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Descriptors matching

and indexing
Lecture 03 part 03



Introduction

Given some keypoints in image 1, what are the more similar ones in image 27?
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Coordinate space
aka image domain
aka spatial domain

= Given by detector

Descriptor space
aka feature space
aka feature domain

= Given by descriptor

This is a nearest neighbor problem in descriptor space (this lecture part).
This is also a geometrical problem in coordinate space (next lecture parts). .



Matching



Matching problem

Goal: given two sets of descriptors, find the best matching pairs.

Need a distance/norm: depends on the descriptor
- Distribution (histogram)? Statistics?
- Data type?

Float, integers: Euclidean, cosine...
Binary: Hamming...



1-way matching

For each x. in the set of descriptors D, find the closest element y. in D,




1-way matching

For each x. in the set of descriptors D, find the closest element y. in D,

We have a match m(x,y.) for each x.

Many y. in D, may not belong to any match ®




1-way matching

Example from next practice session
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Symmetry test aka cross check aka 2-way matching

For each x. in the set of descriptors D, find the closest element y. in D,
such as x is also the closest element to y..
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Symmetry test aka cross check aka 2-way matching

For each x. in the set of descriptors D, find the closest element y. in D,
such as x is also the closest element to y..

o, ¢ ® «-o,
o ‘. Q ® /=p
®
Filters a lot of noise. ()
(Less matches, not every x. gets a match.) PY
Costly to compute. o
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Symmetry test aka cross check aka 2-way matching

Example from next practice session

Frame < Model - 564 matches
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Ratio test

For each x. in the set of descriptors D, find the 2 closest elements y. and Y, inD,,.

Keep the match m(x,, y.) only if dist(x;, y.) < RATIO * dist(x,, yj)
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Ratio test

For each x. in the set of descriptors D, find the 2 closest elements y. and Y, inD,,.

Keep the match m(x,, y.) only if dist(x;, y.) < RATIO * dist(x,, yj)
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Ratio test

For each x. in the set of descriptors D, find the 2 closest elements y. and Y, inD,,.

Keep the match m(x,, y.) only if dist(x;, y.) < RATIO * dist(x,, yj)
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Ratio test

For each x. in the set of descriptors D, find the 2 closest elements y. and Y, inD,,.

Keep the match m(x,, y.) only if dist(x;, y.) < RATIO * dist(x,, yj)
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Ratio test

For each x. in the set of descriptors D, find the 2 closest elements y. and Y, inD,,.

Keep the match m(x,, y.) only if dist(x;, y.) < RATIO * dist(x,, yj)
o

.. . x € D,
Assume RATIO = % C I ) ® <o,
o
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Good filter which removes ambiguous matches. ®
® ®

Like 1-way matching, potential y. duplicates in matches.
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Ratio test: calibrate the ratio

Adjust it on a training set!

For each correct/incorrect
match in your annotated
database, plot the next to
next closest distance PDF.

What is a good ratio in D.
Lowe’s experiment? —
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Figure 11: The probability that a match is correct can be determined by taking the ratio of distance
from the closest neighbor to the distance of the second closest. Using a database of 40,000 keypoints,
the solid line shows the PDF of this ratio for correct matches, while the dotted line is for matches that
were incorrect.
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David G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.



Ratio test

Example from next practice session

Frame — Model (ratio test) - 202 matches
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Radius threshold

For each x. in the set of descriptors D, find the closest element y. in D,
and make sure dist(x;, y.) < RADIUS.
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Radius threshold

For each x. in the set of descriptors D, find the closest element y. in D,
and make sure dist(x;, y.) < RADIUS.
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Radius threshold

For each x. in the set of descriptors D, find the closest element y. in D,
and make sure dist(x;, y.) < RADIUS
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Radius threshold

For each X. in the set of descriptors D1, find the closest element Y. in D2
and make sure dist(x;, y.) < RADIUS

.. PR S . X & D1
/ \
May allow multiple good matches ® \ ! ® )-=p,
for some Xi OK!I =~ P
O
Harder to calibrate PS

- 1 absolute value for all descriptor space!
- Usually req. a “background model”
= a set D, with only incorrect matches

But how to query within a certain distance efficiently? Indexing! ”



| Beware: absolute values here! |
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M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent elementary features,” in European conference on computer vision, 2010, pp. 778-792.



| Absolute values here. |
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M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent elementary features,” in European conference on computer vision, 2010, pp. 778-792.



Radius threshold

Example from next practice session

[Missing because not useful for this session]

[and tricky to handle multiple good matches]
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Geometric validation

What about the coordinates of the keypoints?

Once we have a list of matches m(x,, y)),
we can check whether the coordinates of the keypoints of the matched descriptors

describe a consistent mapping from one position to another.

........
-----------------------------
-------

Image space!
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Geometric validation

What about the coordinates of the keypoints?

Once we have a list of matches m(x,, y)),
we can check whether the coordinates of the keypoints of the matched descriptors

describe a consistent mapping from one position to another.

A

\ |

Image space!
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Geometric validation

Example from next practice session

Frame — Model (ratio test + RANSAC) - 129 matches
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Geometric validation

How to check the consistency of the transformation?
Difference classes for transformations.
Different methods to estimate them and check which matches agree and disagree.

= Next lecture parts.
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Summary of matching techniques

Frame - Model - 2000 matches
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Indexing
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Indexing pipeline

Use case: We have a database of images and we want to find an object from it.

Sample entry:
Detect keypoints, descr — (image id, kpt coord)
Compute descriptors %
| > Database
Sample match:
el oLy kpt id 1, kpt id 2, distance, image id
Train images traditional ( p p g )

DBMS!
Detect keypoints, N

Compute descriptors
ery List of
| closest ﬁ> ist o
> descriptors matches...

Query images
How can we get the closest descriptors? 32



Bruteforce matching aka linear matching

Simply scan all data and keep the closest elements.

Does not scale to large databases, but can be faster on small ones!
Especially with fast distance measures, like Hamming.

Exact matching. Global optimum guarantee.

Supports cross check (double scan).
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Indexing

Build one+ indexes of descriptors — descriptor data

Indexing is often approximate (especially if asking for more than 1 neighbor),
because :

1. Databases can grow very large

2. Descriptor spaces have many dimensions

Exact matching and global optimum are not always guaranteed.
Also, cross check usually does not make sense and is therefore not implemented.

Usually, we start by reducing the dimension / encoding our features (next lecture)
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kD-Trees

The k-d tree is a binary tree in which every leaf node is a k-dimensional point.

10

CC BY SA 3.0 KiwiSunset at English Wikipedia

Bentley, J. L. (1975). "Multidimensional binary search trees used for associative searching".

Communications of the ACM. 18 (9): 509.
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kD-Trees

The k-d tree is a binary tree in which every leaf node is a k-dimensional point.

Construction: for each dimension, recursively split the space to maximize data
separation until a maximum size is reached

Retrieval: compute the leaf node of each query, then explore points in the leaf and
in siblings / parents if not satisfying (boundaries not within radius of the query ball)

Complexity: asymptotic O(log N) when N>>2k

In practice, kD-trees do not work for searching in high dimensions.

36

Bentley, J. L. (1975). "Multidimensional binary search trees used for associative searching". Communications of the ACM. 18 (9): 509.



FLANN — Efficient indexing

Original version: hierarchical k-Means.

Construction: repetitive k-Means on data (then inside clusters) until minimum
cluster size is reached.

Lookup: traverse the tree in a best-bin-first manner with backtrack queue,
backtrack until enough points are returned

Marius Muja, David G. Lowe. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration, 2009

37



Locality Sensitive Hashing (LSH)

Hash items using a family of hash function which project similar items in the same
bucket with high probability. NOT cryptographic hashing!

general hashing locality-sensitive hashing
<IN
e[ e [ Te[] T Te][ | Jee] [ TeTel]

lllustrations: https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6134
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Locality Sensitive Hashing (LSH)

_ A

lllustrations: Benjamin Van Durme & Ashwin Lall
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Locality Sensitive Hashing (LSH)

lllustrations: Benjamin Van Durme & Ashwin Lall
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Locality Sensitive Hashing (LSH)

lllustrations: Benjamin Van Durme & Ashwin Lall
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Locality Sensitive Hashing (LSH)
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Locality Sensitive Hashing (LSH)

|| DR
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Locality Sensitive Hashing (LSH)

- \

>

A

v |

44



Locality Sensitive Hashing (LSH
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Locality Sensitive Hashing (LSH
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Locality Sensitive Hashing (LSH)
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Locallty Sensmve Hashlng (LSH)

Hamming Distance :(= h =1

Signature Length :=b=6 |



Locallty Sensmve Hashlng (LSH)

Hamming Distance := h =1 _ COS(
Signature Length :=b=6 |



Locality Sensitive Hashing (LSH)

Approximate Cosine

32 bit signatures
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True Cosine

[Accurate J
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Locality Sensitive Hashing (LSH)

Fast and efficient with large spaces, lot of data.
Return a “good match”, maybe not the best one.
kNN can be costly (scan other bins).

Indexes binary descriptors very straightforwardly using bit sampling
(sample bits from the coordinates).

Random projections for other cases, or other techniques...

52



Which indexing?

Experiment. =
Advices for practice session: 5
- Use bruteforcel/linear for first g "
experiments / best (but slow) results §
- Use LSH for binary descriptors 2 10
like ORB %
- Use randomized kD-Trees with g
SIFT (integer descr. with similar 10° |

dimension) for moderate dataset
size,
k-Mean tree otherwise

Marius Muja, David G. Lowe. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration, 2009

—#— K-means tree - sift 31M
—»— rand. kd-trees - sift 31M
—&— k-means tree - sift 1M
—&— rand. kd-trees - sift 1M

—&— k-means tree - sift 100K -

—%— rand. kd-trees - sift 100K
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