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More theory on

classification
Lecture 05 part 03



What is our goal?

Given samples (described by features) and true labels,
find a good function
which will correctly predict labels
given new data samples

Problems:
- Which family for our function?
- What is “good”?
- How to train / find such function?

Let us step back a little bit.



What are the sources of error?

Noise
- Your data is not perfect. (or “Every model is wrong.”)
- Even if there exist an optimal underlying model, the
observations are corrupted by noise.

Bias
- You need to simplify to generalize.
- You classifier needs to drop some information about the
training set to have generalization power.

Variance

- You have many ways to explain your training dataset.
- ltis hard to find an optimal solution among those many
possibilities.
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Two big issues

Under-fitting
- Caused by bias

- Your model assumptions are too strong for the data, so

the model won't fit well.

Over-fitting
- Caused by variance
- Your algorithm has memorized the data including the

noise, so it can’t generalize.
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The theory



Expected Risk

Let D_be a training set of examples z, drawn independently from an unknown
distribution p(z)

We need a set of functions F. Example: linear functions f(x) =a - x+b
We need a loss function L(z, f). Example: L((x, y), f) = (f (x) = y)?

The Expected Risk, ie the generalization error, is:

R(f) = Ez[L(z f)] = / L(z, f)p(2)dz

Z
But we do not know p(z), and we cannot test all z!




Empirical Risk

Because we cannot measure the real Expected Risk, we have to estimate it
using the Empirical Risk:

R(f,D,) = ZL%
(D_ is the training set)

And our training procedure then relies on Empirical Risk Minimization (ERM):
g Dn = in A aD'n
f*(Dn) arg min R(f,Dy)

And the training error is given by:

f}(f*(Dn)ﬁ D'Tl)



Estimate the Expected Risk with the Empirical Risk

The difference between Expected Risk and For a given capacity, using more samples to
Empirical Risk is bounded but depends on the train and evaluate your predictor should make
capacity of F (set of possible functions). your Empirical Risk converge toward the best
possible Expected Risk, if the ERM is consistent
There is an optimal capacity for a given number for F, given your training set D,
of training samples n.
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Capacity
The capacity h(F) is a measure of its size, or complexity.

For classification, the capacity of F is defined by Vapnik & Chervonenkis as
the largest n
such that there exist a set of examples D
such that one can always find an f € F
which gives the correct answer for all examples in Dn,
for any possible labeling.
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Capacity

Consider for F the characteristic functions of rectangles. We can find families of 1,
2, 3 or 4 points which can be labelled arbitrarily:
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Capacity

However, given a family of 5 points, if the four external points are labelled 1 and
the center point labelled 0, than no function from F can predict that labelling.
Hence here D = 4.
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The Bias-Variance Dilemma

Intrinsic dilemma: when the capacity h(F) grows, the bias goes down, but the

variance goes up!

Bias—Variance Dilemma

Variance

Bias
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Look for an optimal balance

Bias—Variance Dilemma

Price

Size
90 + 91.1‘
High bias
(underfit)

Size )
Oy + O + 02.1‘2 i 031}" —+ 91,1‘4

Variance

- High variance
Bias (overfit)

3_.V'

Size

0o + 0,z + 0222

“Just right”



In practice
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In practice: Empirical Risk and Expected Risk

Measure train and test error.

Use hold-out sets, cross-validations, etc. to get a test error.

Train error: Empirical Risk.

Test error: Coarse estimate of the Expected Risk.
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Detect under-fitting and over-fitting

High bias: This learning curve shows high error
on both the training and test sets, so the
algorithm is suffering from high bias.
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Even training error is unacceptably high.
Small gap between training and test error.

High variance: This learning curve shows a
large gap between training and test set errors,

so the algorithm is suffering from high variance.
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Test error still decreasing as m increases.
Suggests larger training set will help.
Large gap between training and test error.
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Some solutions / hints

From Bradski & Kaehler, Learning OpenCV,
O’Reilly 2008 |

Problem Possible Solutions

Bias - More features can help make a better fit.
- Use a more powerful algorithm.

Variance - More training data can help smooth the model.
- Fewer features can reduce overfitting.
- Use a less powerful algorithm.

Good test/train, - Collect a more realistic set of data.

bad real world

Model can’t learn test - Redesign features to better capture invariance in the data.

or train - Collect new, more relevant data.
- Use a more powerful algorithm.

From C. Aggarwal, Data Mining: The Textbook,
Springer 2015 —

[ Technique [ Source/Level of Bias | Source/Level of Variance I
Simple Oversimplification increases Low variance. Simple models
Models bias in decision boundary. do not overfit.

Complex Generally lower than simple High variance. Complex
Models models. Complex boundary assumptions will be overly
can be modeled. sensitive to data variation.
Shallow High bias. Shallow tree Low variance. The top split
Decision will ignore many relevant levels do not depend on
Trees split predicates. minor data variations.
Deep Lower bias than shallow High variance because of
Decision decision tree. Deep levels overfitting at lower levels.
Trees model complex boundary.
Rules Bias increases with fewer Variance increases with
antecedents per rule. more antecedents per rule.
Naive High bias from simplified Variance in estimation of
Bayes model (e.g., Bernoulli) model parameters. More
and naive assumption. parameters increase variance.
Linear High bias. Correct boundary | Low variance. Linear separator
Models may not be linear. can be modeled robustly.
Kernel Bias lower than linear SVM. | Variance higher than
SVM Choice of kernel function. linear SVM.
k-NN Simplified distance function Complex distance function such
Model such as Euclidean causes as local discriminant causes
bias. Increases with k. variance. Decreases with k.
Regularization || Increases bias Reduces variance
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