MLRF Lecture 05 J. Chazalon, LRDE/EPITA, 2021

Image classification overview

Lecture 05 part 02

Instance recognition vs Class recognition

Instance recognition:

Re-recognize a known 2D or 3D rigid object, potentially being viewed from a novel viewpoint, against a cluttered background, and with partial occlusions.

Ex: practice session 3

Class recognition:

Recognize any instance of a particular general class such as "cat", "car", or "bicycle".

Aka category-level or generic object recognition.

More challenging.

This lecture and next practice session.

D. Lowe 2004

Our focus today (and for next practice session)

Image classification

Aka category-level recognition

Aka generic object recognition

Aka category recognition

Aka "is this a muffin or a chihuahua"?

> "Toy frog"

"Can eat"

"Cannot eat"

Pipeline overview

Today's focus

This is a **<u>supervised</u>** machine learning task.

 \Rightarrow We need a dataset with <u>samples</u> and <u>target values</u> (ground truth)

Images will be represented as **BoVW vectors** of fixed size.

MUF	MUF	MUF	MUF	
MUF	MUF		MUF	
СНІ	СНІ	СНІ	СНІ	
СНІ	СНІ	СНІ	СНІ	

Images will be represented as BoVW vectors of fixed size.

This is a very usual data representation for a classification problem.

Classifier inputs = "samples" with "features" / Classifier outputs = "labels"

Now we just need to select an appropriate method, prepare our data, run some training, test the results, adjust some parameters, compare approaches, display results...

Data preparation

NumPy formatting

one sample

X =

					1
1.1	2.2	3.4	5.6	1.0	
6.7	0.5	0.4	2.6	1.6	
2.4	9.3	7.3	6.4	2.8	
1.5	0.0	4.3	8.3	3.4	
0.5	3.5	8.1	3.6	4.6	
5.1	9.7	3.5	7.9	5.1	
3.7	7.8	2.6	3.2	6.3	
					1

one feature

outputs / labels

Training/validation/test separation

More on that later in this lecture.

For now just remember that:

- You <u>cannot estimate</u> the <u>generalization performance</u> of your predictor/estimator/classifier on its <u>training set</u> (everyone agrees?)
- So you need to keep some samples aside for later evaluation Do not use them during training!
- "Validation" another separate set used to tune parameters, intermediate eval.

Dataset

Training

12

Other "funny" things to do IRL

Collect data

Clean data

Check data

Clean again

Annotate

Check

Compute / convert / scale features...

"Data curator" is a new job title.

Manual annotation drives crazy.

Many "data something" jobs.

Feature selection

Feature selection

Consists in dropping some data columns.

Can help later stages:

- Less data to process
- Better properties (like decorrelated features, etc.)

Which columns?

- Hard problem in general
 - Because features may be informative as a group
- Some simpler and helpful techniques:
 - Remove features with low variance
 - Dimensionality reduction techniques are not exactly feature selection, but can have a similar effect