MLRF Lecture 04 J. Chazalon, LRDE/EPITA, 2021

IR evaluation

Lecture 04 part 03

How to evaluate a retrieval system?

We need a set of queries for which we know the expected results "Ground truth", aka "targets", "gold standard"...

To compare 2 methods, we need to use the same database and the same queries.

Many measures / indicators.

Core criterion: is a result relevant (binary classification)?

Precision and Recall

Used to measure the balance between

- Returning many results, hence a lot of the relevant results present in the database, but also a lot of noise
- Returning very few results, leading to less noise, but also less relevant results

Precision and Recall

Precision (P) is the fraction of retrieved documents that are relevant

 $Precision = \frac{\#(relevant items retrieved)}{\#(retrieved items)} = P(relevant|retrieved)$

Recall (R) is the fraction of relevant documents that are retrieved

 $Recall = \frac{\#(relevant items retrieved)}{\#(relevant items)} = P(retrieved|relevant)$

	Relevant	Nonrelevant
Retrieved	true positives (tp)	false positives (fp)
Not retrieved	false negatives (fn)	true negatives (tn)

$$P = tp/(tp+fp)$$

$$R = tp/(tp+fn)$$

F-measure

F measure is the weighted harmonic mean of precision and recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \quad \text{where} \quad \beta^2 = \frac{1 - \alpha}{\alpha}$$

where $\alpha \in$ [0, 1] and thus $\beta^{_2} \in$ [0, ∞]

The default value is $\beta = 1$, leading to:

$$F_{\beta=1} = \frac{2PR}{P+R}$$

How to evaluate a <u>ranked</u> retrieval system?

When results are ordered, more measures are available.

Common useful measures are:

- The precision-recall graph and the mean average precision
- The ROC graph and the area under it (AUC)

Precision-recall graph

Plotting the points

For a given query For each result

if the result is relevant
set x = #tp / #expected
set y = #tp / #returned

1.0 0.8 Precision 0.6 0.4 0.2 0.0 0.2 0.8 0.0 0.4 0.6 1.0 Recall

The recall always increases while we scan the result list.

Equal Error Rate and Average Precision

Note: the PR graph does not provide a total order ⇒ need more indicators

Mean average precision at k — mAP (@k)

Mean of the average precision of several queries, when considering **k results for each query**

 \Rightarrow makes evaluation tractable with very large databases

Computed for each query using the <u>trapezoid technique</u> \rightarrow

General algorithm:

For each query q_i in the test set with expected results e_i: Retrieve the list ret_i of k best results Compute the AP ap_i given e_i and ret_i
Compute the mean AP over all ap_i

Example: Compute the AP for a given query

For this query and the following results, plot the precision/recall graph and compute the average precision.

Check the first result: It it relevant?

R

Check the **first** result: It it relevant? YES 6 ⇒ Compute current precision: 1 relevant / 1 retrieved = 1 \Rightarrow Recall = 1 relev. /3 expected = $\frac{1}{3}$ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 $\frac{1}{3}$ $\frac{2}{3}$ N

R

Check the **next** result: It it **relevant**?

Check the **next** result: It it **relevant**? **NO** ⇒ P@2 = 1 relevant / 2 retrieved = ½ ⇒ R@2 is unchanged

Check the **next** result: It it **relevant**?

Check the next result: It it relevant? YES \Rightarrow P@3 = 2 relevant / 3 retrieved = $\frac{2}{3}$ \Rightarrow Add a point at next recall value ($\frac{2}{3}$)

And we keep going... P@4 = 2/4 = 1/2R@4 = unchanged

And we keep going... P@5 = 2/5 = 0.4R@5 = unchanged

Ρ

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

And we keep going... P@6 = 2/6 = 1/3R@6 = unchanged

Ρ

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

And we keep going... P@7 = 2/7 = 0.285...R@7 = unchanged

Ρ

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

And we keep going... P@8 = 2/8 = 1/4R@8 = unchanged

Ρ

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

And we keep going... P@9 = 3/9 = 1/3 R@9 = 3/3 = 1

It does not change the AP here... P@10 = 3/10 R@10 = 3/3 = 1

Case 1: assume $|e_i| = 3$

And we are done!

A common approximation is to take only the upper envelope of the curve...

2

3

8

5

10

Case 2: what if $|\mathbf{e}_i| = 4$?

1. Adjust R values.

Case 2: what if **|e_i| = 4?**

- 1. Adjust R values.
- 2. P values do not change if **k** does not change.

Case 2: what if **|e_i| = 4?**

- 1. Adjust R values.
- 2. P values do not change if k does not change.
- 3. Here, it would imply that we did not get all relevant results (very common in practice) ⇒ we stop the curve before the 1

ROC & others

[next lecture, more useful for classification]

Ground truthing issues

Do we have to annotate all images within a dataset for all our test queries?

No! Use "distractors": samples that you know, for sure, not to be relevant to any query.