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More theory on ML
Lecture 05 part 03
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What is our goal?
Given samples (described by features) and true labels,

find a good function
which will correctly predict labels 

given new data samples

Problems:
- Which family for our function?
- What is “good”?
- How to train / find such function?

Let us step back a little bit.
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What are the sources of error?
Noise

- Your data is not perfect. (or “Every model is wrong.”)
- Even if there exist an optimal underlying model, the observations are 

corrupted by noise (e.g. multiple y for a given x).
- Even the optimal solution could be wrong.

Bias
- You need to simplify to generalize.
- You classifier needs to drop some information about the training set to 

have generalization power.
- The set of solutions explored does not contain the optimal 

solution.

Variance
- You have many ways to explain your training dataset.
- It is hard to find an optimal solution among those many possibilities.
- If we draw another training set from the same distribution, we 

would obtain another solution. 4

Figures from Bradski & Kaehler, 
Learning OpenCV, O’Reilly 2008



Two big issues
Under-fitting

- Caused by bias
- Your model assumptions are too strong for the data, so 

the model won’t fit well.

Over-fitting
- Caused by variance
- Your algorithm has memorized the data including the 

noise, so it can’t generalize.

(plus performance limit: due to noise and model capacity) 5

Figures from Bradski & Kaehler, 
Learning OpenCV, O’Reilly 2008



The theory
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Bias (statistical definition)
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From Wikipedia

Let T be a statistic used to estimate a parameter θ. 

If E[T] = θ + bias(θ) then bias(θ) is called the bias of the statistic T, where E [T] 
represents the expected value of the statistics T.

If bias(θ) = 0, then E[T] = θ. So, T is an unbiased estimator of the true parameter, 
say θ. 

https://en.wikipedia.org/wiki/Bias_(statistics)


Expected Risk
Let Dn be a training set of examples zi drawn independently from an unknown 
distribution p(z)

We need a set of functions F. Example: linear functions f(x) = a · x + b

We need a loss function L(z, f). Example: L((x, y), f ) = (f (x) − y)²

The Expected Risk, i.e. the expected generalization error, is:

But we do not know p(z), and we cannot test all z!
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From S. Bengio



Empirical Risk
Because we cannot measure the real Expected Risk, we have to estimate it 
using the Empirical Risk:

(Dn is our dataset)

And our training procedure then relies on Empirical Risk Minimization (ERM):

And the training error is given by:
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From S. Bengio

Integral to sum…

Pick the best on 
the dataset.

Empirical risk of the 
best found, evaluated 
on our dataset.



Does this make sense?
The empirical risk is an unbiased estimate of the risk, i.e. the more test 
samples we have, the more accurate our estimate is, under iid assumption.
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Estimate the Expected Risk with the Empirical Risk
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For a given capacity, using more samples to 
train and evaluate your predictor should make 
your Empirical Risk converge toward the best 
possible Expected Risk, if the ERM is consistent 
for F, given your training set Dn.

From S. Bengio

Fixed h



But the training risk is biased
The training error is a biased estimate of the risk, i.e. the solution f★(Dn) found by 
minimizing the training error is better on Dn than on any other set D'n drawn from 
p(z).

However, under certain assumptions, the difference between the expected and the empirical risks 
can be bounded. This is an important result from the work of Vapnik [Vapnik (2000). The nature of 
statistical learning theory. Springer.].

Note that the empirical risk on the test set is an unbiased estimate of the risk.
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From S. Bengio

Expected, on training set Empirical, on training set

https://link.springer.com/book/10.1007%2F978-1-4757-3264-1
https://link.springer.com/book/10.1007%2F978-1-4757-3264-1


The difference between Expected Risk and 
Empirical Risk is bounded but depends on the 
capacity of F (set of possible functions).

There is an optimal capacity for a given number 
of training samples n.

Estimate the Expected Risk with the Empirical Risk
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For a given capacity, using more samples to 
train and evaluate your predictor should make 
your Empirical Risk converge toward the best 
possible Expected Risk, if the ERM is consistent 
for F, given your training set Dn.

From S. Bengio

Fixed nFixed h



Capacity
The capacity h(F) is a measure of its size, or complexity (or VC dimension).

For classification, the capacity of F is defined by Vapnik & Chervonenkis as 
the largest n 
such that there exist a set of examples Dn 
such that one can always find an f ∈ F 
which gives the correct answer for all examples in Dn,
for any possible labeling.
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From S. Bengio
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Capacity
Consider for F the characteristic functions of rectangles. We can find families of 1, 
2, 3 or 4 points which can be labelled arbitrarily:
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From F. Fleuret



Capacity
However, given a family of 5 points, if the four external points are labelled 1 and 
the center point labelled 0, than no function from F can predict that labelling. 
Hence here D = 4.
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The Bias-Variance Dilemma
Intrinsic dilemma: when the capacity h(F) grows, the bias goes down, but the 
variance goes up!
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From S. Bengio



Look for an optimal balance
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Decomposing the bias-variance-error for MSE
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For a regression problem with a mean square loss, we have the following 
decomposition. Let Y = f(X) + ϵ, with ϵ ~ N(0, σϵ²) and fD(X) an estimator of f(X), 
learned over the training set D. The error at a particular point X = x0 is:

Given that
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In practice
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In practice: Empirical Risk and Expected Risk
Measure train and test error.

Use hold-out sets, cross-validations, etc. to get a test error.

Train error: Empirical Risk.
⇒ Can my model learn something (by heart)?

Test error: Coarse estimate of the Expected Risk.
⇒ Can my model generalize to unseen data?
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Detect under-fitting and over-fitting
High bias: This learning curve shows high error 
on both the training and test sets, so the 
algorithm is suffering from high bias.

Even training error is unacceptably high.
Small gap between training and test error. 23

High variance: This learning curve shows a 
large gap between training and test set errors, 
so the algorithm is suffering from high variance.

Test error still decreasing as m increases. 
Suggests larger training set will help.

Large gap between training and test error.Illus. from Andrew Ng



Some solutions / hints
From Bradski & Kaehler, Learning OpenCV, 
O’Reilly 2008 ↓

From C. Aggarwal, Data Mining: The Textbook,  
Springer 2015 → 24



How to get started?
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1. Get enough data in the right format from your customer (hard)
2. Check and split data (boring but mandatory)
3. Agree on a loss function and minimum performance goal (moderate)
4. Try to overfit a predictor on some samples (train set loss), increase 

complexity only if needed (capacity check)
5. Fit on more data (more = better)
6. Check for overfitting (val set loss) and add regularization if needed
7. Evaluate performance thoroughly (test set loss) (reports, identify failure 

cases, etc.)
8. Do some hyper-parameter optimization, try other models…$
9. …


