
MLRF Lecture 03
J. Chazalon, LRDE/EPITA, 2021

1



Descriptors matching
and indexing

Lecture 03 part 03

2



Introduction
Given some keypoints in image 1, what are the more similar ones in image 2?

3

100101010… 0010101100…

This is a nearest neighbor problem in descriptor space (this lecture part).
This is also a geometrical problem in coordinate space (next lecture parts).

x,y
scale
orientation

Coordinate space 
aka image domain 
aka spatial domain

⇒ Given by detector

Descriptor space
aka feature space
aka feature domain

⇒ Given by descriptor



Matching

4



Matching problem
Goal: given two sets of descriptors, find the best matching pairs.

Need a distance/norm: depends on the descriptor
- Distribution (histogram)? Statistics?
- Data type?

- Float, integers: Euclidean, cosine…
- Binary: Hamming…

5



1-way matching
For each xi in the set of descriptors D1, find the closest element yi in D2.

6

xi ∈ D1

yi ∈ D2



1-way matching
For each xi in the set of descriptors D1, find the closest element yi in D2.

We have a match m(xi,yi) for each xi

Many yi in D2 may not belong to any match

xi ∈ D1

yi ∈ D2

7



1-way matching
Example from next practice session

8



Symmetry test aka cross check aka 2-way matching
For each xi in the set of descriptors D1, find the closest element yi in D2 
such as xi is also the closest element to yi.

9

xi ∈ D1

yi ∈ D2



Symmetry test aka cross check aka 2-way matching
For each xi in the set of descriptors D1, find the closest element yi in D2 
such as xi is also the closest element to yi.

Filters a lot of noise.
(Less matches, not every xi gets a match.)

Costly to compute.

10

xi ∈ D1

yi ∈ D2



Symmetry test aka cross check aka 2-way matching
Example from next practice session

11



Ratio test
For each xi in the set of descriptors D1, find the 2 closest elements yi and yj in D2.

Keep the match m(xi, yi) only if dist(xi, yi) < RATIO * dist(xi, yj)

12

xi ∈ D1

yi ∈ D2



Ratio test
For each xi in the set of descriptors D1, find the 2 closest elements yi and yj in D2.

Keep the match m(xi, yi) only if dist(xi, yi) < RATIO * dist(xi, yj)

OK!
Assume RATIO = ⅔

13

xi ∈ D1

yi ∈ D2



Ratio test
For each xi in the set of descriptors D1, find the 2 closest elements yi and yj in D2.

Keep the match m(xi, yi) only if dist(xi, yi) < RATIO * dist(xi, yj)

KO!
Assume RATIO = ⅔

14

xi ∈ D1

yi ∈ D2



Ratio test
For each xi in the set of descriptors D1, find the 2 closest elements yi and yj in D2.

Keep the match m(xi, yi) only if dist(xi, yi) < RATIO * dist(xi, yj)

OK!

Assume RATIO = ⅔

15

xi ∈ D1

yi ∈ D2



Ratio test
For each xi in the set of descriptors D1, find the 2 closest elements yi and yj in D2.

Keep the match m(xi, yi) only if dist(xi, yi) < RATIO * dist(xi, yj)

Good filter which removes ambiguous matches.

Like 1-way matching, potential yi duplicates in matches.

Can be made symmetrical.

KO!

Assume RATIO = ⅔

16

xi ∈ D1

yi ∈ D2



Ratio test: calibrate the ratio
Adjust it on a training set!

For each correct/incorrect 
match in your annotated 
database, plot the next to 
next closest distance PDF.

What is a good ratio in D. 
Lowe’s experiment? →

17
David G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.



Example from next practice session

Ratio test

18



Radius threshold
For each xi in the set of descriptors D1, find the closest element yi in D2 
and make sure dist(xi, yi) < RADIUS.

19

xi ∈ D1

yi ∈ D2



Radius threshold
For each xi in the set of descriptors D1, find the closest element yi in D2 
and make sure dist(xi, yi) < RADIUS.

20

OK! xi ∈ D1

yi ∈ D2



Radius threshold
For each xi in the set of descriptors D1, find the closest element yi in D2 
and make sure dist(xi, yi) < RADIUS

21

KO! xi ∈ D1

yi ∈ D2



Radius threshold
For each xi in the set of descriptors D1, find the closest element yi in D2 
and make sure dist(xi, yi) < RADIUS

May allow multiple good matches 
for some xi

Harder to calibrate 
- 1 absolute value for all descriptor space!
- Usually req. a “background model”

= a set D3 with only incorrect matches

But how to query within a certain distance efficiently? Indexing!
22

OK!

xi ∈ D1

yi ∈ D2



Radius threshold
From BRIEF paper.

If we have a background model 
which give us the red curve for 
each case (not knowing the 
blue one), can we choose a 
good radius?

23

Beware: absolute values here!

M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent elementary features,” in European conference on computer vision, 2010, pp. 778–792.



Radius threshold
From BRIEF paper.

If we have a background model 
which give us the red curve for 
each case (not knowing the 
blue one), can we choose a 
good radius?

24

Absolute values here.

M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent elementary features,” in European conference on computer vision, 2010, pp. 778–792.

75-125 seems good here!



Example from next practice session

[Missing because not useful for this session]

[and tricky to handle multiple good matches]

Radius threshold

25



Geometric validation
What about the coordinates of the keypoints?

Once we have a list of matches m(xi, yi), 
we can check whether the coordinates of the keypoints of the matched descriptors
describe a consistent mapping from one position to another.

26

Image space!



Geometric validation
What about the coordinates of the keypoints?

Once we have a list of matches m(xi, yi), 
we can check whether the coordinates of the keypoints of the matched descriptors
describe a consistent mapping from one position to another.

27

Image space!



Example from next practice session

Geometric validation

28



Geometric validation
How to check the consistency of the transformation?

Difference classes for transformations.

Different methods to estimate them and check which matches agree and disagree.

⇒ Next lecture parts.

29



Summary of matching techniques (for practice session)

30



Indexing

31



Indexing pipeline
Use case: We have a database of images and we want to find an object from it.

32

Train images

Detect keypoints,
Compute descriptors

Database

Sample entry:
descr → (image id, kpt coord) 

Query images

Detect keypoints,
Compute descriptors

Query 
closest 

descriptors
List of 
matches...

Sample match:
(kpt id 1, kpt id 2, distance, image id)

How can we get the closest descriptors?

Not your 
traditional 

DBMS!



Bruteforce matching aka linear matching
Simply scan all data and keep the closest elements.

Does not scale to large databases, but can be faster on small ones!
Especially with fast distance measures, like Hamming.

Exact matching. Global optimum guarantee.

Supports cross check (double scan).

33



Indexing
Build one+ indexes of descriptors → descriptor data

Indexing is often approximate (especially if asking for more than 1 neighbor), 
because :
1. Databases can grow very large
2. Descriptor spaces have many dimensions

Exact matching and global optimum are not always guaranteed.

Also, cross check usually does not make sense and is therefore not implemented.

Usually, we start by reducing the dimension / encoding our features (next lecture)

34



kD-Trees
The k-d tree is a binary tree in which every leaf node is a k-dimensional point.

35
Bentley, J. L. (1975). "Multidimensional binary search trees used for associative searching". Communications of the ACM. 18 (9): 509.

C
C

 B
Y 

S
A 

3.
0 

K
iw

iS
un

se
t a

t E
ng

lis
h 

W
ik

ip
ed

ia

https://en.wikipedia.org/wiki/User:KiwiSunset
https://en.wikipedia.org/wiki/


kD-Trees
The k-d tree is a binary tree in which every leaf node is a k-dimensional point.

Construction: for each dimension, recursively split the space to maximize data 
separation until a maximum size is reached

Retrieval: compute the leaf node of each query, then explore points in the leaf and 
in siblings / parents if not satisfying (boundaries not within radius of the query ball)

Complexity: asymptotic O(log N) when N>>2k

In practice, kD-trees do not work for searching in high dimensions.

36
Bentley, J. L. (1975). "Multidimensional binary search trees used for associative searching". Communications of the ACM. 18 (9): 509.



FLANN – Efficient indexing
Original version: hierarchical k-Means.

Construction: repetitive k-Means on data (then inside clusters) until minimum 
cluster size is reached.

Lookup: traverse the tree in a best-bin-first manner with backtrack queue, 
backtrack until enough points are returned

37
Marius Muja, David G. Lowe. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration, 2009



Locality Sensitive Hashing (LSH)
Hash items using a family of hash function which project similar items in the same 
bucket with high probability. NOT cryptographic hashing!

38
Illustrations: https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6134



Locality Sensitive Hashing (LSH)

39
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

40
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

41
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

42
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

43
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

44
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

45
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

46
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

47
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

48
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

49
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

50
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

51
Illustrations: Benjamin Van Durme & Ashwin Lall



Locality Sensitive Hashing (LSH)

52

Fast and efficient with large spaces, lot of data.

Return a “good match”, maybe not the best one.

kNN can be costly (scan other bins).

Indexes binary descriptors very straightforwardly using bit sampling
(sample bits from the coordinates).

Random projections for other cases, or other techniques…



Which indexing?
Experiment.

Advices for practice session:
- Use bruteforce/linear for first 

experiments / best (but slow) results
- Use LSH for binary descriptors 

like ORB
- Use randomized kD-Trees with 

SIFT (integer descr. with similar 
dimension) for moderate dataset 
size, 
k-Mean tree otherwise

53
Marius Muja, David G. Lowe. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration, 2009


