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Image descriptors: Overview

Different sizes and contents = Different kind of descriptors
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Texture descriptors
Lecture 04 part 04



What are they useful for?

To describe (then match, group, classify...) relatively large and regular images
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A tentative taxonomy (of a selection of approaches)

Statistical
- GLCM (Grey Level Co-occurrence Matrix)
- Fractal dimension

Frequency-based
- Fourier transforms
- Difference-of-Gaussian filter
- Gabor filters
- Wavelets

Model-based
- Markov Random Fields
- Convolutional Neural Networks



Statistical approaches



GLCM (Grey Level Co-occurrence Matrix)

From an image patch of grayscale image (usually 16 levels), compute the matrix

Zz{l, if I(x,y) =iand I(z + Az,y+ Ay) = j
o 0, otherwise

Where, for each cell (i,j) we add 1 when the pixel I(x,y) has value i and the pixel
l(x+AX, y+Ay) has value j.
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Robert M Haralick; K Shanmugam; lts'hak Dinstein (1973). "Textural Features for Image Classification". IEEE Transactions on Systems, Man, and Cybernetics. SMC-3 (6): 610-621.



http://haralick.org/journals/TexturalFeatures.pdf

Grey level co-occurrence matrix features
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https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_glcm.html



Input image

Fractal dimension

“How a smaller version of myself is equal to myself?”

Method of Range:

- Take 2 windows of size /,=9 and [,=5, centered on the ﬁ
same pixel.

- Compute the brightness range r, for window 1 and r,
for window 2.

- Estimate the fractal dimensionas ) = —1 2
In 11 —In [2 : :
D: ratio between the difference of the ranges in each Image showing
window and the proportion of the length of each window, in places where D is

above a global
log scale. threshold.

Marrén. https://doi.org/10.4236/jsip.2018.93014



Local Binary Patterns

LBP looks at points surrounding a central

point and tests whether the surrounding
points are greater than or less than the
central point (i.e. gives a binary result).
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T. Qjala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans. Pattern Anal. Machine10

Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002.
https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_local_binary pattern.html#sphx-glr-auto-examples-features-detection-plot-local-binary-pattern-py



Frequency-based approaches



Fourier transform

For each possible frequency, sum pixel contributions from original image.
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The exponent term can be viewed as the filter for the target frequency over the
spatial image.

Next: values of the exponent term (only) for various Kk, .

https://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm
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Real, k=0, I=0

Values of the exponent
term (only) for various Kk, I.
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Fourier transform

https://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm

Sonnet for Lena
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Hard to match with surna of discrete cosines.
And for your lips, sensual and tactual

Thicterns Craya found not the proper fractal.
And while three setbacks are all quile scvers

T might have fixed them with hacks bere or therr
But when Sitern Look sparkle from your eyes

1 aaid, 'Damn sl thie. I' just digitise."

Thomas ColiAurst
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Difference-of-Gaussian filter

Take a image.

Blur it.

Take the difference.
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Difference-of-Gaussian filter

It is a band-pass filter.

o~ (@ +17)/(2K0?)

1 2,.9 2 1|
'y kol y) = I % e~ (@ +y°)/(20%) _ T &
Ko (2, Y) 2mo? 2w K202
1 | 2, .2 2 |
Ko (2, Y) (27r02 2w K202

Difference of Gavssians

e~ (=2 +?)/(2K20%) )

16



Difference-of-Gaussian filter

Intuition
- Gaussian (g) is a low pass filter
- (g*1) low frequency components
- | - (g*l) high frequency components
- g(o,)*I - g(o,)*l « Components in between these frequencies
- 9(0,)1- 9(0,)*1 = [9(0,) - 9(0,)]*
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Difference-of-Gaussian filter

Many applications.

Indicates the “size” of the “stable” region around a pixel at a given freq. band.




/

Gabor filters

Gabor filters allow to select both a frequency band and an orientation.
(i+5°)
Gc.li,j] = Be 2? cos(2mf(icos+ jsinf))
(i2+5°)

Gli,j] = Ce 2 sin(2mf(icos@ + jsinf))

B and C: scaling factors

6=45°

f: frequency selection original
0: angle selection

0 size of the image region being analysed

superposition



Wavelets

Much like Gabor filters, with potentially more complex patterns.

It turns the image into a grid of coefficients based on an orthogonal basis of small
finite waves, or “wavelets”.

(Used in JPEG-2000.)
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https://en.wikipedia.org/wiki/User:JonMcLoone
https://en.wikipedia.org/wiki/

Learning-based approaches



Markov Random Fields
Convolutional Neural Networks

Learn to produce a high response for some texture samples / patches.

The filter bank is not orthogonal in general, but rather overcomplete, ie the original
signal can be recovered using a small subset of filters.

Highly tunable, but a good random sampling over the possible patch patterns can
gives good results too.

(Not covered in this course.)
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