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How to evaluate a retrieval system?

We need a set of queries for which we know the expected results
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“Ground truth”, aka “targets”, “gold standard”...

To compare 2 methods, we need to use the same database and the same queries.

Many measures / indicators.

Core criterion: is a result relevant (binary classification)?



Precision and Recall

Used to measure the balance between
- Returning many results, hence a lot of the relevant results present in the
database, but also a lot of noise
- Returning very few results, leading to less noise, but also less relevant results



Precision and Recall

Precision (P) is the fraction of retrieved documents that are relevant

#(relevant items retrieved)
#(retrieved items)

Precision = = P(relevant|retrieved)

Recall (R) is the fraction of relevant documents that are retrieved

Recall — #(relevant items retrieved)

= P(retrieved|relevant)

#(relevant items)
Relevant Nonrelevant P = tp/(tp+ fp)
Retrieved true positives (tp) | false positives (fp)
Not retrieved | false negatives (fn) | true negatives (tn) R = tp % (t Pl f ”)




F-measure

F measure is the weighted harmonic mean of precision and recall
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wherea € [0,1]and thus 2 € [0, « ]

The default value is 3 = 1, leading to:

Fpop = —




How to evaluate a ranked retrieval system?

When results are ordered, more measures are available.
Common useful measures are:

- The precision-recall graph and the mean average precision
- The ROC graph and the area under it (AUC)



Precision-recall graph
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Which one is

Equal Error Rate and Average Precision the best?

Note: the PR graph does not provide a total order a

= need more indicators

precision

Equal Error Rate Average precision
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Mean average precision at k — mAP (@Kk)

Mean of the average precision of several queries,
when considering k results for each query (Y

= makes evaluation tractable with very large databases |fx., \

Computed for each query using the trapezoid technique —-

fx)

Si

General algorithm:

For each query q; in the test set with expected results e;:  * /
Retrieve the list ret; of k best results
Compute the AP ap, given e, and ret.

Compute the mean AP over all ap,

CC-BY Scaler / Cdang


https://en.wikipedia.org/wiki/Trapezoidal_rule
https://commons.wikimedia.org/wiki/File:Integration_num_trapezes_notation.svg

Example: Compute the AP for a given query

For this query and the following results, plot the precision/recall graph and
compute the average precision.







Case 1: assume |e,| = 3

Recall axis:
e Values domain: [0, 1]
e |e|+1 possible values
e FEvenly spaced
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1 - Precision axis:
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Check the first result:
It it relevant?

0 Va % 1



Case 1: assume |e,| = 3

Check the first result:
It it relevant? YES
= Compute current precision:
1 relevant / 1 retrieved = 1
= Recall =1 relev. Ing expected =5
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Check the next result:

It it relevant?
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Case 1: assume |e,| = 3

Check the next result:

It it relevant? NO

= P@2 =1 relevant / 2 retrieved = -
= R@2 is unchanged

P A

1 o
0.9 -
0.8 -
0.7 -
0.6 -
05 N ‘
0.4 - f
0.3 -
0.2
0.1
0 | | |
0 2 % 1




Case 1: assume |e|

Check the next result:

It it relevant?
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Case 1: assume |e,| = 3

Check the next result:

It it relevant? YES

= P@3 = 2 relevant / 3 retrieved = %
= Add a point at next recall value (35)
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And we keep going...
P@4 =2/4=1/2
R@4 = unchanged




Case 1: assume |e|

And we keep going...

P@5=2/5=04
R@5 = unchanged
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And we keep going...
P@6 =2/6 = 1/3
R@6 = unchanged
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And we keep going...
P@7 = 2/7 =0.285...
R@7 = unchanged
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And we keep going...
P@8 =2/8=1/4
R@8 = unchanged

0.9 —
0.8
0.7 —
0.6 —
0.5 —
0.4 —
0.3
0.2 —
01




And we keep going...

P@9=3/9=1/3
R@9 =3/3=1
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It does not change the AP here...

P@10 = 3/10
R@10=3/3=1




And we are done!

A common approximation is to take
only the upper envelope of the curve...

But good libraries ggfor the full, exact computation. - W
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Case 2: what if |e| = 47

1. Adjust R values.
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Case 2: what if |e| = 47

1. Adjust R values.
2. P values do not change if k does not change.
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Case 2: what if |e| = 47

1. Adjust R values.
. P values do not change if k does not change.
3. Here, it would imply that we did not get all relevant results (very common in
practice) = we stop the curve before the 1
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ROC & others

[next lecture, more useful for classification]



Ground truthing issues

Do we have to annotate all images within a dataset for all our test queries?

No! Use “distractors”: samples that you know, for sure, not to be relevant to any
query.



