
MLRF Lecture 05
J. Chazalon, LRDE/EPITA, 2019

1

Some classifiers – part 1
Lecture 05 part 03

2

Disclaimer
What follows is a very limited selection.

Only classifiers suitable for image classification as we present it today.

input = feature vector
output = label

Many other approaches, in particular for structured and/or symbolical data
(graphs, etc.)

3

What is our goal?
Given samples (described by features) and true labels,

find a good function
which will correctly predict labels

given new data samples

Problems:
- Which family for our function?
- What is “good”?
- How to train / find such function?

Let us have a look a some classical approaches.

4

Parametric vs Non Parametric classifiers

5

Parametric examples: Logistic Regression, Linear Discriminant Analysis, Naive
Bayes, Perceptron, Simple Neural Networks…

“A learning model that summarizes data with a set of parameters of fixed size
(independent of the number of training examples) is called a parametric
model. No matter how much data you throw at a parametric model, it won’t
change its mind about how many parameters it needs.”

— Russell & Norvig, Artificial Intelligence: A Modern Approach, page 737

Parametric vs non parametric

6

Often heard.
Very misleading.

Parametric vs non parametric
Non-parametric examples: k-Nearest Neighbors, Decision Trees, SVMs

“Non-parametric models differ from parametric models in that the model
structure is not specified a priori but is instead determined from data. The
term non-parametric is not meant to imply that such models completely lack
parameters but that the number and nature of the parameters are flexible and
not fixed in advance.”

— https://en.wikipedia.org/wiki/Nonparametric_statistics

“Nonparametric methods are good when you have a lot of data and no prior
knowledge, and when you don’t want to worry too much about choosing just the
right features.”

— Russell & Norvig, Artificial Intelligence: A Modern Approach, page 757 7

Dummy classifiers

8

Dummy classifiers and how good they can pretend to be

Say you have a dataset with 9 muffins, and 1 chihuahua.

You have a new sample to classify.

Which class should you bet on?

Dummy classifiers and how good they can pretend to be

If your class prior probabilities P(C1), P(C2), … are not equal,
then you should bet on the most frequent class! (g(x) = argmaxy p(y))

Without such information, you can just pick at random.

What is the expected accuracy (true predictions / total predictions)
if you have N classes and pick one at random?

N=100 N=10 N=2

10

Dummy classifiers and how good they can pretend to be

Scikit-learn offers a DummyClassifier class which helps testing such strategy.

What’s the point?

1. Quickly build and test your complete pipeline with a mockup classifier
2. Quickly get a baseline for the performance
3. (look for obvious bias in the dataset, but you should have cleaned it before!)

11

K Nearest Neighbors (kNN)

12

K Nearest Neighbors (kNN)
Keep all training samples

View new samples as queries over the
previously learned / indexed samples

13
from A. Müller

K Nearest Neighbors (kNN)
Keep all training samples

View new samples as queries over the
previously learned / indexed samples

Assign the class of the closest(s)
samples

14
from A. Müller

K Nearest Neighbors (kNN)
We can check more than 1 sample

15
from A. Müller

Remember this bias/variance compromise?

16
from A. Müller

High
sensibility
to noise /
variance

Score =
accuracy
here

Strong
smoothing /
high bias

Optimal
parameter

K Nearest Neighbors (kNN)

17

Pros

Very simple to implement.

Capacity easily controlled with k.

Can be tuned to work on large datasets:
indexing, data cleaning, etc.

Good baseline.

Non parametric.

Lazy learner.

Cons

In high dimension, all samples tend to be very
close (for Euclidean dimension).

Large memory consumption on large datasets.

Requires a large amount of samples and large k
to get best performance.

Setting K:

m/C: average number of training sample / class

Other distance-based classifiers

18

Very basic classifier

Distance to the mean mi of the class

It does not take into account differences
in variance for each class

Predicted class for x :
g(x) = argmini Di(x)

Minimal euclidean distance

Minimal quadratic distance (Mahalanobis)
For each class i, the mean mi and
covariance matrix Si are computer from
the set of examples

The covariance matrix is taken into
account when computing the distance
from an image to the class i

The feature vector of the image x is
projected over the eigenvectors of the
class

g(x) = argmini Di(x) 20

A quick introduction to
Bayesian Decision Theory

21

Example – RoboCup

22
From C. Lampert VRML summer school 2013

Example – RoboCup

23
From C. Lampert VRML summer school 2013

data: x ∈ X = Rd , (here: colors, d = 3)
labels: y ∈ Y = {goal, floor, ball}, (here: object classes)
goal: classification rule g : X → Y.

Histograms: class-conditional probability densities p(x|y).
For any y ∈ Y ∀x ∈ X : p(x|y) ≥ 0, Σx∈X p(x|y) = 1

Maximum Likelihood Rule:
g(x) = argmaxy∈Y p(x|y)

Example – RoboCup

24
From C. Lampert VRML summer school 2013

p(x | y = goal) p(x | y = floor) p(x | y = ball)

General case: maximum a posteriori (MAP)
General case: need to take into consideration p(y) and p(x)

p(x|y): class conditional density (here: histograms)

p(y): class priors, e.g. for indoor RoboCup
p(floor) = 0.6, p(goal) = 0.3, p(ball) = 0.1

p(x): probability of seeing data x

Optimal decision rule (Bayes classifier): maximum a posteriori (MAP):

g(x) = argmaxy∈Y p(y|x)

25

How to compute p(y|x)?

If classes are equiprobables and error cost is the same, then, because p(x) is
constant, we get the maximum likelihood estimation:

g(x) = argmaxy∈Y p(y | x) ≈ argmaxy∈Y p(x | y)

26
From C. Lampert VRML summer school 2013

MAP ML

Generative, discriminant, and “direct” classifiers
Given: training data {(x1 , y1), . . . , (xn, yn)} ⊂ X × Y

Approach 1: Generative Probabilistic Models
1. Use training data to obtain an estimate p(x|y) for any y ∈ Y
2. Compute p(y|x) ∝ p(x|y)p(y)
3. Predict using g(x) = argmaxy∈Y p(y|x)

Approach 2: Discriminative Probabilistic Models
1. Use training data to estimate p(y|x) directly.
2. Predict using g(x) = argmaxy∈Y p(y|x) (same)

Approach 3: Loss-minimizing Parameter Estimation
1. Use training data to search for best g : X → Y directly 27

From C. Lampert VRML summer school 2013

Can lossy
reconstruct data
from label.

Reject easier to
implement.

Better
performance in
general.

Almost only kNN.

Generative Probabilistic Models

28

Some classical Generative Probabilistic Models
Training data X = {x1 , . . . , xn }, Y = {y1 , . . . , xn }. X × Y ⊂ 𝓧 × 𝓨

For each y ∈ 𝓨, build model for p(x|y) of Xy := {xi ∈ X : yi = y}

Histogram: if x can have only few discrete values.

Kernel Density Estimator:

Gaussian:

Mixture of Gaussians:

Typically, 𝓨 small (few possible labels), 𝓧 low dimensional (RGB colors for ex.) 29
From C. Lampert VRML summer school 2013

Class conditional densities and posteriors
p(yi|x) = p(x|yi) p(yi) / p(x), p(x) = Σi p(x|yi)

30

p(+1|x) / Σi p(x|yi) → 1

Naive Bayes Classifiers
As seen before, g(x) = argmaxy∈Y p(y | x)

Use Bayes formula to estimate p(y | x).

Hard part: build an estimate of p(x | y) — EM algo. with Gaussian mixtures,
challenging with non-diagonal covariance matrices.

Solution: make strong independence assumption between variables.

If X = (x1, x2, x3, …, xn), then

Or, as P(xi) are constant:

31https://nlp.stanford.edu/IR-book/pdf/13bayes.pdf
https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c

Naive Bayes Classifiers
The previous simplification leads to very simple classifiers, easy to train and fast to
run, for which the decision rule is:

Some actual Naive Bayes Classifiers:
- Multinomial Naive Bayes: Widely used for document (spam!) classification.

P(xi|y) = frequency of the words present in the document
- Gaussian Naive Bayes: Assume continuous values.

Drawback: in real life, features ARE dependent, and this penalizes NB classifiers.
32https://nlp.stanford.edu/IR-book/pdf/13bayes.pdf

https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c

Linear discriminant classifiers

33

General idea for binary classification

34

Scalar
product

Otherwise
decision must
cross (0,0)

Learn w and b
→ you can compute p(y|x) ≈ ŷ

Problem: How to learn w and b?

w: weights b: bias term

Logistic Regression which is used for classification, not regression!

Linear classifier, f is logistic function
σ(x) = 1/(1 + e-x) = ex/(1 + ex)
Maps all reals → [0,1]

Optimize σ(wT⋅x + b) to find best w

Trained using gradient descent (no
closed form solution)

35

Gradient descent

For some loss function Ldata(w), gradient ∇Ldata(w) points towards in direction of
steepest ascent.

In 1d, either points left or right

36
From JP Reddie

Gradient descent

For some loss function Ldata(w), gradient ∇Ldata(w) points towards in direction of
steepest ascent.

In 1d, either points left or right

Algorithm:

Take derivative
Move slightly in other
direction
Repeat

37
From JP Reddie

Gradient descent

For some loss function Ldata(w), gradient ∇Ldata(w) points towards in direction of
steepest ascent.

In 1d, either points left or right

Algorithm:

Take derivative
Move slightly in other
direction
Repeat

38
From JP Reddie

Gradient descent

Algorithm:

Take derivative
Move slightly in other
direction
Repeat

End up at local optima

39
From JP Reddie

Gradient descent

Formally:
wt+1= wt - η ∇L(w)

Where η is step size, how far to step relative to the gradient

40
From JP Reddie

From 2 classes to C classes: two strategies
1 vs 1

41

1 vs all

Maximum Margin Classification

42

Maximum Margin Classification

43

What is the best w for this dataset?

Trade-off:
large margin

vs.
few mistakes on training set

Support Vector Machine (SVM)
Find max-margin classifier. Examples on the margin are supporting data points,
support vectors.

44

Logistic Regression vs SVM
Optimization problems:

45

Classification errors on
training set

Cost / weighting of
classification error Regularization term

- forces w to remain small
- avoids instability

About the regularizer
Ad-hoc definition: a function f : Rd → R is simple, if it not very sensitive to the
exact input

sensitivity is measured by slope: f’

For linear , slope is

Minimizing ||w||2 encourages ”simple” functions

46
From C. Lampert VRML summer school 2013

Effect of cost parameter C (regularization, again)
Small C (cost of indiv. errors — a lot of regularization) limits the influence of
individual points. Adjust according to the amount of noise in your data.

47

Non-linear discriminant classifiers

48

Non-linear classification
What is the best linear classifier for this dataset?

None. We need something nonlinear!
49

Non-linear classification
2 solutions:

1. Preprocess the data (explicit embedding, kernel trick…)
2. Combine multiple linear classifiers into nonlinear classifier (boosting, neural

networks…)

50

Non-linear classification
using linear classifiers

with data preprocessing

51

Data preprocessing idea

52

Transform the dataset to enable linear separability.

Linear separation is always possible
The original input space can always be mapped to some higher-dimensional
feature space where the training set is separable.

53

Explicit embedding
Compute φ(x) for all x in the dataset.

Then train a linear classifier just like before.

Used to be avoided because of computation issues, but it is a hot topic again.

54

Kernel trick
Linear classification requires to compute only dot products φ(xi)φ(xj).

The function φ(x) does not need to be explicit, we can use a kernel function

k(x, z) = φ(x)φ(z)

which represents a dot product in a “hidden” feature space.

This gives a non-linear boundary in the original feature space.

55

Popular kernel functions in Computer Vision
“Linear kernel”: identical solution as linear SVM

“Hellinger kernel”: less sensitive to extreme value in feature vector

“Histogram intersection kernel”: very robust

56
From C. Lampert VRML summer school 2013

Popular kernel functions in Computer Vision
“χ2-distance kernel”: good empirical results

“Gaussian kernel”: overall most popular kernel in Machine Learning

… plus others….
57

From C. Lampert VRML summer school 2013

Explicit embedding for the Hellinger kernel

Using simple square root properties, we have:

k(x,x’) = φ(x)φ(x’) = sqrt(x) sqrt(x’)

Tricks for next practice session: given a BoVW vector,
1. L1 normalize it (neutralizes effect of number of descriptors)
2. Take its square root (explicit Hellinger embedding)
3. L2 normalize it (more linear-classifier friendly)

You are encouraged to experiment with and without each step.

58

next lecture: more classifiers

non linear discriminant classifiers

59

