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Content based
image retrieval

Lecture 04 part 02
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Two strategies using local descriptors
Keep all local descriptors

+ Enables geometric validation
+ Better part detection in theory

- Huge memory requirements

Like what we did in practice session 3 to match 
parts of an image (useful to validate geometric 
constraints and classify an image at the same 
time).

Build a global descriptor using local ones

+ Inspired by text retrieval
+ Compact representation
+ Tricks to embed spatial information
+ Limited memory requirements

Like what we did in practice session 2 with the 
color histogram, at the bubble level!

Bag of Feature approach
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Pipeline with local descriptors (prev. lecture)
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Pipeline with bag of features (current lecture)
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Feature extraction
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Sparse vs Dense detection

Sparse Dense
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Sparse vs Dense detection

For dense detections, 
we usually filter regions 
with low variance

from M. Rusiñol
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Making descriptor more discriminative
Build pairs from included regions

Or triplets from neighbor points
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Dimensionality reduction

10



Dimensionality reduction
Often used before encoding to:

- limit dictionary sizes
- facilitate quantization

Several techniques :
- Principal-Component Analysis (PCA): 

- New basis for coordinates (translation + rotation)
- Widely used

- Singular-Value Decomposition (SVD)
and CUR Decomposition

- More powerful
- Latent modeling of “topics” or “concepts”

See J. Leskovec, A. Rajaraman, J. 
Ullman, Mining of Massive Datasets, 
chapter 11 at http://mmds.org 
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Encoding
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Bag of Visual Words
Modern approaches are derived from this one.

Reuses the ideas of text / web search to images.

From a set of descriptor, build a histogram of quantized descriptors.
Much alike a color histogram!

J. Sivic and A. Zisserman, “Video Google: A Text Retrieval Approach to Object Matching in Videos”, International Conference on Computer Vision, 2003
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Quantization
Discretization of some signal — Lossy process!

Vectorial formulation: f: Rd → F, with F = {1, 2, …, k}

Defines a Voronoi diagram, ie a decomposition of a metric space determined by 
the distances to a discrete set of point.
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Bag of Visual Words (continued)
Cluster centers are determined using k-Means 
(once for all on a training set).

Each descriptor is quantized: store the code of 
the closest centroid.

Build a histogram of descriptor count for each 
cluster.

The set of cluster centers is called the dictionary, 
the codebook or also the visual vocabulary.

We can choose the number of words!
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from H. Jégou, C. Schmid
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Bag of Visual Words: Vector size
The resulting vector size for a given image is given by:

D = vocabulary size

Usually, the bigger the vocabulary the better the results.

Several thousands of words are common.
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Bag of Visual Words: Normalization (1/2)
Problem:

- The values in the histogram are absolute: each bin count the number of 
occurrence of each visual word.

- This make the descriptor sensitive to the variation of number of 
descriptors extracted in each image (more descriptors ⇒ higher peaks)

Solution:
- Normalize (divide) histogram value by the number of descriptors extracted

- Warning: we get values in [0,1] range: we need float vectors!

- This is a L1 normalization: ||v||1 = Σi |vi|
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Bag of Visual Words: Normalization (2/2)
Like for text retrieval, it is common to reweight the BoVW vectors using the 
TFIDF technique.

Goal: give more importance to rare words than to frequent ones.

For each dimension of the histogram, compute a new value ti:

#occurences of 
word i in doc/img d

Number of 
words in d

#occurences of 
word i in database

Number of doc.
In the database
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Variant: Soft BoVW
Use soft assignment to clusters, 
add counts to neighbor bins
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Other variants
BoVW is only about counting the number of local descriptors assigned to each 
Voronoi region. 

It is possible to includes other statistics:
- Mean of local descriptor
- Distribution of descriptors

within a cluster

F. Perronin
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VLAD: vector of locally aggregated descriptors

H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a compact image representation,” in Computer Vision and Pattern 
Recognition (CVPR), 2010 IEEE Conference on, 2010, pp. 3304–3311.
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VLAD: vector of locally aggregated descriptors
Visualisation of 
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VLAD: vector of locally aggregated descriptors
The distribution of samples in each cell is encoded by its mean
(minus the centroid mean)
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Fisher vector

F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for image categorization,” CVPR 2007
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GMM
Probability that x is generated by the k-th Gaussian:

Here μk and Σk are respectively the mean and covariance of the distribution.
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Fisher vector
Requires many normalization tricks: 

- PCA on the local descriptors is necessary because of the GMM diagonal 
approximation

- L2 normalization to make the FV more compliant with the dot-product 
assumption

- Power-normalization 

For a detailed analysis see: Sánchez, Perronnin, Mensink, Verbeek, “Image 
Classification with the Fisher Vector: Theory and Practice”, IJCV’13
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Pooling
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Spatial pooling
Used to keep some spatial info

Then, perform pooling over each region.

S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories,” in 2006 IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition, 2006, vol. 2, pp. 2169–2178.
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Compact the descriptors
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Use LSH for binarization
Given B random projections with direction ai

Compute a binary code b(x) from vector x as

⇒ very compact
⇒ very fast comparison (Hamming distance, CPU accel.)
⇒ suitable for very high-dimensional vectors
BUT linear search
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Product Quantizer
Split a vector into m subvectors

Subvectors are quantized separately (with ex. k-Means)

Example: y= 16-dim vector split in 8 subvectors of dimension 2
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Indexing & Matching
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Approximate Nearest Neighbor problem
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See lecture 3 part 3: Descriptors Matching and Indexing

Many options, like KD-Trees, Hierarchical K-Means, regular LSH…



Query
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Query expansion
Recover more relevant results by reissuing a query with top results

O. Chum, J. Philbin, J. Sivic, M. Isard, A. Zisserman. Total recall: Automatic query expansion with a generative feature model for object retrieval. In Computer 
Vision, International Conference on, pages 1–8, Rio de Janeiro, Brazil, October 2007.                                
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Limitations
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Limitations of the BoVW approach
The process organizes the representation based on descriptor density: some 
features / dimensions are meaningful and some are not.

Distances may not have the same meaning over the complete space: we would 
need to “warp” the representation space using supervised learning. Deep learning 
makes it possible (with triplet loss in particular).
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