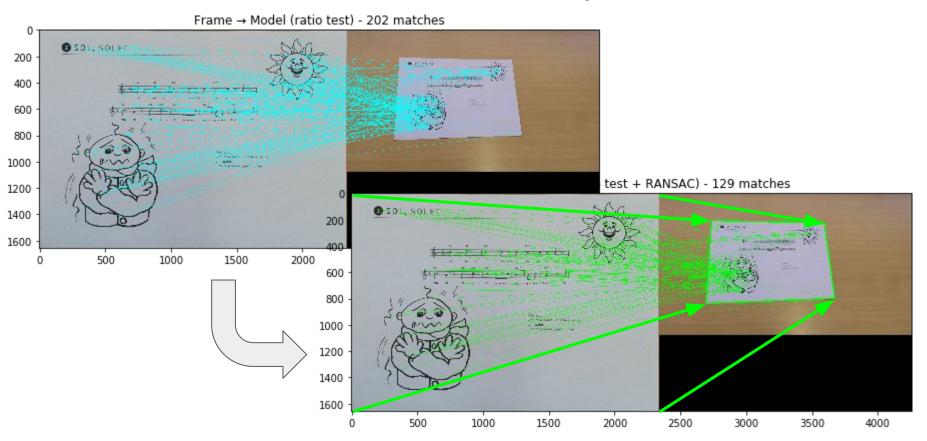
MLRF Lecture 03 J. Chazalon, LRDE/EPITA, 2020

Homography estimation Geometric validation

Lecture 03 part 05

So we want to recover H from keypoint matches



3

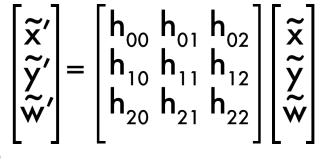
Recover the parameters of a perspective transform

From our matched points we want to estimate A that maps from x to x'

xH = x'

How many degrees of freedom?

>> 8 (**not 9** because
$$h_{22} = 1 \text{ OR } ||H|| = \Sigma h_{ij}^2 = 1$$
)



How many knowns do we get with one match mH = n?

>> 2

$$n_{x} = (h_{00}^{*}m_{x} + h_{01}^{*}m_{y} + h_{02}^{*}m_{w}) / (h_{20}^{*}m_{x} + h_{21}^{*}m_{y} + h_{22}^{*}m_{w}) n_{y} = (h_{10}^{*}m_{x} + h_{11}^{*}m_{y} + h_{12}^{*}m_{w}) / (h_{20}^{*}m_{x} + h_{21}^{*}m_{y} + h_{22}^{*}m_{w})$$

How many correspondences are needed?

Depends on the type of transform:

- How many for translation?
- For rotation?
- ...
- For general projective transform?

Reminded: we have 2 knowns for each match

How many correspondences are needed?

Transformation	Matrix	# DoF	Min. # of independent matches required
translation	$\begin{bmatrix} \mathbf{I} \mid \mathbf{t} \end{bmatrix}_{2 \times 3}$	2	1
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} \mid \mathbf{t} \end{bmatrix}_{2 \times 3}$	3	2
similarity	$\left[\mathbf{sR} \mid \mathbf{t} \right]_{2 \times 3}$	4	2
affine	$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{2 \times 3}$	6	3
projective	$\begin{bmatrix} \mathbf{\tilde{H}} \end{bmatrix}_{3 \times 3}$	8	4

from R.Szeliski

Enforcing 8 DOF

Approach 1: set $h_{22} = 1$

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + 1}$$
$$y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + 1}$$

Approach 2: Impose unit vector constraint

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}}$$
$$y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}$$

subject to the constraint

$$h_{00}^2 + h_{01}^2 + h_{02}^2 + \dots + h_{22}^2 = 1$$

Build an equation system to solve

Assuming $h_{22} = 1$ here:

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + 1}$$

Multiplying through by denominator:

 $(h_{20}x + h_{21}y + 1) x' = h_{00}x + h_{01}y + h_{02}$

Rearrange:

$$h_{00}x + h_{01}y + h_{02} - h_{20}xx' + h_{21}yx' = x'$$

Same for y:

$$h_{10}x + h_{11}y + h_{12} - h_{20}xy' + h_{21}yy' = y'$$

Linear system with $h_{22} = 1$

				Μ				а		b	
$\int x_0$	y ₀	1	0	0	0	$-x_0x_0'$	$-y_0x'_0$	$\begin{bmatrix} h_{00} \end{bmatrix}$		$\begin{bmatrix} x'_0 \end{bmatrix}$	
0	0	0	0 x_0	0 <i>y</i> 0	1	$-x_0y'_0$	$-y_0y_0'$	h_{01}		y'_0	
x_1	<i>y</i> ₁	1	0	0	0	$-x_1x_1'$	$-y_1x'_1$	h_{02}		x'_1	
0	0	0	x_1	y_1	1	$-x_1y_1'$	$-y_1y_1'$			y'_1	
x_2	<i>y</i> ₂	1	0	0	0	$-x_{2}x_{2}'$	$-y_2x_2'$	<i>h</i> ₁₁	=	x'_2	
0	0	0	x_2	<i>y</i> ₂	1	$-x_2y'_2$	$-y_2y_2'$	<i>h</i> ₁₂		y_2'	
x_3	<i>y</i> ₃	1	0	0	0	$-x_{3}x_{3}'$	$-y_3x'_3$	<i>h</i> ₂₀		x'_3	
0	0	0	x_3	<i>y</i> ₃	1	$-x_3y_3'$	$-y_{3}y_{3}'$	<i>h</i> ₂₁		y'_3	
L:	:	:	:	:		:	:]	$\lfloor h_{22} \rfloor$			

Use Linear Least Square to solve *M a* = *b*

Still works if overdetermined: minimize squared error $|| b - M a ||^2$

 $|| b - M a ||^2 = (b - M a)^T (b - M a)$

- $= b^{T}b a^{T}M^{T}b b^{T}Ma + a^{T}M^{T}Ma$
- $= b^{\mathsf{T}}b 2a^{\mathsf{T}}M^{\mathsf{T}}b + a^{\mathsf{T}}M^{\mathsf{T}}Ma$

This is convex and minimized when gradient = 0. So we take the derivative wrt a and set = 0.

$$-M^{\mathsf{T}}b + (M^{\mathsf{T}}M)a = 0 \iff (M^{\mathsf{T}}M)a = M^{\mathsf{T}}b \iff a = (M^{\mathsf{T}}M)^{-1}M^{\mathsf{T}}b$$

Not always numerically stable though, and what if $h_{22} = 0$?

Build the equation system with **||H|| = 1**

$$||\mathsf{H}|| = 1: \qquad \qquad x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}}$$

Multiplying through by denominator: $(h_{20}x + h_{21}y + h_{22})x' = h_{00}x + h_{01}y + h_{02}$

Rearrange:

... ...

$$h_{00}x + h_{01}y + h_{02} - h_{20}xx' + h_{21}yx' - h_{22}x' = 0$$

Same for y:

$$h_{00}x + h_{01}y + h_{02} - h_{20}xy' + h_{21}yy' - h_{22}y' = 0$$

Linear system with ||H|| = 1

Μ

Solve the system

Challenges:

- Overcomplete system
- Probably no exact solution because of noise

Solutions:

Use total least square with singular value decomposition (SVD)

[enough math here]

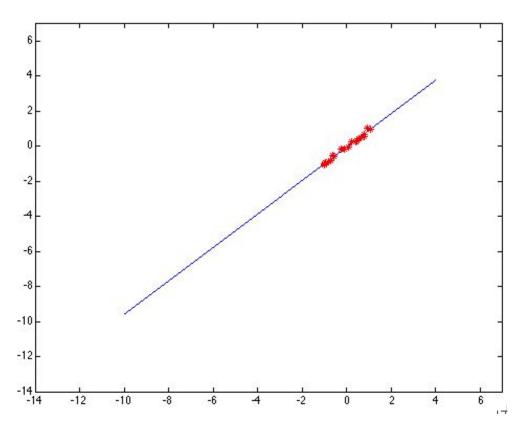
So: given enough matches, we get an estimate of H's parameters.

How reliable is the estimate? (Least square output)

(Example on fitting 2 parameters)

Perfect data \Rightarrow Everything is fine

but...



Is our data perfect?



How reliable is the estimate? (Least square output)

(Example on fitting 2 parameters) Error based on squared residual -2 Very scared of being wrong, even for just one point Very bad at handling outliers in data -10 -12

-14

-14

-12

-10

-8

0

2

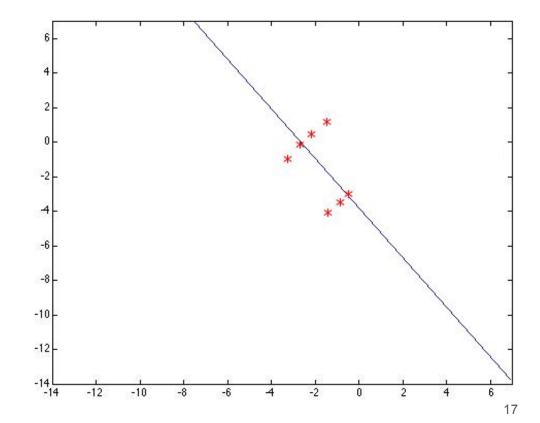
6

Even worse

(Example on fitting 2 parameters)

Multiple structures can also skew the results.

The fit procedure **implicitly assumes** there is **only one instance** of the model in the data.



Overcoming Least Square limitations

We need a robust estimation.

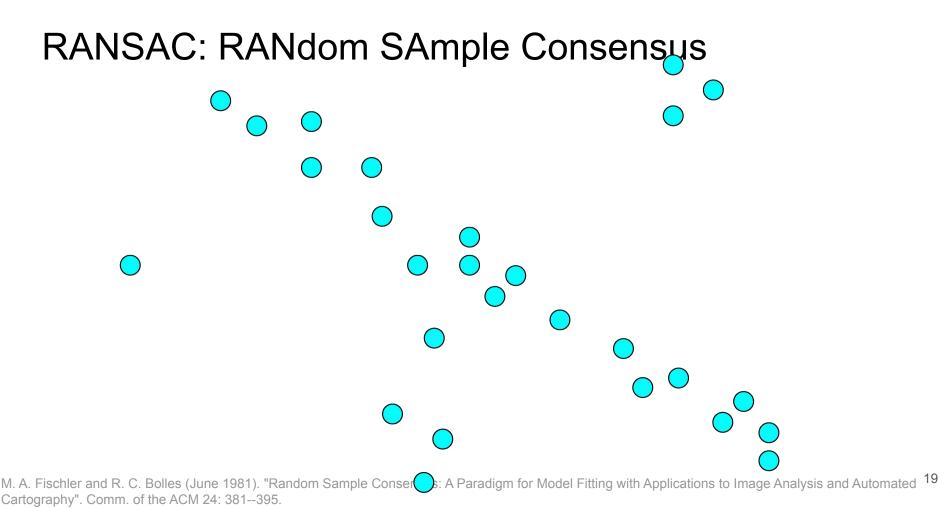
Approach: view estimation as a two-stage process:

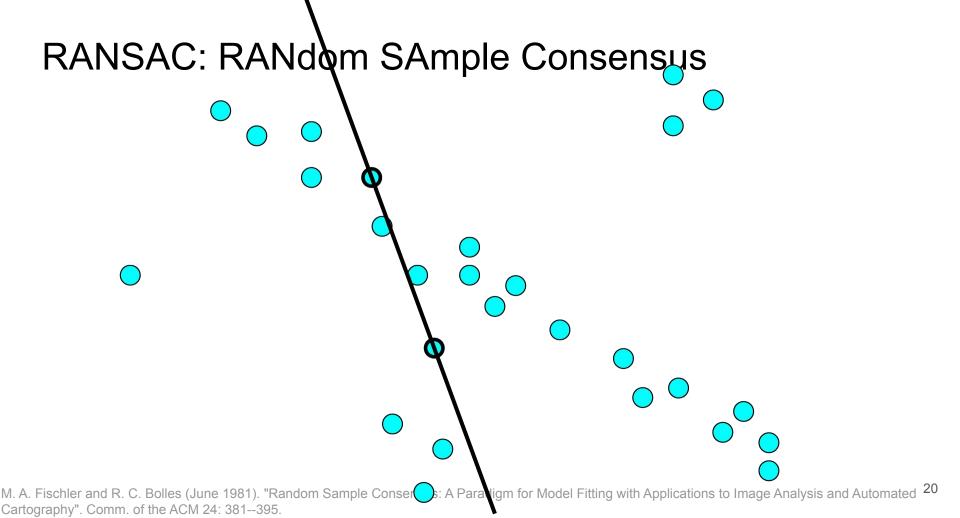
- 1. Classify data points as outliers or inliers
- 2. Fit model to inliers while ignoring outliers

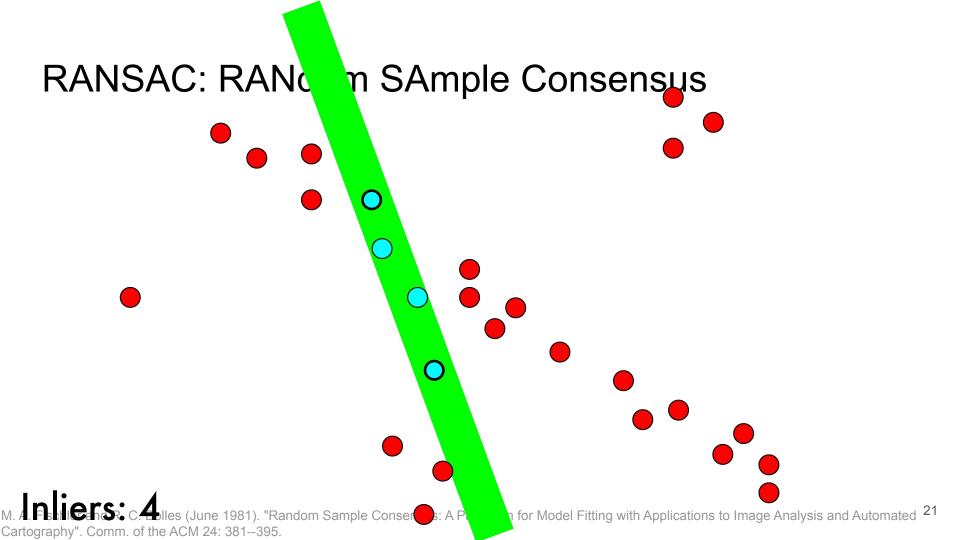
Assumptions: outliers are random and will not agree

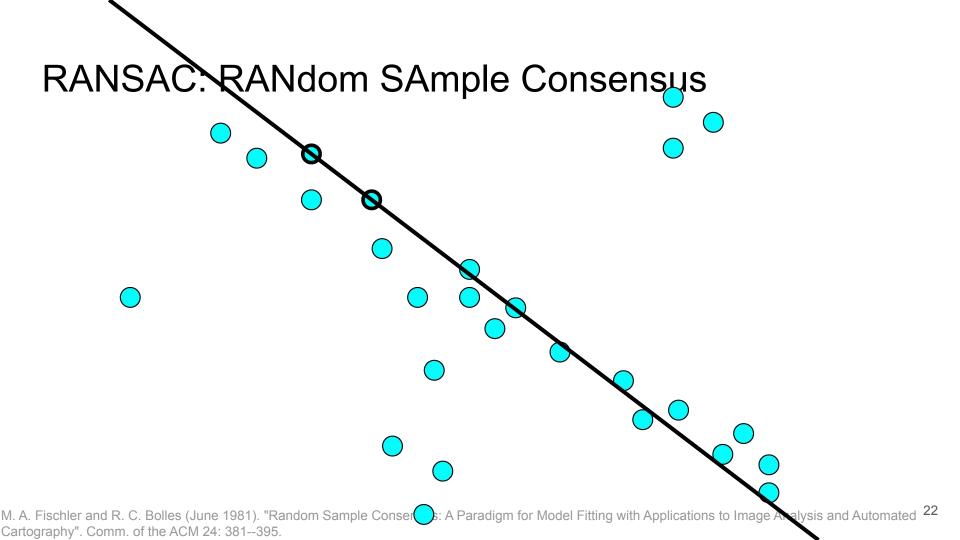
How? Try many models on subsets of the dataset and keep the best.

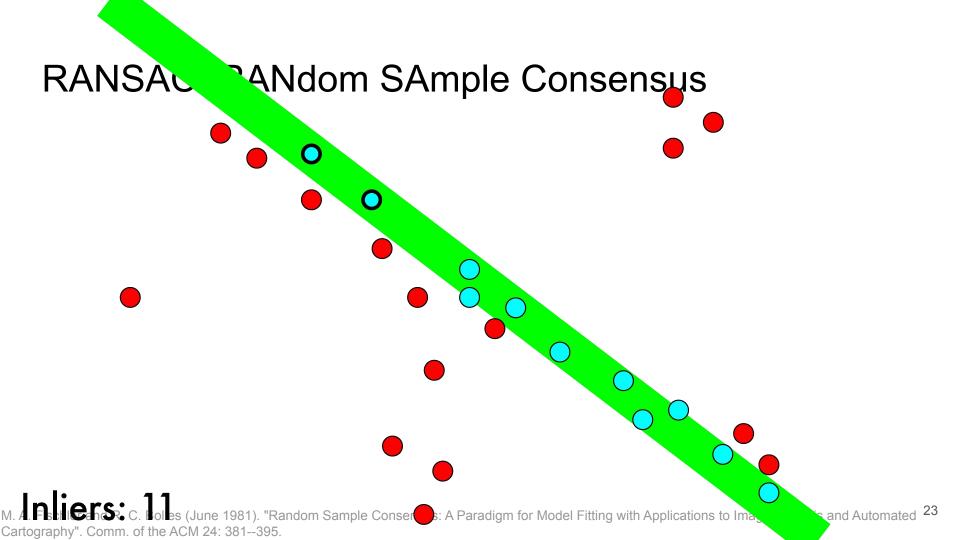
Several approaches: RANSAC, Hough transform, clustering...

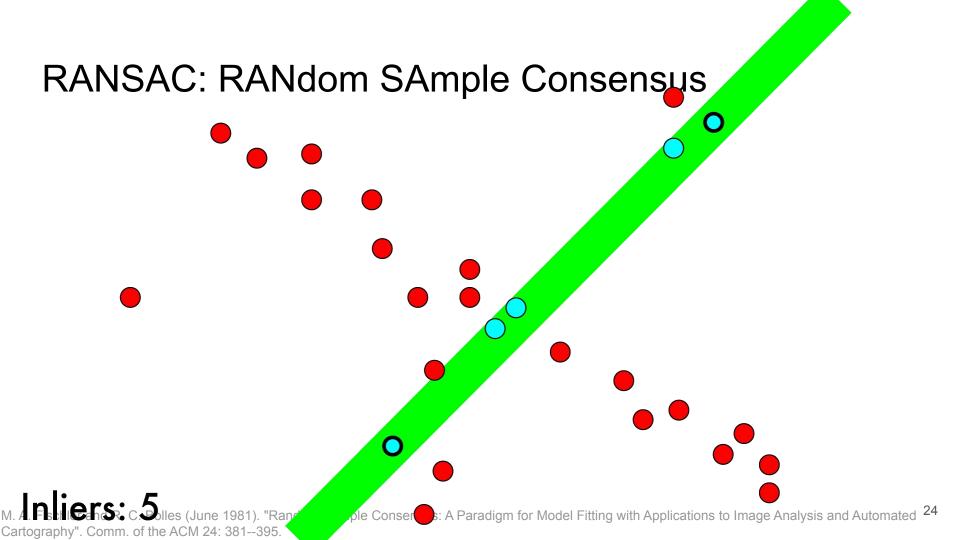


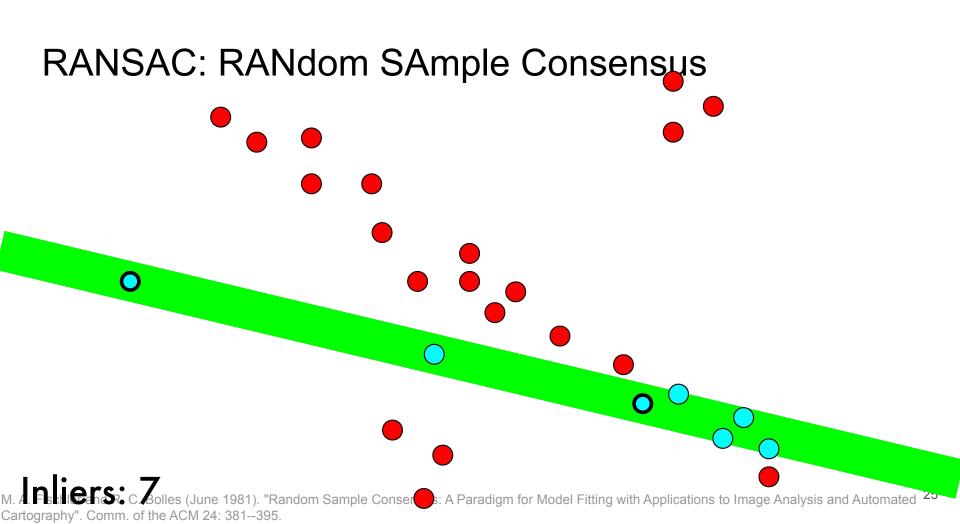


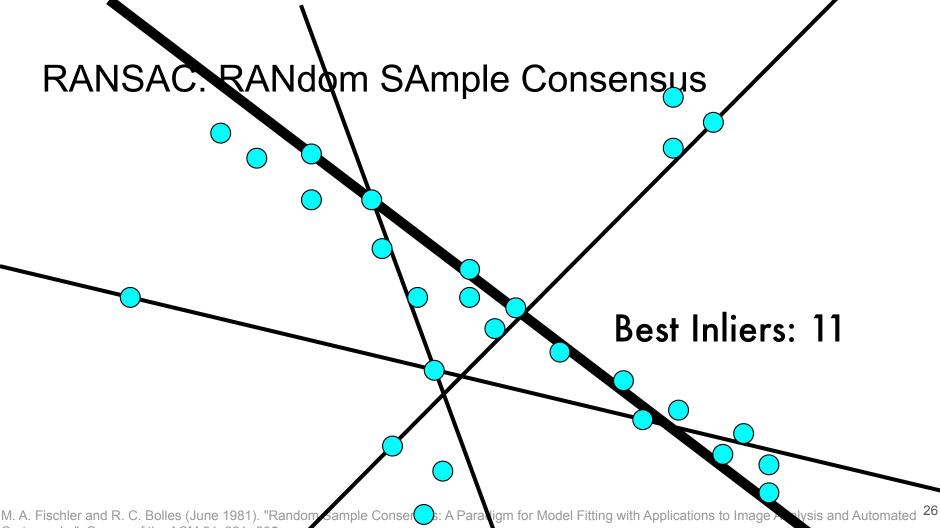












Cartography". Comm. of the ACM 24: 381--395.

RANSAC algorithm

Parameters: **data**, **n**: num. points required to fit model, **k**: max iterations, **d**: distance threshold to belong to fitted model, **m**: min. # inliers for early stop

```
bestmodel = None
bestfit = INF
                                                                                                                 \sum_{i} \left( x_i' - \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \right)^2 + \left( y_i' - \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}} \right)^2
While niter < k:
          sample = draw n random points from data
          Fit model to sample \leftarrow using Least Square here
          inliers = data within distance d of model \leftarrow OpenCV uses retroprojection error, ie ||dstpoint - proj(srcpoint)||_{2} < d
         if inliers > bestfit.
                   Fit model to all inliers
                   bestfit = fit
                   bestmodel = model
                   if inliers > m:
                             return model
return bestmodel
```

27

RANSAC algorithm

How to set the parameters?

Default values are usually fine in toolkits.

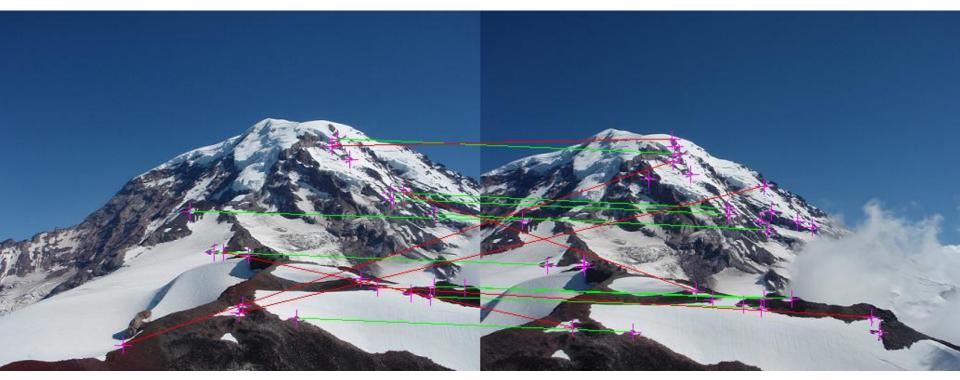
- n: num. points required to fit model
 ⇒ set to minimum necessary (max 8)
- k: max iterations

 \Rightarrow 2000 permits to be sure that at least 1 sample without outliers will be drawn with a probability > 99%

- d: distance threshold to belong to fitted model
 - ⇒ keep small but **may depend on problem**
- m: min. # inliers for early stop
 - \Rightarrow should be >> **n**, but you do not care to reach **k** anyway

RANSAC works well with extreme noise

RANSAC works well with extreme noise



Other approaches

Compatible with **multiple instance detection**.

Naive implementation:

- 1. (opt.) When matching descriptors, accept more than 1 neighbor *Recommended: use a background model to set a radius threshold*
- 2. Estimate all possible homographies, keeping track of the support points for each
- 3. Run a clustering (or bin counting) algorithm in the parameter space of the homography to identify the best candidates