
MLRF Lecture 06
J. Chazalon, LRDE/EPITA, 2020

1

Some classifiers – part 2
Lecture 06 part 02

2

How to build non-linear classifiers?
2 solutions:

1. Preprocess the data – seen last time
Ex.: explicit embedding, kernel trick…
⇒ change the input to make it linearly separable

2. Combine multiple linear classifiers into nonlinear classifier – current topic
Ex.: boosting, neural networks…
⇒ split the input space into linear subspaces

3

Non-linear classification
using combinations of linear classifiers

4

Multi-layer Perceptron

Combine features linearly, apply a linear activation function φ, repeat.

5
from JP Reddie

Perceptron
very simple linear classifier

Universal approximation theorem

What if φ not linear?

Universal approximation theorem (Cybenko 89, Hornik 91)
φ: any nonconstant, bounded, monotonically increasing function
Im: m-dimensional unit hypercube (interval [0-1] in m dimensions)
Then 1-layer neural network with φ as activation

can model any continuous function f: Im → R
(no bound on size of hidden layer)

By extension, works on f: bounded Rm → R

What can we learn? What can’t we? UAT just says it’s possible to model, not how.
From JP Reddie
https://en.wikipedia.org/wiki/Universal_approximation_theorem

6

Decision trees

7

Works on categorical (like “red”, “black”) and numerical (both discrete and
continuous) random variables.

Train by optimizing classification “purity” at each decision (threshold on a
particular dimension in numerical case).

X1 > 0.756?

X2 > -5? X3 > 3.86?

Class 1 Class 2 Class 3 Class 4

True

True True

False

False False

Decision trees
Very fast training and testing. Non parametric.

No need to preprocess the features.

BUT: Very prone to overfitting without strong limits on depth.

8
from A. Müller

Random Forests [Breiman 2001]

Average the decision of multiple decision trees.

9
from A. Müller

Random Forests
Randomize in two ways:
1. For each tree,

pick a bootstrap sample of data
2. For each split,

pick random sample of features

More trees are always better.

10
from A. Müller

1.

2.

Ensemble methods

11

“Bagging” or “bootstrap aggregating” [Breiman 96]

12

Underlying idea: part of the variance is due to the specific choice of the training
data set.

1. Let us create many similar training data sets using bootstrap.
2. For each of them, train a new classifier.
3. The final function will be the average of each function outputs.

⇒ If generalization error is decomposed into bias and variance terms then
bagging reduces variance. (average of large number of random errors ≈ 0)

Random forest  =  a way of bagging trees.

from L. Miclet

“Boosting”, AdaBoost variant [Freund & Shapire 95]

Combinaison of weak classifiers ∑m αm Gm(x)

αm increases with precision (less errors, bigger αm)

The classifier Gm is trained with increased error
cost for the observations which were misclassified
by Gm-1.

13
from D. Lowe

A quick comparison

14More here:
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

k=3 maxdepth=5 maxdepth=5
ntrees=10

hidden
layers=1
hidden
units=100

50 trees
with
maxdepth=1

GaussianC=0.025 gamma=2
C=1

More tricks

15

Data augmentation
Add realistic deformations to your input in order to improve domain coverage.

For image data, depending on what is possible in production: rotations, horizontal
& vertical flips, scaling, translation, illumination change, warping, noise, etc.

For vector data: interesting problem. Possible approach: train/fit PCA then add
random noise in low-energy features.

Reject
Several options:

1. Improve the model of class boundary
In 1-vs-all training, add noise to the “others” samples.

2. Adjust the decision function depending on your application
Look at the prediction probability of your classifier,
and threshold it as per your need using a ROC curve.

3. Model the noise
Add a “none” class to your classifier,
with samples for real life cases of negative samples.

...
17

