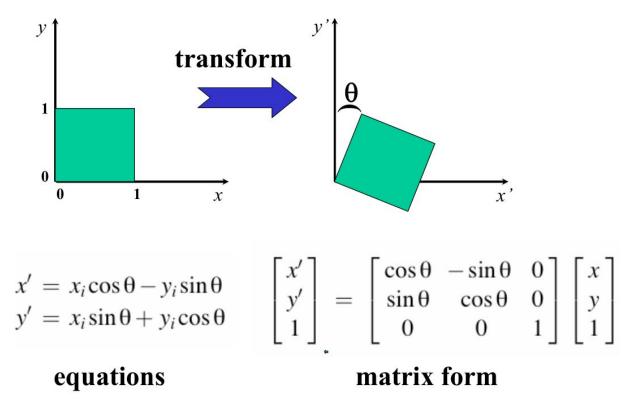
Translation



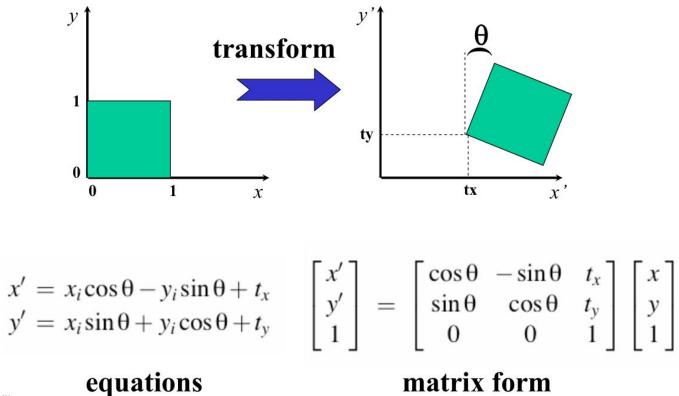
Scale



Rotation



Euclidean (rigid)



Notation: Partitioned matrices

$$\begin{bmatrix} x'\\ y'\\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & t_x\\ \sin\theta & \cos\theta & t_y\\ \hline 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ \hline 1 \end{bmatrix}$$

$$\begin{bmatrix} 2x1\\p'\\1x1\\1 \end{bmatrix} = \begin{bmatrix} 2x2&2x1\\R&t\\1x2&1x1\\0&1 \end{bmatrix} \begin{bmatrix} 2x1\\p\\1x1\\1 \end{bmatrix}$$

$$p' = Rp + t$$
 equation form

Similarity (scaled Euclidean)

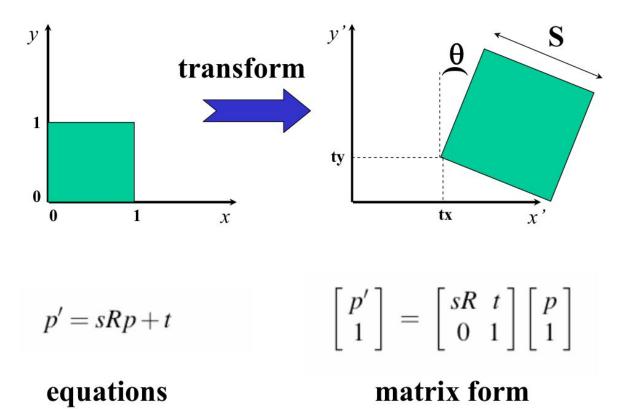
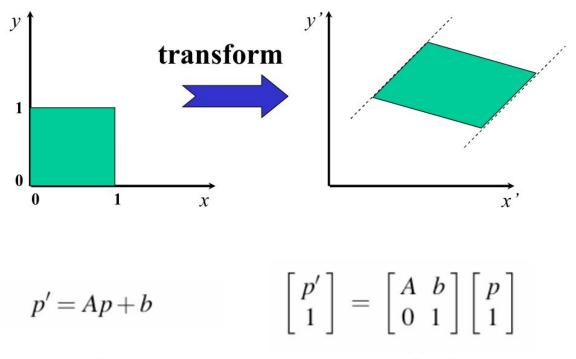


Illustration: Robert Collins

11

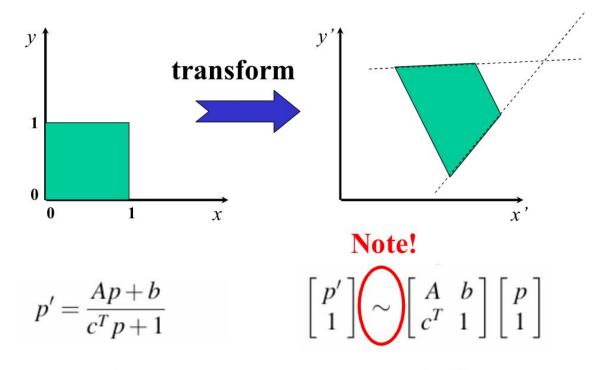
Affine



equations

matrix form

Projective



equations

matrix form

More on projective transform

Each point in 2D is actually a vector in 3D

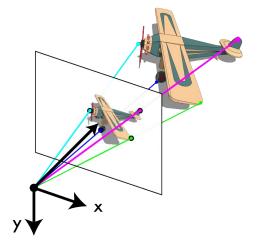
Equivalent up to scaling factor 3*H ~ H

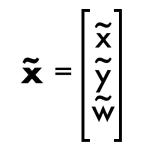
Have to normalize to get back to 2D

Why does this make sense?

Pinhole camera model:

- Every point in 3D projects onto our viewing plane through our aperture
- Points along a vector are indistinguishable



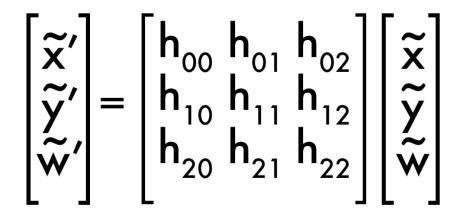


 $\overline{\mathbf{x}} = \widetilde{\mathbf{x}} / \widetilde{\mathbf{w}}$

More on projective transform

Using homography to project point

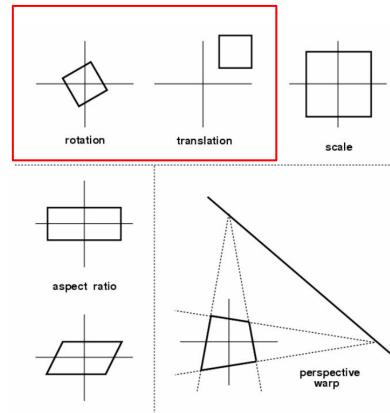
Multiply $ilde{x}$ by $ilde{H}$ to get $ilde{x'}$ Convert to $ilde{x'}$ by dividing by $ilde{w'}$



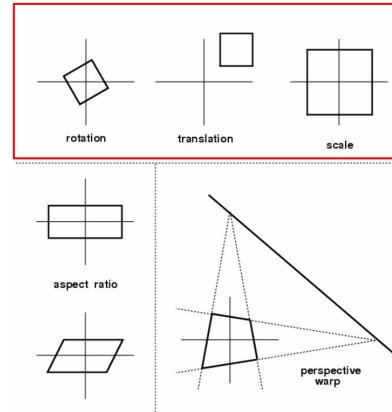
$$\tilde{\mathbf{x}}' = \tilde{\mathbf{H}} \tilde{\mathbf{x}}$$

$$\overline{\mathbf{x}} = \widetilde{\mathbf{x}} / \widetilde{\mathbf{w}}$$

skew

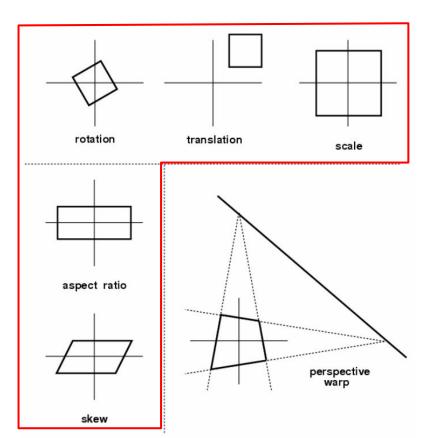


Euclidean

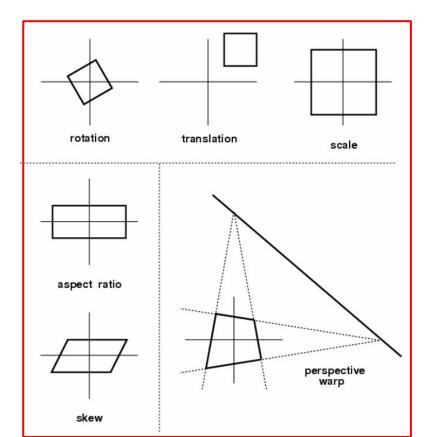


Similarity

Affine



Projective



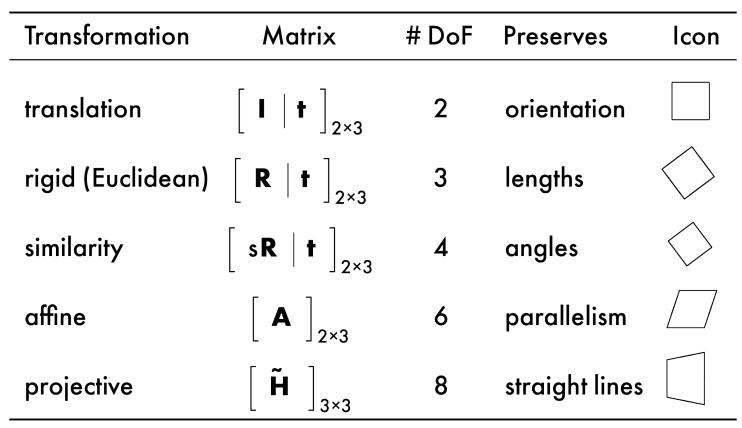
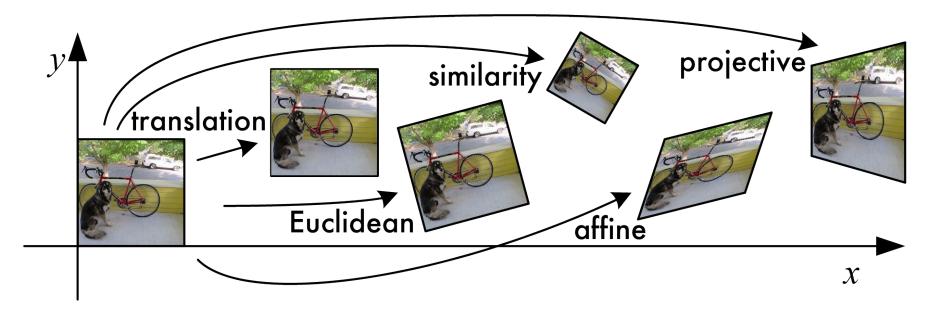
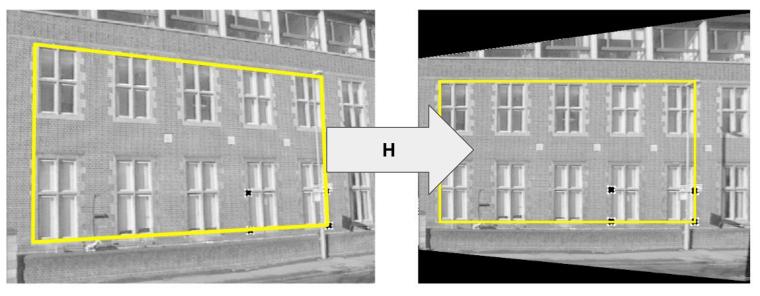


Image Mappings Overview



Warping images

Warping Example



Source Image

Destination image

Warping & Bilinear Interpolation

Given a transformation between two images (coordinate systems) we want to **"warp" one image** into the **coordinate system** of the **other**.

We will call the coordinate system where we are **mapping from** the **"source"** image.

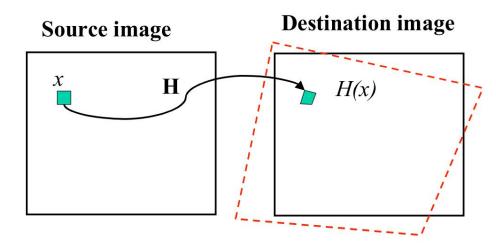
We will call the coordinate system we are **mapping to** the **"destination"** image.

Forward Warping

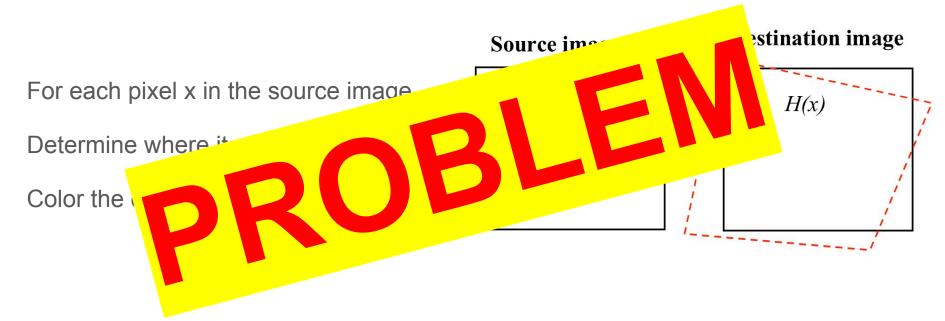
For each pixel x in the source image

Determine where it goes as H(x)

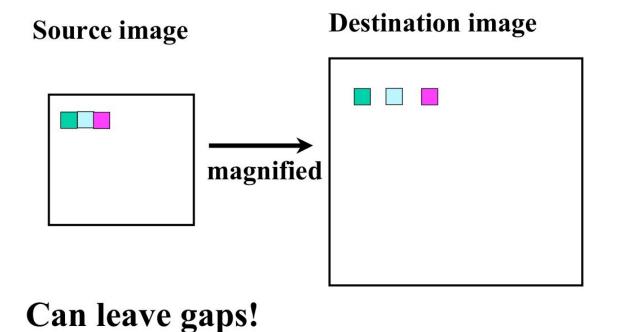
Color the destination pixel



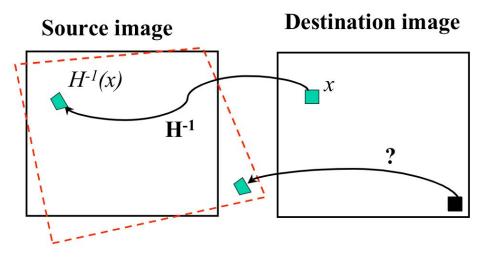
Forward Warping



Forward Warping Problem



Backward Warping — No gap



For each pixel x in the destination image

Determine where it comes from as H⁻¹ (x)

Get color from that location

Interpolation

What do we mean by "get color from that location"?

Consider grey values. What is intensity at (x,y)?

