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Introduction and Context
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What is Common Lisp?

I Multi-paradigm: programming language

I ... allow the programmer to express himself.

I Functional, procedural, object-oriented.

I Meta-programming: Meta-object protocol, macros.

I Dynamic approach to typing and reflection
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Regular Sequences of Heterogeneous Types

I We can declare types of certain data.
I (declare (type integer X) (type list Y)) ; YES

I We can use arbitrary, heterogeneous sequences.

I (:a 1 1.0 :b "a" "an" "the" :c 2 22 222 :d 2.3 ) ; YES

I However, it is difficult to combine.

I (declare (type list[integer] X)) ; NO!
I (declare (type regular -pattern X)) ; NO!

I We propose to extend the type system of Common Lisp.

I We introduce RTE, regular type expressions, specifying heterogeneous
but regular sequences.
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Goal: Implement RTEs in Common Lisp

Vaguely: We want to efficiently detect whether a sequence of values matches
a regular pattern of types.

Precisely: Given a pattern, at compile-time, generate code, such that given a
sequence of values at run-time, we can determine whether the sequence
matches the pattern.
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Implementing RTE presents several challenges

1. The representation problem:
Representing rational type expressions in Common Lisp.

2. The decomposition problem:
Calculating the Maximal Disjoint Type Decomposition (MDTD).

3. The serialization problem:
Generating code without redundant type checks.
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Overview

Intro

Representation Problem

Pattern Matching

Decomposition Problem

BDDs

Serialization Problem

Conclusion
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Types, Sequences, and Typed Sequences in Common Lisp
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Quick intro to the Common Lisp Type System

A B

Type operations are set operations: membership, intersection, union,
complement, empty-set.
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Quick intro to the Common Lisp Type System

unsigned-byte

fixnum

integer

float

number
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Quick intro to the Common Lisp Type System

unsigned-byte

fixnum

integer

float

number

(typep -1 ’(or float (and integer (not unsigned-byte))))

→ true
(subtypep ’(and integer fixnum) ’(not number))

→ false
(subtypep ’(and float fixnum) nil)

→ true
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We’d like to recognize sequences with regular patterns.
( 1 2.3 9.3 3 1.5 6.5 4.8 5 2 2.3)
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We’d like to recognize sequences with regular patterns.
( 1 2.3 9.3 3 1.5 6.5 4.8 5 2 2.3)

I We generalize string-based regular expressions to arbitrary sequences.

I To match a string like: "iFFiFFFiiF",

I ... we use a RE such as: (i · F ∗)+,

I ... which has surface syntax: "(iF*)+".

10 / 54



We’d like to recognize sequences with regular patterns.
( 1 2.3 9.3 3 1.5 6.5 4.8 5 2 2.3)

I We generalize string-based regular expressions to arbitrary sequences.

I To match a string like: "iFFiFFFiiF",

I ... we use a RE such as: (i · F ∗)+,

I ... which has surface syntax: "(iF*)+".

We propose Rational Type Expressions (RTEs)

I Rational type expression: ( integer · float ∗)+

I We need a surface syntax.
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We think this:(
symbol ·number ? ·(ratio∗∨float+)

)
∧ t · number · number

And we write this:

( : and ( : c a t symbol
( : ? number )
( : o r ( : ∗ r a t i o )

(:+ f l o a t ) ) )
( : not ( : c a t t number number ) ) )

Support for :and, :not, :?, and :+ is sometimes referred to as extended
rational expressions. We don’t distinguish extended and ordinary RE.
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Using Surface Syntax

With the type definition (rte ...) we can use rational type expressions
just like any other type in the language.

( de fun s e t− a t t r i b u t e s ( o b j e c t a t t r )
( d e c l a r e ( type ( r t e ( : ∗ ( : ca t keyword number ) ) ) ; <−− RTE

a t t r ) )
( s e t f ( a t t r i b u t e s o b j e c t ) a t t r ) )

( d e f t y p e p l i s t ( type )
`( r t e ( : ∗ ( : ca t keyword , type ) ) ) ) ; <−− RTE

( d e f c l a s s po lygon ( )
( ( c o l o r : t ype rgb )
( p o i n t s : t ype ( r t e ( : ∗ ( : ca t f ixnum r e a l ) ) ) ) ) ) ; <−− RTE
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Efficient Pattern Matching Based on Types
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Does:
(a 1 1.0 b "a" "an" "the" c 2 22 222 d 2.3)

follow the pattern: (symbol · (number + ∨ string +))+ ?

I.e. , is the sequence an element of the specified type?
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Does:
(a 1 1.0 b "a" "an" "the" c 2 22 222 d 2.3)

follow the pattern: (symbol · (number + ∨ string +))+ ?

I.e. , is the sequence an element of the specified type?

We construct a

deterministic

finite

automaton

(DFA).

We want to

support :not

and :and in

our DSL.

0 1

2

3
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number
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number
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string
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(a 1 1.0 b "a" "an" "the" c 2 22 222 d 2.3)

How does a DFA work as a type predicate?
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How does a DFA work as a type predicate?

(a 1 1.0 b "a"

"an" "the" c 2

22 222 d
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How does a DFA work as a type predicate?
Yes, it’s a match!

(a 1 1.0 b "a"

"an" "the" c 2

22 222 d 2.3)
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Code generated from (symbol · (number + ∨ string +))+

( tagbody
0

( u n l e s s seq ( r e t u r n n i l ) )
( t y p e c a s e ( pop seq )

( symbol ( go 1) )
( t ( r e t u r n n i l ) ) )

1
( u n l e s s seq ( r e t u r n n i l ) )
( t y p e c a s e ( pop seq )

( number ( go 2) )
( s t r i n g ( go 3) )
( t ( r e t u r n n i l ) ) )

2
( u n l e s s seq ( r e t u r n t ) )
( t y p e c a s e ( pop seq )

( number ( go 2) )
( symbol ( go 1) )
( t ( r e t u r n n i l ) ) )

0 1

2

3

symbol

number

string

symbol

number

symbol

string

3
( u n l e s s seq ( r e t u r n t ) )
( t y p e c a s e ( pop seq )

( s t r i n g ( go 3) )
( symbol ( go 1) )
( t ( r e t u r n n i l ) ) ) ) )
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Lambda-lists characterized by RTEs

A lambda-list in Common Lisp has a fixed part

(defun foo (a b)

...)

(lambda (a b)

...)
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Lambda-lists characterized by RTEs

A lambda-list in Common Lisp has a fixed part, an optional part, and
a repeating part.

(defun foo (a b &optional c &key x y)

...)

(lambda (a b &optional c &key x y)

...)
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Lambda-lists characterized by RTEs

A lambda-list in Common Lisp has a fixed part, an optional part, and a
repeating part part. Any of the variables may be restricted by
type declarations.

(defun foo (a b &optional c &key x y)

(declare (type integer a x)

(type string b c y))

...)

(lambda (a b &optional c &key x y)

(declare (type integer a x)

(type string b c y))

...)
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Lambda-lists characterized by RTEs

A lambda-list in Common Lisp has a fixed part, an optional part, and a
repeating part part. Any of the variables may be restricted by
type declarations.

(defun foo (a b &optional c &key x y)

(declare (type integer a x)

(type string b c y))

...)

(lambda (a b &optional c &key x y)

(declare (type integer a x)

(type string b c y))

...)

The set of valid argument lists for a function may be
characterized by an RTE.
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Calling an anonymous function.

( a p p l y ( lambda ( a b &key ( x t ) ( y ”” ) z )
( d e c l a r e ( t y p e f ixnum a b z )

( t y p e symbol x )
( t y p e s t r i n g y ) )

. . . body . . . )

DATA)
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Calling an anonymous function.

( a p p l y ( lambda ( a b &key ( x t ) ( y ”” ) z )
( d e c l a r e ( t y p e f ixnum a b z )

( t y p e symbol x )
( t y p e s t r i n g y ) )

. . . body . . . )

DATA)

For example:
DATA = (2 3 :y "a" :x ’b) ; YES
DATA = (2 3 :y "a" :x ’b :x 42 :y "hello" :y nil) ; YES
DATA = (2 3 :y "a" :x 42 :x ’b) ; NO
An invalid argument list will signal an error at run-time.
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QUESTION: Can we select an appropriate lambda-list matching DATA,
avoiding a run-time error?
We propose destructuring-case.

( d e s t r u c t u r i n g− c a s e DATA

; ; Case−1
( ( a b &op t i o n a l ( c ”” ) )
( d e c l a r e ( type i n t e g e r a )

( type s t r i n g b c ) )
. . . body . . . )

; ; Case−2
( ( a ( b c ) &key ( x t ) ( y ”” ) z )
( d e c l a r e ( type f ixnum a b c )

( type symbol x )
( type s t r i n g y )
( type l i s t z ) )

. . . body . . . ) )

I integer · string · string ?

I What is the rational
type expression?

I What is the DFA?
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RTE auto-generated from destructuring lambda-list

( : ca t ( : ca t f ixnum
( : and l i s t ( r t e ( : ca t f ixnum f ixnum ) ) ) )

( : and ( : ∗ ( : ca t ( : o r ( e q l : x ) ( e q l : y ) ( e q l : z ) )
t ) )

( : ca t ( : ∗ ( : ca t ( not ( e q l : x ) )
t ) )

( : ? ( : ca t ( e q l : x )
symbol
( : ∗ t ) ) ) )

( : ca t ( : ∗ ( : ca t ( not ( e q l : y ) )
t ) )

( : ? ( : ca t ( e q l : y )
s t r i n g
( : ∗ t ) ) ) )

( : ca t ( : ∗ ( : ca t ( not ( e q l : z ) )
t ) )

( : ? ( : ca t ( e q l : z )
l i s t
( : ∗ t ) ) ) ) ) )
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DFA corresponding to auto-generated RTE

0 1T1 2T2

3

T3

24T4

16
T5

4

T6

25T8

17

T10

5

T3
6

T4
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T5

T7

7
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13

T10

9
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8T9
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15T4
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18T5

T6
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T8

T7

23

T3

22T13

T6

T7

27
T3

26
T4

28

T5

T6

T7

T10

T1 = fixnum T2 = (and list (rte (:cat fixnum fixnum))) T3 = (eql :x) T4 = (eql :y)
T5 = (eql :z) T6 = symbol T7 = t T8 = string
T9 = (member :x :y) T10 = list T11 = (member :x :y :z)
T12 = (member :x :z) T13 = (member :y :z)
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DFA corresponding to auto-generated RTE

0 1T1 2T2

3

T3

24T4

16
T5

4

T6

25T8

17

T10

5

T3
6

T4

12

T5

T7

7

T8

13

T10

9
T5

8T9

10

T10
T7

11
T11
T7

15T4

14

T12

T8

T7

19

T3

20T4

18T5

T6
21

T8

T7

23

T3

22T13

T6

T7

27
T3

26
T4

28

T5

T6

T7

T10

Multiple transitions from states give rise to serialization problem.
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Rational Type Expressions (RTEs) with overlapping types

(number · integer) ∨ (integer · number)

We have non-deterministic (NFA). integer ⊂ number

0

1number

3
integer 2

integer

number

integer

number
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Rational Type Expressions (RTEs) with overlapping types

(number · integer) ∨ (integer · number)

We want deterministic (DFA).

0

1(and number (not integer))

3
integer 2

integer

number
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Maximal Disjoint Type Decomposition
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MDTD: decompose a set of types into disjoint types

I Given Ai as possibly overlapping regions,

I Calculate Xi as disjoint regions.

A1

A2
A3

A4

A5

A6

A7

A8

23 / 54



MDTD: decompose a set of types into disjoint types

I Given Ai as possibly overlapping regions,

I Calculate Xi as disjoint regions.
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MDTD problem: Baseline algorithm

Are there any disjoint sets?

A1

A2
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A4

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

Yes, A7 intersects no other set.
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MDTD problem: Baseline algorithm

So collect it into D : D = {A7}
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MDTD problem: Baseline algorithm

Select any intersecting pair of sets.
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MDTD problem: Baseline algorithm

E.g., A2. Does A2 intersect anything?
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MDTD problem: Baseline algorithm

Yes. A2 intersects A4.
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A8
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MDTD problem: Baseline algorithm

So calculate the standard partition of A2 and A4
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MDTD problem: Baseline algorithm

So remove {A2, A4} and add {A2 ∩ A4, A4 ∩ A2, A2 ∩ A4}.

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

Now, restart. Anything disjoint from everything else? No.

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

So select any intersecting pair.

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2

A5

A6

A7

A8

24 / 54



MDTD problem: Baseline algorithm

E.g., A4 ∩ A2. Does it intersect anything?

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

Yes, it intersects A5.

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

So calculate the standard partition of A5 and A4 ∩ A2.

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

The standard partition is {A5, ...}.

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

The standard partition is {...,A4 ∩ A2 ∩ A5}.

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

The standard partition is {A5, A4 ∩ A2 ∩ A5}.

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

So remove {A5, A4 ∩ A2} and add {A5, A4 ∩ A2 ∩ A5}.

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2 ∩ A5

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

So remove {A5, A4 ∩ A2} and add {A5, A4 ∩ A2 ∩ A5}.
A5 is in both sets. We can optimize, because A5 ⊂ A4 ∩ A2.

A1

A2 ∩ A4

A2 ∩ A4

A3

A4 ∩ A2 ∩ A5

A5

A6

A7

A8
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MDTD problem: Baseline algorithm

Continue the procedure until collecting all the pairwise disjoint sets.

X1

X2
X13

X3
X11

X10
X12

X4

X5

X6

X7

X8

X9
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MDTD problem: Baseline algorithm

Calculating all the colored regions as subsets of original overlapping sets.

X1

X2
X13

X3
X11

X10
X12

X4

X5

X6

X7

X8

X9
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List with set semantics

X3 X4 X6 X11

X5

=? =? =? =?

I Insertion into list with set semantics has linear complexity.

I Uniquify list has quadratic complexity.

I Type equivalence check is Xi ⊂ Xj ∧ Xj ⊂ Xi ?

I And prevents us from using a hash table to implement sets.

I This equivalence function is SLOW!
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MDTD result: type specifiers are explosive in size

X2 : ( and ( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )
( not ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) ) )

X3 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )

X10 : ( and ( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

27 / 54



Problems with baseline algorithm

I Explosive size of type specifiers

I O(n2) search on each iteration
I Set semantics for lists of types:

I To uniquify a list: O(n2).
I Equivalent types may appear in many different forms.

... No canonical form
I Slow set-equivalence algorithm.

I Many redundant checks

I subtypep may return don’t-know
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Strategies to Improving MDTD algorithm

We can do better.

I Optimize current algorithm (caching etc).

I Change the algorithm.

I Change the data structure representing the sets (CL types).
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ROBDD: Reduced Ordered Binary Decision Diagrams
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What is an ROBDD?

An ROBDD is an EQ-canonical representation for a Boolean function

¬(¬Z1 ∧ Z3) ∨ (Z1 ∧ ¬Z2 ∧ ¬Z3)

= (Z1 ∧ Z2) ∨ (Z1 ∧ ¬Z2 ∧ Z3) ∨ (¬Z1 ∧ ¬Z3)

=
(
(Z1∨¬Z2)∧(Z1∨Z3)∧(¬Z1∨Z2)∧(Z2∨Z3)

)
∨(¬Z1∧¬Z3)

Z1

Z2

Z3 Z3

T⊥
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What is an ROBDD?

An ROBDD is an EQ-canonical representation for a Boolean function
and an efficient evaluation procedure.

¬(¬Z1 ∧ Z3) ∨ (Z1 ∧ ¬Z2 ∧ ¬Z3)

= (Z1 ∧ Z2) ∨ (Z1 ∧ ¬Z2 ∧ Z3) ∨ (¬Z1 ∧ ¬Z3)

=
(
(Z1∨¬Z2)∧(Z1∨Z3)∧(¬Z1∨Z2)∧(Z2∨Z3)

)
∨(¬Z1∧¬Z3)

Given assignments for the Boolean variables, trace
through the BDD to obtain true or false.

Z1

Z2

Z3 Z3

T⊥

31 / 54



What is an ROBDD?

An ROBDD is an EQ-canonical representation for a Boolean function
and an efficient evaluation procedure.

To compute a DNF iteratively, follow all paths from
Z1 to >, noting the green and red arrows.

Z1→Z2→>︷ ︸︸ ︷
(¬Z1 ∧ ¬Z3)∨(Z1 ∧ ¬Z2 ∧ Z3) ∨ (Z1 ∧ Z2)

Z1

Z2

Z3 Z3

T⊥
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Creative Commons Attribution ShareAlike, Author: Georg Mittenecker

The BDD is the
Eierlegende
Wollmilchsau of
Boolean algebra.

BDDs have many
(many many..)
surprising features
and uses.

31 / 54



The same ROBDD also represents the corresponding CL type specifier and
type predicate procedure—no duplicate type checks.

(Z1 ∧ Z2) ∨ (Z1 ∧ ¬Z2 ∧ Z3) ∨ (¬Z1 ∧ ¬Z3)

( o r ( and Z1 Z2 )
( and Z1 ( not Z2 ) Z3 )
( and ( not Z1 ) ( not Z3 ) ) )

Z1

Z2

Z3 Z3

T⊥
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How efficient is ROBDD compression

I What is the worst-case size of an n-variable ROBDD?

I What is expected size?

We publish a journal article in ACM: Transactions on Computational Logic
entitled: A Theoretical and Numerical Analysis of the Worst-Case Size of
Reduced Ordered Binary Decision Diagrams.
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Shape of worst-case ROBDD of n Boolean variables?

Z1

Z2 Z2

Z3 Z3Z3Z3

Z4 Z4 Z4 Z4Z4 Z4Z4Z4

Z5 Z5 Z5Z5 Z5 Z5 Z5 Z5Z5Z5 Z5Z5Z5 Z5Z5Z5

Z6 Z6 Z6Z6 Z6 Z6Z6Z6 Z6 Z6Z6 Z6

T ⊥

Z7Z7

Worst-case ROBDD has exponential 2i expansion from top to the belt, and

double exponential 22i

decay from the belt to bottom.
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Z2 Z2

Z3 Z3Z3Z3

Z4 Z4 Z4 Z4Z4 Z4Z4Z4

Z5 Z5 Z5Z5 Z5 Z5 Z5 Z5Z5Z5 Z5Z5Z5 Z5Z5Z5

Z6 Z6 Z6Z6 Z6 Z6Z6Z6 Z6 Z6Z6 Z6

T ⊥

Z7Z7

Worst-case ROBDD has exponential 2i expansion from top to the belt, and

double exponential 22i

decay from the belt to bottom.

However, the worst-case size of the Common Lisp s-expression form of a type
specifier has exponential size, but no double-exponential decay.
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We can revisit MDTD algorithms using the ROBDD to represent type
specifiers.
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We must break the green line joining nodes 4 and 8.

Node4 = A4 ∩ A5 ∩ A2 Node8 = A8 ∩ A5

A2

⊥

A4

A5

T

A5

⊥

A8

T

We must calculate the standard partition:

A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5 (1)

A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5 (2)

A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5 (3)
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Extending ROBDDs for compatibility with CL type system

I Traditionally, ROBDDs assume the Boolean variables are independent.

I We propose extending ROBDDs to understand subtype relations.
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X8 = Node4 ∩ Node8 = A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5

A2

A5

A4

⊥

A8

T

A4

⊥

A8

T

Before After

We propose simplifying ROBDDs in the presence of subtypes.
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The standard partition is sometimes simpler.

Node4 ∧ Node8 Node4 ∧ ¬Node8 ¬Node4 ∧ Node8

Before

A2

⊥

A4

A5

A8

T

A2

⊥

A4

A5

A8

T

A2

A5

A4

⊥

A8

T

After

A4

A5

⊥

A8

T

A2

⊥

A4

A8

T

A4

⊥

A8

T
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Features of ROBDDs

I Refactor MDTD algorithms to use ROBDDs.

I ROBDDs are algorithmically easy to construct,

I ... especially in a language with garbage collection.

I Systematically manipulate Boolean operations: ∨, ∧, ⊕, ¬.

I Exponential in size, but simplify in presence of subtyping.

I Provide structural equivalence.
I Uniquify set becomes O(n log n) rather than O(n2).

I Serializable to if/then/else code; Will see shortly.
I Redundant checks optimized away.
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Optimizing type checking
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Recall the DFA problem?

RTE: (number · integer) ∨ (integer · number)

0

1(and number (not integer))

3
integer 2

integer

number

DFA: leads to inefficient generated code; redundant type checks.

X0 ( u n l e s s seq ( r e t u r n n i l ) )
( t y p e c a s e ( pop seq )

( i n t e g e r
( go X3 ) )

( ( and number
( not i n t e g e r ) ) ; d u p l i c a t e type check :−(

( go X1 ) )
( t ( r e t u r n n i l ) ) )
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We’d like to build an ROBDD to represent a typecase.

We know how to generate efficient code from an ROBDD.

I Convert typecase into Boolean expression

(typecase obj

(T.1 alternative-1)

(T.2 alternative-2)

...

(T.n alternative-n ))

I Transform alternatives with side-effects into predicates pretending
side-effect free.
alternative-1 → Pseudo.type-1
alternative-2 → Pseudo.type-2
...
alternative-n → Pseudo.type-n
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Transform typecase into type specifier

(typecase obj

(T.1 Pseudo.type .1) ; alternative-1

(T.2 Pseudo.type .2) ; alternative-2

...

(T.n Pseudo.type.n)) ; alternative-n

Now this pure Boolean expression can be converted to DNF.

(or (and T.1

Pseudo.type .1)

(and T.2 (not T.1)

Pseudo.type .2)

...

(and T.n

(not T.1) (not T.2) ... (not T.n-1)

Pseudo.type.n))
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Another bdd-typecase example

( bdd−typecase ob j
( ( and uns igned−byte

( not ( e q l 42 ) ) )
( d e l e t e− f i l e ) )

( ( e q l 42)
( r ename− f i l e ) )

( ( and number
( not ( e q l 42) )
( not f ixnum ) )

( d u p l i c a t e− f i l e ) )

( ( and ( not f ixnum )
uns igned−byte )

( l a u n c h−mi s s i l e s ) ) )

number

unsigned-byte

fixnum

(eql 42)
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number
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⊥

unsigned-byte

pt-rename pt-delete pt-duplicate

T
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Properties of bdd-typecase

fixnum

unsigned-byte

number

(eql 42)

⊥

unsigned-byte

pt-rename pt-delete pt-duplicate

T

I No duplicate type checks.

I No super-type checks.
I Missing Pseudo... implies

unreachable code.

I No missiles launched!

I Serializable to efficient code.
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Machine generated code with tagbody/go.

( tagbody
L1 ( i f ( typep o b j ' f ixnum )

( go L2 )
( go L4 ) )

L2 ( i f ( typep o b j ' uns igned−byte )
( go L3 )
( r e t u r n n i l ) )

L3 ( i f ( typep o b j ' ( e q l 4 2 ) )
( go P1 )
( go P2 ) )

L4 ( i f ( typep o b j ' number )
( go L5 )
( r e t u r n n i l ) )

L5 ( i f ( typep o b j ' uns igned−byte )
( go P2 )
( go P3 ) )

P1 ( r e t u r n ( r e n a m e− f i l e ) )
P2 ( r e t u r n ( d e l e t e− f i l e ) )
P3 ( r e t u r n ( d u p l i c a t e− f i l e ) ) )

fixnum

unsigned-byte

number

(eql 42)

⊥

unsigned-byte

pt-rename pt-delete pt-duplicate

T
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Back to the deterministic state machine

0

1(and number (not integer))

3
integer 2

integer

number

X0 ( u n l e s s seq
( r e t u r n n i l ) )

( bdd−typecase ( pop seq )
( i n t e g e r
( go X3 ) )

( ( and number
( not i n t e g e r ) )

( go X1 ) )

( t
( r e t u r n n i l ) ) )
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0

1(and number (not integer))

3
integer 2

integer

number

X0 ( u n l e s s seq
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( bdd−typecase ( pop seq )
( i n t e g e r
( go X3 ) )

( ( and number
( not i n t e g e r ) )

( go X1 ) )

( t
( r e t u r n n i l ) ) )

integer

pt-go-x3

number

T ⊥

pt-go-x2pt-return
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Back to the deterministic state machine

0

1(and number (not integer))

3
integer 2

integer

number

X0 ( u n l e s s seq
( r e t u r n n i l ) )

( bdd−typecase ( pop seq )
( i n t e g e r
( go X3 ) )

( ( and number
( not i n t e g e r ) )

( go X1 ) )

( t
( r e t u r n n i l ) ) )

X0 ( u n l e s s seq
( r e t u r n n i l ) )

( l e t ( ( o b j ( pop seq ) ) )
( tagbody

L0 ( i f ( typep o b j ' i n t e g e r )
( go P0 )
( go L2 ) )

L2 ( i f ( typep o b j ' number )
( go P1 )
( go P2 ) )

P0 ( go X3)
P1 ( go X1)
P2 ( r e t u r n n i l ) ) )
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Results and Conclusions
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Performance comparison using various algorithms
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MEMBER types

101 102 103 104

10−4

10−3

10−2

10−1

100

Real number ranges

101 102

10−4

10−3

10−2

10−1

100

Object System types

mdtd-bdd
mdtd-bdd-graph
mdtd-graph
mdtd-rtev2
parameterized-mdtd-bdd-graph

All plots show y = timecomputation vs. x = sizeinput × sizeoutput .
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ROBDD worst case size

N |ROBDDN |
1 3
2 5
3 7
4 11
5 19
6 31
7 47
8 79
9 143

10 271
11 511
12 767
13 1279
14 2303
15 4351

I Number of labels is number of nodes in the
ROBDD.

I Worst case code size for N type checks
(including pseudo-predicates), proportional to
full ROBDD size for N variables.

I But our ROBDD is never worst-case.
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Summary of Contributions

I Common Lisp types augmented to support regular type expressions

I ... extending rational language theory and ROBDDs
I ... to accommodate subtyping.

I Released open source versions of several Common Lisp packages
developed for the thesis. Available on Quicklisp and LRDE GitLab.

I Demonstrated use of BDDs to represent and compute with Common
Lisp types.

I Journal publication: ACM Transactions on Computational Logic, A
Theoretical and Numerical Analysis of the Worst-Case Size of Reduced
Ordered Binary Decision Diagrams.

I Published and particapted each year (3 times) in European Lisp
Symposium
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Donald Knuth’s new toy.

Binary decision diagrams (ROBDDs) are wonderful, and
the more I play with them the more I love them. For
fifteen months I’ve been like a child with a new toy,
being able now to solve problems that I never imagined
would be tractable... I suspect that many readers will
have the same experience ... there will always be more
to learn about such a fertile subject.
[Donald Knuth, Art of Computer Science, Volume 4 ]
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Q/A

Questions?

i
Code available at
https://gitlab.lrde.epita.fr/jnewton/regular-type-expression

and also (ql:quickload :regular-type-expression)
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Perspectives

I Better describe (or characterize) which MDTD algorithms are better for
which kind of input.

I ... Performance tests with minimal sized ROBDD structures.

I Improve s-expression based manipulation.

I subtypep can almost be implemented in terms of ROBDD operations.

I Extend destructuring-case, remove duplication, detect vacuity.
(ELS 2019?)

I Improve the decision procedure of PCL incorporating SICL technique of
inlining constants.

I Extend to other dynamic languages? Possible?
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Algebra of ROBDDs

(Z1 ∧ Z2 ∨ ¬Z1 ∧ ¬Z2) ∨ (Z1 ∧ ¬Z2 ∧ Z3)

= Z1 ∧ Z2 ∨ ¬Z1 ∧ ¬Z2 ∨ Z1 ∧ ¬Z2 ∧ Z3

Z1

Z2 Z3

T ⊥

∨
Z1

Z2

⊥

Z3

T

=

Z1

Z2

Z3

T

Z3

⊥
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Algebra of ROBDDs

Negation is easy, just swap the true/false nodes.

¬(Z1 ∧ Z2 ∨ ¬Z1 ∧ ¬Z2 ∨ Z1 ∧ ¬Z2 ∧ Z3)

= Z1 ∧ ¬Z2 ∧ ¬Z3 ∨ ¬Z1 ∧ Z3

¬

Z1

Z2

Z3

T

Z3

⊥

=

Z1

Z2

Z3

⊥

Z3

T
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Programmatic treatment of an RTE

By homoiconicity we treat the surface syntax as the internal representation.

(defun walk-rte (transform pattern)

(typecase pattern

((cons (member :or :and :not :cat :* :+ :?))

(cons (first pattern)

(mapcar (lambda (p)

(walk-rte transform p))

(rest pattern ))))

...

(t

(funcall transform pattern ))))
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Use tail-call optimized local functions, if the target
language does not support GOTO?

( l a b e l s ( ( L1 ( ) ( i f ( typep o b j ' f ixnum )
( L2 )
( L4 ) ) )

( L2 ( ) ( i f ( typep o b j ' uns igned−byte )
( L3 )
n i l ) )

( L3 ( ) ( i f ( typep o b j ' ( e q l 4 2 ) )
( P1 )
( P2 ) ) )

( L4 ( ) ( i f ( typep o b j ' number )
( L5 )
n i l ) )

( L5 ( ) ( i f ( typep o b j ' uns igned−byte )
( P2 )
( P3 ) ) )

( P1 ( ) ( r e n a m e− f i l e ) )
( P2 ( ) ( d e l e t e− f i l e ) )
( P3 ( ) ( d u p l i c a t e− f i l e ) ) )

( L1 ) )
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Common Lisp and types

I Type declarations in structured data and functions.

( d e f c l a s s c i r c l e ( )
( ( r a d i u s : t ype r e a l ) ; r e s t r i c t s l o t to c e r t a i n type
( c e n t e r : t ype cons ) ) )

( de fun cube−root ( x )
( d e c l a r e ( type r e a l x ) ) ; p romi se to c omp i l e r
( expt x 1/3))

I Arbitrary logic at run-time.
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Common Lisp and types

I Type declarations in structured data and functions.

I Arbitrary logic at run-time.

( de fun s t r i n g i f y ( data )
( t y p e c a s e data ; p r i o r i t y based type t e s t

( s t r i n g data )
( symbol ( symbol−name data ) )
( l i s t ( mapcar #' s t r i n g i f y data ) ) ) )
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With the type definition (rte ...) we can use the surface syntax anywhere
Common Lisp allows a type specifier.

(defclass polygon ()

(( color)

(points :type (rte (:* (:cat fixnum real ))))))

(defun fun-42 (float-plist)

(declare (type (rte (:+ (:cat keyword float )))

float-plist ))

...)
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Programmatic treatment of an RTE

By homoiconicity we treat the surface syntax as the internal representation.

(defun walk-rte (transform pattern)

(typecase pattern

((cons (member :or :and :not :cat :* :+ :?))

(cons (first pattern)

(mapcar (lambda (p)

(walk-rte transform p))

(rest pattern ))))

...

(t

(funcall transform pattern ))))
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Baseline Demo Step 1

We can observe the procedure execution textually as well.
The explosive size of the type specifiers becomes evident.

found 1 d i s j o i n t :
n e w−d i s j o i n t

D1
D = (

1 : A7
)
U = (

1 : A1
2 : A2
3 : A3
4 : A4
5 : A5
6 : A6
7 : A8

)
i n t e r s e c t i n g : U1 U2
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Baseline Demo Step 2

found 0 d i s j o i n t :
n e w−d i s j o i n t ( )
D = (

1 : A7
)
U = (

1 : ( and A1 ( not A2 ) )
2 : A2
3 : A3
4 : A4
5 : A5
6 : A6
7 : A8

)
i n t e r s e c t i n g : U1 U3
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Baseline Demo Step 3

found 0 d i s j o i n t :
n e w−d i s j o i n t ( )
D = (

1 : A7
)
U = (

1 : ( and ( and A1 ( not A2 ) ) A3)
2 : ( and A3 ( not ( and A1 ( not A2 ) ) ) )
3 : ( and ( and A1 ( not A2 ) ) ( not A3 ) )
4 : A2
5 : A4
6 : A5
7 : A6
8 : A8

)
i n t e r s e c t i n g : U1 U4
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Baseline Demo Step 4

found 2 new d i s j o i n t :
D1 D2

D = (
1 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )
2 : ( and ( and ( and A1 ( not A2 ) ) A3) A4)
3 : A7

)
U = (

1 : ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
2 : ( and A3 ( not ( and A1 ( not A2 ) ) ) )
3 : ( and ( and A1 ( not A2 ) ) ( not A3 ) )
4 : A2
5 : A5
6 : A6
7 : A8

)
i n t e r s e c t i n g : U1 U2
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Baseline Demo Step 5

found 0 new d i s j o i n t :
D = (

1 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )
2 : ( and ( and ( and A1 ( not A2 ) ) A3) A4)
3 : A7

)
U = (

1 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) )

2 : ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) )

3 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

4 : ( and ( and A1 ( not A2 ) ) ( not A3 ) )
5 : A2
6 : A5
7 : A6
8 : A8

)
i n t e r s e c t i n g : U1 U5
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Baseline Demo Step 6

found 1 new d i s j o i n t :
D1

D = ( 1 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) )

2 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )
3 : ( and ( and ( and A1 ( not A2 ) ) A3) A4)
4 : A7

)
U = ( 1 : ( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
2 : ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) )
3 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )
4 : ( and ( and A1 ( not A2 ) ) ( not A3 ) )
5 : A5
6 : A6
7 : A8

)
i n t e r s e c t i n g : U1 U2
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Baseline Demo Step 7

found 1 d i s j o i n t :
D1

D = ( 1 : ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) )

2 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) )

3 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )
4 : ( and ( and ( and A1 ( not A2 ) ) A3) A4)
5 : A7

)
U = ( 1 : ( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )
2 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )
3 : ( and ( and A1 ( not A2 ) ) ( not A3 ) )
4 : A5
5 : A6
6 : A8

)
i n t e r s e c t i n g :

U1 U2
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Baseline Demo Step 8

found 2 d i s j o i n t :
n e w−d i s j o i n t

D1 D2
D = ( 1 : ( and

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) ) )
2 : ( and

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

3 : ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) )

4 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) )

5 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )
6 : ( and ( and ( and A1 ( not A2 ) ) A3) A4)
7 : A7

)
U = ( 1 : ( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) )
2 : ( and ( and A1 ( not A2 ) ) ( not A3 ) )
3 : A5
4 : A6
5 : A8

)
i n t e r s e c t i n g :

U1 U2
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Baseline Demo Step 9

found 0 d i s j o i n t :
D (

1 : ( and
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) ) )

2 : ( and
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
3 : ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) )
4 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) )
5 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )
6 : ( and ( and ( and A1 ( not A2 ) ) A3) A4)
7 : A7

)

U (
1 : ( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )

( not
( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )
2 : ( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) )
3 : A5
4 : A6
5 : A8

)
i n t e r s e c t i n g :

U1 U4
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Baseline Demo Step 10

found 1 d i s j o i n t :
D1

D=8 U=4
D (

1 : A6
2 : ( and

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) ) )
3 : ( and

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

4 : ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) )

5 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) )

6 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )
7 : ( and ( and ( and A1 ( not A2 ) ) A3) A4)
8 : A7

)

U (
1 : ( and

( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )
( not

( and
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )
( not

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )

( not A6 ) )
2 : ( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) )
3 : A5
4 : A8

)
i n t e r s e c t i n g :

U1 U4
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Baseline Demo Step 11

found 2 d i s j o i n t :
D1 D2

D=10 U=3
D (

1 : ( and
( and

( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )
( not

( and
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )
( not

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )

( not A6 ) )
( not A8 ) )

2 : ( and
( and

( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )
( not

( and
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )
( not

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )

( not A6 ) )
A8)

3 : A6
4 : ( and

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) ) )

5 : ( and
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
6 : ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) )
7 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) )
8 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )
9 : ( and ( and ( and A1 ( not A2 ) ) A3) A4)
1 0 : A7

)
U (

1 : ( and A8
( not

( and
( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )

( not
( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not
( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )

( not A6 ) ) ) )
2 : ( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) )
3 : A5

)
i n t e r s e c t i n g :

U1 U2
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Baseline Demo Step 12

found 1 d i s j o i n t :
D1 D2

D (
1 : ( and

( and
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )
( not

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) )

( not
( and A8

( not
( and

( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )
( not

( and
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )
( not

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not

( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )
( not A6 ) ) ) ) ) )

2 : ( and
( and

( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )
( not

( and
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )
( not

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )

( not A6 ) )
( not A8 ) )

3 : ( and
( and

( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )
( not

( and
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )
( not A6 ) )

A8)
4 : A6
5 : ( and

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) ) )
6 : ( and

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

7 : ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) )

8 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) )

9 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )
1 0 : ( and ( and ( and A1 ( not A2 ) ) A3) A4)
1 1 : A7

)
U (

1 : ( and A8
( not

( and
( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )

( not
( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not
( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )

( not A6 ) ) ) )
2 : A5

)
i n t e r s e c t i n g :

U1 U2
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Baseline Demo Step 13

found 2 d i s j o i n t :
D1 D2

D (
1 : A5
2 : ( and

( and A8
( not

( and
( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )

( not
( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not
( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )

( not A6 ) ) ) )
( not A5 ) )

3 : ( and
( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) )
( not

( and A8
( not

( and
( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )

( not
( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not
( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )

( not A6 ) ) ) ) ) )
4 : ( and

( and
( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )

( not
( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )
( not A6 ) )

( not A8 ) )
5 : ( and

( and
( and ( and ( and A1 ( not A2 ) ) ( not A3 ) )

( not
( and

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) )

( not
( and

( and A2
( not

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

( not
( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )

( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) ) ) ) ) )
( not A6 ) )

A8)
6 : A6
7 : ( and

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) ) )
8 : ( and

( and
( and A2

( not
( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )

( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )
( not

( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) ) ) )

( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( not ( and A3 ( not ( and A1 ( not A2 ) ) ) ) ) ) )

9 : ( and ( and A3 ( not ( and A1 ( not A2 ) ) ) )
( not ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) ) ) )

1 0 : ( and ( and A4 ( not ( and ( and A1 ( not A2 ) ) A3 ) ) )
( and A3 ( not ( and A1 ( not A2 ) ) ) ) )

1 1 : ( and ( and ( and A1 ( not A2 ) ) A3) ( not A4 ) )
1 2 : ( and ( and ( and A1 ( not A2 ) ) A3) A4)
1 3 : A7

)
U (
)
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Baseline MDTD algorithm

Algorithm 1: Finds the maximal disjoint type decomposition

Input: A finite non-empty set U of sets
Output: A finite set D of disjoint sets

1 D ← ∅
2 while true do
3 D ′ ← {u ∈ U | u′ ∈ U \ {u} =⇒ u ∩ u′ = ∅}
4 D ← D ∪ D ′

5 U ← U \ D ′

6 if U = ∅ then
7 return D
8 else
9 Find α ∈ U and β ∈ U such that α ∩ β 6= ∅

10 U ← U \ {α, β} ∪ standard-partition
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Step 3 using s-expressions

Node Boolean Standard

expression partition

4

8

1

2 3

9

1 A1 ∩ A5 ∩ A6

2 A2 ∩ A4 ∩ A5

3 A3

4 A4 ∩ A5 ∩ A2 → A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5

8 A8 ∩ A5 → A8 ∩ A5 ∩ A4 ∩ A5 ∩ A2

9 A2 ∩ A4 ∩ A5

10 A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5

X5 A5

X6 A6

X7 A7
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Step 4 using s-expressions

Node Boolean Standard

expression partition

8

1

10

4

3

9 2

1 A1 ∩ A5 ∩ A6 → A1 ∩ A5 ∩ A6

∩ A8 ∩ A5 ∩ A4 ∩ A5 ∩ A2

2 A2 ∩ A4 ∩ A5

3 A3

4 A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5

8 A8 ∩ A5 ∩ A4 ∩ A5 ∩ A2 collect

9 A2 ∩ A4 ∩ A5

10 A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5

X5 A5

X6 A6

X7 A7
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Step 5 using s-expressions

Node Boolean Standard

expression partition

10

1

4

9

3

2

1 A1 ∩ A5 ∩ A6 → A1 ∩ A5 ∩ A6

∩ A8 ∩ A5 ∩ A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5 ∩ A4 ∩ A5 ∩ A2

∩ A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5

2 A2 ∩ A4 ∩ A5

3 A3

4 A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5

9 A2 ∩ A4 ∩ A5

10 A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5 collect

X5 A5

X6 A6

X7 A7

X8 A8 ∩ A5 ∩ A4 ∩ A5 ∩ A2
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Step 6 using s-expressions

Node Boolean expression

9

3

1

4

2

1 A1 ∩ A6

∩A8 ∩ A5 ∩ A4 ∩ A5 ∩ A2

∩A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5

2 A2 ∩ A4 ∩ A5

3 A3

4 A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5

9 A2 ∩ A4 ∩ A5

X5 A5

X6 A6

X7 A7

X8 A8 ∩ A5 ∩ A4 ∩ A5 ∩ A2

X10 A4 ∩ A5 ∩ A2 ∩ A8 ∩ A5
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Graph-based MDTD

7 2

3

4

1

8

5

6

A1

A2
A3

A4

A5

A6

A7

A8

Topology graph representing type hierarchy and intersections. We find
MDTD by controlled breaking and re-wiring of this graph.
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Step 0

Node Boolean Standard

expression partition

6

1

2

3

4

8

5

1 A1 → A1 ∩ A6

2 A2

3 A3

4 A4

5 A5

6 A6 A6 collect into D

8 A8

X7 A7
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Step 1

Node Boolean Standard

expression partition

5

4

8

1

2

3

1 A1 → A1 ∩ A6 ∩ A5

2 A2

3 A3

4 A4 → A4 ∩ A5

5 A5 A5 collect into D

8 A8 → A8 ∩ A5

X6 A6

X7 A7
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Step 2 using s-expressions

Node Boolean Standard

expression partition

2

43

1

8

1 A1 ∩ A5 ∩ A6

2 A2 → A2 ∩ A4 ∩ A5

3 A3

4 A4 ∩ A5 → A4 ∩ A5 ∩ A2

8 A8 ∩ A5

9 A2 ∩ A4 ∩ A5

X5 A5

X6 A6

X7 A7
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Summary of MDTD algorithms

I Baseline algorithm suffers from several problems.
I Set semantics
I Slow loops
I Explosive size

I Graph algorithm fixes some of these problems.
I Better loops
I Fewer redundant checks

I Still a problem:
I Set semantics of type specifiers.
I Type equivalence
I Initial graph construction is Ω(n2)

I We can consider a smarter data structure to represent types.
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After Step 2 using ROBDDs

Node type Node type

9

3

1

4

2

1

A1

A5

⊥

A6

T

9
A2

A4

⊥ T

2
A2

A4

⊥ T

10

A4

A5

⊥

A8

T

3
A3

T ⊥
X5

A5

T ⊥

4

A2

⊥

A4

A8

T

X6

A6

T ⊥

8
A4

⊥

A8

T

X7

A7

T ⊥
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