MLRF Lecture 06 J. Chazalon, LRDE/EPITA, 2020

More theory on classification

Lecture 05 part 03

What is our goal?

Given **samples** (described by features) and **true labels**, find a **good** function which will correctly **predict labels** given **new data samples**

Problems:

- Which family for our function?
- What is "good"?
- How to train / find such function?

Let us step back a little bit.

What are the sources of error?

Noise

- Your data is not perfect. (or "Every model is wrong.")
- Even if there exist an optimal underlying model, the observations are corrupted by noise.

Bias

- You need to simplify to generalize.
- You classifier needs to drop some information about the training set to have generalization power.

Variance

- You have many ways to explain your training dataset.
- It is hard to find an optimal solution among those many possibilities.

Figures from Bradski & Kaehler, Learning OpenCV, O'Reilly 2008

5

Two big issues

Under-fitting

- Caused by bias
- Your model assumptions are too strong for the data, so the model won't fit well.

Over-fitting

- Caused by variance
- Your algorithm has memorized the data *including* the noise, so it can't generalize.

Figures from Bradski & Kaehler, Learning OpenCV, O'Reilly 2008

The theory

Expected Risk

Let D_n be a training set of examples z_i drawn independently from an unknown distribution p(z)

We need a set of functions **F**. Example: linear functions $f(x) = a \cdot x + b$

We need a loss function L(z, f). Example: $L((x, y), f) = (f(x) - y)^2$

The **Expected Risk**, ie the generalization error, is:

$$R(f) = E_Z[L(z, f)] = \int_Z L(z, f)p(z)dz$$

But we do not know *p***(z)**, and we cannot test all *z*!

Empirical Risk

Because we **cannot measure** the real **Expected Risk**, we have to **estimate it** using the **Empirical Risk**:

$$\hat{R}(f, D_n) = \frac{1}{n} \sum_{i=1}^n L(z_i, f)$$

(**D**_n is the training set)

And our training procedure then relies on **Empirical Risk Minimization** (ERM):

$$f^{\star}(D_n) = \arg\min_{f\in\mathcal{F}} \hat{R}(f, D_n)$$

And the training error is given by:

 $\hat{R}(f^{\star}(D_n), D_n)$

Estimate the Expected Risk with the Empirical Risk

The difference between Expected Risk and Empirical Risk is **bounded** but depends on the **capacity** of *F* (set of possible functions).

There is an **optimal** capacity for a given number of training samples *n*.

Fixed *n*

For a given capacity, using more samples to train and evaluate your predictor **should** make your Empirical Risk converge toward the best possible Expected Risk, if the ERM is consistent for F, given your training set D_n .

Capacity

The capacity *h(F)* is a measure of its size, or complexity.

For classification, the capacity of *F* is defined by Vapnik & Chervonenkis as the largest *n* such that there exist a set of examples D_n such that one can always find an $f \in F$ which gives the correct answer for all examples in D_n , for any possible labeling.

Capacity

Consider for *F* the characteristic functions of rectangles. We can find families of 1, 2, 3 or 4 points which can be labelled arbitrarily:

Capacity

However, given a family of 5 points, if the four external points are labelled 1 and the center point labelled 0, than no function from *F* can predict that labelling. Hence here D = 4.

The Bias-Variance Dilemma

Intrinsic dilemma: when the capacity *h(F)* grows, the bias goes down, but the variance goes up!

Look for an optimal balance

14

In practice

In practice: Empirical Risk and Expected Risk

Measure train and test error.

Use hold-out sets, cross-validations, etc. to get a test error.

Train error: Empirical Risk.

Test error: Coarse estimate of the Expected Risk.

Detect under-fitting and over-fitting

High bias: This learning curve shows high error on both the training and test sets, so the algorithm is suffering from high bias. **High variance**: This learning curve shows a large gap between training and test set errors, so the algorithm is suffering from high variance.

Even training error is unacceptably high. Small gap between training and test error.

Illus. from Andrew Ng

Test error still decreasing as m increases.

Suggests larger training set will help. Large gap between training and test error.

Some solutions / hints

From Bradski & Kaehler, Learning OpenCV, O'Reilly 2008 ↓

Problem	Possible Solutions	
Bias	More features can help make a better fit.	
	 Use a more powerful algorithm. 	
Variance	More training data can help smooth the model.	
	 Fewer features can reduce overfitting. 	
	 Use a less powerful algorithm. 	
Good test/train,	Collect a more realistic set of data.	
bad real world		
Model can't learn test	Redesign features to better capture invariance in the data.	
or train	 Collect new, more relevant data. 	
	 Use a more powerful algorithm. 	

From C. Aggarwal, Data Mining: The Textbook, Springer 2015 \rightarrow

Technique	Source/Level of Bias	Source/Level of Variance
Simple	Oversimplification increases	Low variance. Simple models
Models	bias in decision boundary.	do not overfit.
Complex	Generally lower than simple	High variance. Complex
Models	models. Complex boundary	assumptions will be overly
	can be modeled.	sensitive to data variation.
Shallow	High bias. Shallow tree	Low variance. The top split
Decision	will ignore many relevant	levels do not depend on
Trees	split predicates.	minor data variations.
Deep	Lower bias than shallow	High variance because of
Decision	decision tree. Deep levels	overfitting at lower levels.
Trees	model complex boundary.	
Rules	Bias increases with fewer	Variance increases with
	antecedents per rule.	more antecedents per rule.
Naive	High bias from simplified	Variance in estimation of
Bayes	model (e.g., Bernoulli)	model parameters. More
	and naive assumption.	parameters increase variance.
Linear	High bias. Correct boundary	Low variance. Linear separator
Models	may not be linear.	can be modeled robustly.
Kernel	Bias lower than linear SVM.	Variance higher than
SVM	Choice of kernel function.	linear SVM.
k-NN	Simplified distance function	Complex distance function such
Model	such as Euclidean causes	as local discriminant causes
	bias. Increases with k .	variance. Decreases with k .
Regularization	Increases bias	Reduces variance