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Classifier evaluation
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Metrics



Confusion matrix and Accuracy
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Problems with Accuracy

All the following classifiers have a 90% accuracy
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Do all errors have the same cost?

true labels

predicted labels




Precision, recall, F-score

Precision = 1P Positive Predicted Value (PPV)
TP + FP
TP Sensitivity, coverage, true positive
Recall = rate.

TP + FN

Harmonic mean of precision and

precision - recall
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F=2

precision + recall



Plotting a Precision/Recall for classification data

For binary classification

Instead of y = argmax, p(y|x), take all possible thresholds for p(y|x).
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Random

TPR, FPR, ROC

ROC: “Receiver Operating Characteristic”
Kind of signal/noise measure under various tunings
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More about ROC curves: adjusting the threshold

http://www.navan.name/roc/
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http://www.navan.name/roc/

More about ROC curves: class overlap

http://www.navan.name/roc/
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http://www.navan.name/roc/

More about ROC curves

https://kennis-research.shinvapps.io/ROC-Curves/

Receiver Operating Characteristic (ROC) Curves

© 2016-2019 Kennis Research

A receiver operating characteristic (ROC) Is a graph that illustrates the performance of a binary classifier as its discrimination threshold (cutoff) is changed. The curve is created by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various cutoff settings. The true-positive rate is known as sensitivity, the false-positive rate is known as the fall-out and Is calculated as (1 - specificity). The
ROC curve is thus a plot of the true positives (TPR) versus the false positives (FPR). The ROC curve can be generated by plotting the cumulative distribution function (area under the probability distribution
from - o to + o0 ) of the correct detection probability in the y-axis versus the cumulative distribution function of the false-alarm probability in x-axis. For information on ROC curves click here for the Wikipedia

page.
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https://kennis-research.shinyapps.io/ROC-Curves/

Split the dataset
to assess
generalization performance



Bootstrap

Draw randomly, with replacement samples from the training set.

Enables us to estimate the variance of estimators we use in the classification rule.

Efron and Tibshirani 1994
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Holdout

Just keep a part of the dataset for later validation/testing.

All Data

Training data

Test data

training set

validation set test set

Model fitting

meter selection Evaluation




Cross validation

Splitl
Split 2
Split 3
Split 4

Split5

All Data
Training data Test data
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
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Cross validation with meta parameter tuning

Split 1
Split 2
Split 3
Split 4

Split 5

All Data
Training data Test data
Fold 1 Fold 2 Fold 3 Fold4 || Fold5 |
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
> Finding Parameters
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold4 | Fold5 @/

Final evaluation {

Test data
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CV iterations

CV iterations

StratifiedKFold (best)

Standard cross-validation with sorted class labels
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Stratified Cross-validation
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Stratified: Ensure relative class frequencies in each fold reflect relative class
frequencies on the whole dataset.
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Missing things



Missing things
Cost of misclassification

Multiclass classification evaluation
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