
Translation of an extended LTL into TBGA in Spot

Damien Lefortier

Technical Report no0807, June 2009
revision 2047

Spot is a model checking library centered around the automata approach, and can be used to verify prop-
erties expressed using LTL (Linear Temporal Logic) formulæ on models represented as TGBA (Transition-
based Generalized Büchi automata). The library offers two translation algorithms from LTL formulæ to
TGBA, one of the main stages of the approach. We present an extension of one of these algorithms to an
extended LTL where operators are represented by finite automata, allowing Spot to verify properties that
were not expressible before. We also present how we could add some features of PSL (Property Specifica-
tion Language) in our extension.

Spot est une bibliothèque de model checking qui permet de vérifier des propriétés exprimées en logique
temporelle à temps linéaire (LTL) sur des modèles représentés par des automates de Büchi généralisés
basés sur les transitions (TGBA). Spot propose actuellement deux algorithmes de traduction de LTL en
TGBA, une des étapes principales de l’approche automate. Nous présentons une nouvelle traduction en
TGBA d’une LTL étendue dont les opérateurs sont représentés par des automates finis, permettant ainsi
à Spot de vérifier des propriétés qui n’étaient pas exprimables auparavant. Nous présenterons aussi de
quelles façons nous pourrions ajouter certaines fonctionnalités de PSL (Property Specification Language)
à notre extension.

Keywords
extended linear temporal logic, ELTL, Büchi automaton, LaCIM algortihm, PSL

Laboratoire de Recherche et Développement de l’Epita
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 53 14 59 47 – Fax. +33 1 53 14 59 22
dam@lrde.epita.fr – http://www.lrde.epita.fr

dam@lrde.epita.fr
http://publications.lrde.epita.fr/FIXME-Seminar-Lefortier

2

Copying this document

Copyright c© 2008 LRDE.
Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

Contents

Introduction 4

1 Preliminaries 6
1.1 Linear Temporal Logics . 6

1.1.1 Definitions . 6
1.1.2 LTL . 7
1.1.3 ETL . 7

1.2 TGBA . 9
1.2.1 Definition . 9
1.2.2 Symbolic representation . 9

2 LaCIM Algorithm 11
2.1 LTL . 11
2.2 ELTL . 13

3 Implementation 15
3.1 AST . 15
3.2 Parser . 15
3.3 LaCIM . 17

4 ELTL & PSL 19
4.1 SERE operators . 19
4.2 Integration in ELTL . 20

Conclusion 22

Bibliography 23

Introduction

Model checking is a formal method for verifying finite-state concurrent systems. Typically, the
user provides a high-level representation of the system (the model) and the specification to be
checked. Specifications about the system are expressed as temporal logic formulæ, and efficient
algorithms are used to traverse the model and check if the specification holds or not. Compared
to traditional approaches based on simulation, testing, or deductive reasoning, model checking
has a number of advantages. In particular, it is automatic and produces a counter-example in
case of failure.

The Spot (Duret-Lutz and Poitrenaud, 2004) project aims at producing a flexible and efficient
model checking library centered around the automata theoretic approach (Vardi, 1986). In this
approach, an execution of the system is seen as an infinite word, where letters are successive
configurations of the system. Thus, the whole set of possible executions is seen as the set of
infinite words recognized by a finite automaton on infinite words (also called ω-automaton). In
this context, the verification is split as follow:

• The high-level model is translated into a state graph automaton whose language is the set
of all possible execution of the system modeled. (This step is not offered by Spot.)

• The formula to verify is also translated into an automaton whose language is the set of
all executions that would invalidate the formula. So this is actually the automaton for the
negated formula.

• The above two automata are combined, using a synchronized product, to create a third
automaton whose language is the intersection of the languages of the two automata.

• A last operation, called emptiness check, tells whether the language of the synchronized
product is empty. If it is not, it contains a sequence of execution that is allowed by the
model, but that does invalidate the formula: this is a counter-example. Otherwise the
formula holds for all possible execution of the modeled system.

Usually, Büchi automata, which define exactly the ω-regular languages, are used. In Spot we
use a special kind of ω-automata called Transition-based Generalized Büchi Automata (TGBA)
and a Linear Temporal Logic (LTL) formula is used to specify properties about the system.
Unfortunately, these two formalisms are not equivalent, and thus we cannot verify as many
properties as the model can hold. In fact, even the simple assertion that “the proposition p
holds at least in every other state on a path” is not expressible in LTL (Wolper et al., 1983), but
can be represented by the ω-regular expression (p>)ω .

Vardi and Wolper (1994) investigated extensions of LTL able to express all ω-regular lan-
guages, and we present formally one of these extensions and explain how we integrated it in
Spot, including an adaptation of the LaCIM translation algorithm to TGBA for this extended
LTL (the second stage of the approach given before) based on Couvreur (2000). This allows
Spot to verify properties that were not expressible before.

5 CONTENTS

Outline This paper is organized as follows. In Chapter 1, we introduce formally LTL and the
extended LTL (ELTL) we use, also provide an extensive definition of TGBA and how they can
be reprensented symbolically – which is going to be useful in Chapter 2 where the LaCIM trans-
lation algorithm is presented. Chapter 3 summarizes what has been done for Spot to support
ELTL formulæ, including benchmarks of our implementation of LaCIM for ELTL, and finally
Chapter 4 presents some interesting features of PSL that could be integrated in our ELTL.

Everything that will be presented is available in the latest development version of Spot which
can obtained using: http://lrde.epita.fr/~adl/git/spot.git/.
A snapshot in which all our modifications are included can also be found at the following loca-
tion: http://lrde.epita.fr/dload/spot/spot-snapshot.tar.gz

http://lrde.epita.fr/~adl/git/spot.git/
http://lrde.epita.fr/dload/spot/spot-snapshot.tar.gz

Chapter 1

Preliminaries

1.1 Linear Temporal Logics

Temporal logics have proved to be useful for specifying concurrent systems, because they can
describe the ordering of events in time without introducing time explicitly. In LTLs, properties
like eventually or never are specified using special temporal operators.

In Spot, we use LTLs to describe sequences of transitions between states of the system, i.e.
specifications about the system – as SPIN (Holzmann, 1990, 2003).

1.1.1 Definitions

A state of the system can be seen as the valuation of a set AP of atomic propositions. For
example, the state of a traffic light can be modeled by the three propositions r (red), o (orange),
and g (green) which tell whether the corresponding light is on: AP = {r, o, g}. The possible
executions of the system (state sequences) are infinite even though the systems we consider
have a finite number of states, therefore we use infinite words to represent them.

Definition 1 An infinite word over an alphabet Σ is a function σ : [[0, n[[→ Σ, where n ∈ N ∪ {ω} is
an ordinal number.

The ith letter of an infinite word σ is thus σ(i).

Definition 2 The suffix of an infinite word σ starting at the position i is the word denoted by σi such
that ∀j ∈ [[0, n− i[[, σi(j) = σ(i+ j).

We will only consider infinite words over Σ = 2AP, the power set of AP. An element of 2AP

represents a system configuration (a state) while an infinite word on 2AP describes the systems
evolution over the times.

Example 1 Let’s consider a traffic light model using three propositions to describe the state of the three
lights. AP = {r, o, g}, and 2AP is thus the set Σ = {rog, roḡ, rōg, rōḡ, r̄og, r̄oḡ, r̄ōg, r̄ōḡ}1. For
example, the infinite word r̄oḡ · r̄ōḡ · r̄oḡ · r̄ōḡ · r̄oḡ · r̄ōḡ · · · corresponds to a traffic light blinking orange,
and matches the ω-regular expression (r̄oḡ · r̄ōḡ)ω .

The meaning of a (E)LTL formula will always be determined with respect to an infinite word.

1Because an element of 2AP can be seen as a list of propositions, for example here {r, o} is equivalent to roḡ.

7 Preliminaries

1.1.2 LTL

Syntax LTL formulæ are defined inductively from temporal operators X (next) and U (until)
as follows:

• Every proposition p ∈ AP is a formula.

• If f1 and f2 are formulæ, then ¬f1, X f1, f1 ∧ f2 and f1 U f2 are formulæ.

Semantics Satisfaction of a LTL formula f w.r.t. the infinite word σ is denoted σ |= f .

• σ |= p iff p ∈ σ(0).

• σ |= ¬f1 iff not σ |= f1.

• σ |= f1 ∧ f2 iff σ |= f1 and σ |= f2.

• σ |= X f1 iff σ1 |= f1.

• σ |= f1 U f2 iff ∃i ≥ 0 such that σi |= f2 and ∀j ∈ [[0, i− 1]], σj |= f1.

Usual temporal operators F (eventually), G (always), and R (release) are defined as the fol-
lowing abbreviations:

F f1 = >U f1 (1.1)
f1 R f2 = ¬(¬f1 U¬f2) (1.2)

G f1 = ¬F¬f1 = ¬(>U¬f1) = ⊥R f1 (1.3)

Example 2 Here are some LTL formulæ based on the traffic light model.

1. The traffic light is not always red.
¬G(r ∧ ¬o ∧ ¬g)

2. Every orange configuration is followed by a red one.
G((¬r ∧ o ∧ ¬g)→ X(r ∧ ¬o ∧ ¬g))

3. The system is infinitely often in the green configuration.
G F(¬r ∧ ¬o ∧ g)

Because LTL and TGBA are not expressively equivalent, LTL might not be enough to specify
all the properties we would like about our model like “the traffic light blinks orange” here.

1.1.3 ETL

Vardi and Wolper (1994) described different extensions of LTL where the temporal operators
are defined by finite automata similarly to the extended LTL of Wolper et al. (1983).

Syntax The set of ELTL formulæ is defined inductively as follows:

• Every proposition p ∈ AP is a formula.

• If f1 and f2 are formulæ, then ¬f1 and f1 ∧ f2 are formulæ.

• If f1, . . . , fn are formulæ, then A(f1, . . . , fn) is a formula, for every nondeterministic finite
automaton (NFA) A = (Σ, Q, I, F, δ), where Σ = {>, f1, . . . , fn}, Q is the set a states,
I ⊆ Q is the set of initial sets, F ⊆ Q is the set of accepting states, and δ ⊆ Q × Σ × Q is
the transition relation. We call A(f1, . . . , fn) an automaton operator.

1.1 Linear Temporal Logics 8

Semantics By analogy with Section 1.1.2, we define the satisfaction of a ELTL formula.

• σ |= p iff p ∈ σ(0).

• σ |= ¬f1 iff not σ |= f1.

• σ |= f1 ∧ f2 iff σ |= f1 and σ |= f2.

• σ |= A(f1, . . . , fn) iff ∃ an accepting run r = s0, s1, . . . of A(f1, . . . , fn) over σ.

Depending on how we define the accepting runs of A(f1, . . . , fn), we get different versions
of the logic. The different possible acceptances are: repeating acceptance when some state s ∈ F
occurs infinitely often in r, finite acceptance when some state s ∈ F occurs in r, and looping accep-
tance when s is infinite. These three logics are independently as expressive as ω-regular expres-
sions, and thus as Büchi automata (Vardi and Wolper, 1994), but they do not provide the same
ease of expression of properties. Currently, Spot only recognizes ELTL with finite acceptance and
looping acceptance, the difference being made depending on whether a given automaton operator
has accepting states or not, and for now on we will only consider this ELTL.

Usual LTL temporal operators next, until, and globally can be defined by the ELTL automaton
operators on Figure 1.1 below. G is loop accepting while U and X are finite accepting.

0 1
g

f

(a) U(f, g)

0 1 2
> f

(b) X(f)

0

f

(c) G(f)

Figure 1.1: Automaton operators for LTL operators next, until and globally.

Example 3 The formula f = G F(¬r ∧ ¬o ∧ g) based on the traffic light model can be represented in
ELTL using automaton operators. Indeed, f = G(>U(¬r∧¬o∧ g)) in LTL (using Equation 1.1) which
is perfectly valid in ELTL considering the automaton operators for U and G given above.

Example 4 The assertion that “the proposition p holds at least in every other state on a path” can be
represented by the automaton operator Blink on Figure 1.2 and is thus expressible in ELTL.

0 2

1

¬p

p>

Figure 1.2: Automaton operator Blink(p) equivalent to (p>)ω .

9 Preliminaries

1.2 TGBA

Vardi (1986) introduced the automata theoretic approach to model checking of LTL formulæ based on
Büchi automata – a special kind of ω-automaton. A Büchi automaton accepts an infinite input
sequence iff there exists a run of the automaton which visits (at least) one of the final states
infinitely often.

1.2.1 Definition

Spot uses TGBA, which are Büchi-automata with labels on transitions, and multiple acceptance
sets of transitions. Compared to Büchi Automata with acceptance sets of states, TGBA allow
LTL formulæ to be represented more concisely.

Definition 3 A TGBA is a quintuplet A = (Σ, Q, I, F, δ), where Σ is an alphabet, Q is the set a states,
I ⊆ Q is the set of initial states, F is a finite set of acceptance conditions, and δ ⊆ Q×(2Σ\{∅})×2F×Q
is the transition relation. (Each transition is labeled by a set of acceptance conditions.)

The acronym TGBA (Transition-based Generalized Büchi Automaton) was first introduced
by Giannakopoulou and Lerda (2002). A TGBA accepts a run if it passes through (at least) one
transition of every set of accepting transitions infinitely often.

We use elements of 2Σ = 22AP
to represent labels which is legitimate because there is a bijection

between this set and the set of formulæ on AP. Indeed, {{a, b}, {a}} can be seen as (a∧b)∨(a∧¬b)
or also simply as a which may seem more natural for an automaton.

Example 5 The TGBA 〈2{a,b}, {q}, {q}, {f, g}, δ〉, where

δ =
{

(q, 2{a,b}, ∅, q), (q, {{a, b}, {a}}, f, q), (q, {{a, b}, {b}}, g, q)
}

accepts the same language that the LTL formula G F a ∧G F b.
The two acceptance conditions f and g, represented on Figure 1.3 by “ ” and “ ”, ensure that every

path passes infinitely often accepted by both of these transitions.

>

a

b

Figure 1.3: TGBA corresponding to G F a ∧G F b.

1.2.2 Symbolic representation

This section explains how a TGBA can be represented in a symbolic way—instead of the usual
explicit representation—using binary decision diagrams (BDDs) (Andersen, 1997; Bryant, 1992).
That is interesting because the LaCIM algorithm presented in Chapter 2 constructs directly a

1.2 TGBA 10

TGBA in a symbolic way from a (E)LTL formula. There is some advantages to have a symbol-
ical reprensentation (among others): first, it is less memory-consuming (because of BDDs) and
second, some algorithms can be directly applied on the Boolean functions reprensenting the
TGBA instead of doing a traversal in the explicit case.

A BDD is a data structure providing a canonical and efficient way to represent and manip-
ulate Boolean formulæ, i.e. a → (b ∧ c) and (¬a) ∨ (b ∧ c) have the same BDD representation.
They have been used in numerous symbolic model checking algorithms (Burch et al., 1990).

Symbolically the transition relation δ and the sets of states Q and I of a TGBA are seen as
Boolean formulæ (and efficiently represented as BDDs) by identifying states and acceptance
conditions by vectors of Boolean variables. We use as many Boolean variables as necessary
to have each state unique, and for each Boolean variable b we define another variable named
b′ which is used to represent destination states in transitions. We also use as many Boolean
variables as necessary to have each acceptance condition unique.

Example 6 The TGBA on Figure 1.4 has three states and one acceptance condition, so we need two
Boolean variables for the states (b1 and b2), and one for the acceptance condition (a1).

• The set of states is Q = b1b2 ∨ b̄1b2 ∨ b1b̄2,

• The set of initial states is I = b1b2,

• The transition relation δ is represented by two Boolean formulæ: T for the transitions and Acc for
the acceptance conditions which are as follows:
T = b1b2p1b

′
1b̄
′
2 ∨ b1b̄2p̄1b̄

′
1b
′
2 ∨ b̄1b2p2b

′
1b
′
2,

Acc = b1b2p1a1.

b1b2 b1b̄2

b̄1b2

p1

p̄1
p2

Figure 1.4: A TGBA where states are vectors of Booleans.

This symbolic representation completely defines a TGBA and can be used to do whatever we
want on it using BDD operations. For example on the example above, we can do the following:

• T ∧ I = b1b2p1b
′
1b̄
′
2 gives the outgoing transitions of the initial state,

• (∃b1∃b2∃p1(b1b2p1b
′
1b̄
′
2))[b1/b′1][b2/b′2] = b1b̄2 gives the destination state of the previous

transition, where f [x/y] denotes the Boolean formula obtained by substituting every free
occurrence of y by x in the Boolean formula f ,

• ∃b1∃b2∃p1((b1b2p1b
′
1b̄
′
2) ∧Acc = a1) gives its acceptance conditions.

Chapter 2

LaCIM Algorithm

Many articles deal with the construction of ω-automata from a LTL formula, and very good
states of the art can be found in Duret-Lutz (2007) and Wolper (2000).

In Spot, two translations of LTL formulæ into TGBA are implemented: FM (Couvreur, 1999)
and LaCIM (Couvreur, 2000). This algorithm also having an ELTL version we decided to im-
plement it in Spot, and the next two sections present that algorithm for both logics.

2.1 LTL

This version uses a set el(f) which characterises elementary formulæ of the LTL formula f, i.e.
subformulæ of f (including f itself) involved in the translation, and is defined as follows:

el(f) = {f} ∪ {gUh | gUh ∈ sub(f)} ∪ {g | X g ∈ sub(f)}, where sub(f) denotes the set of
subformulæ of f which is trivially defined inductively.

LaCIM is based the following assertion: it is possible to construct a TGBA representing f by
using states labeled by conjunction of elementary formulæ. More precisely, this TGBA can be
(naively) constructed from a LTL formula as follows:

1. Represent all possible states, i.e. those labeled by a conjunction of compatible elementary
subformulæ.

2. Represent all compatible transitions between states, i.e. states labeled by X g can only
have successors labeled by g, and states labeled by an gUh can have only successors
labeled by gUh (if g is true now) or labeled by anything (if h is true now).

3. Define initial states, i.e. those labeled by (at least) the input formula.

4. Define accepting transitions, i.e. those respecting the premises made by until operators.

A full example for the formula f = X(pU q), with the four steps detailed, is available next
page on Figure 2.1, where pU q is denoted g in order to simplify.

This algorithm is well suited for symbolical representations, and the following formally present
it as directly constructing a symbolical TGBA.

2.1 LTL 12

f ∧ ḡ

f ∧ g

f̄ ∧ g

f̄ ∧ ḡ

(a)

f ∧ ḡ f̄ ∧ g

f̄ ∧ ḡ

>

qp̄ ∧ q̄

p ∨ q

q̄

(b)

f ∧ ḡ f̄ ∧ g

f̄ ∧ ḡ

>

qp̄ ∧ q̄

p ∨ q

q̄

(c)

f ∧ ḡ f̄ ∧ g

f̄ ∧ ḡ

p ∧ q̄

q ∨ p̄
qp̄ ∧ q̄

p ∧ q̄

q

q̄

(d)

Figure 2.1: Construction of a TGBA for f = X(pU q).

The symbolical algorithm uses two Boolean variables for each elementary formula g: one
denoted Now[g] (which means that g is true at the current moment), and one denoted Next[g]
(which means that g is true at the next moment). It also uses one Boolean variable per accep-
tance condition (i.e. per subformula like gUh) denotedAcc[gUh]; those variables are then used
to construct the Boolean function Acc (this part is not explained here to simplify). Only Now
variables are used to represent the different states.

The resulting constructed TGBA from an LTL formula f is defined as follows:

• I = Now[f],

• T =
∧

g Uh∈el(f)

(Now[gUh]⇔ (φ(h) ∨ (φ(g) ∧Next[gUh]))) ∧
∧

X g∈el(f)

Now[g]⇔ φ(g),

• ∀gUh ∈ el(f), Acc[gUh] = ¬Now[gUh] ∨ φ(h).

The Boolean function φ being defined inductively as follows:

• φ(p) = p, for every proposition p ∈ AP.

• φ(¬f1) = ¬φ(f1)

• φ(f1 ∧ f2) = φ(f1) ∧ φ(f2)

• φ(X f1) = Next[f1]

• φ(f1 U f2) = Now[f1 U f2]

13 LaCIM Algorithm

The Boolean formulæ T constrains the possible transitions in order to respect the semantics of
X and U in LTL (step 2), while Acc constrains the acceptance conditions of the resulting TGBA
in order to respect the fact that for every subformula gUh, h has to be true at a present or future
moment (step 4).

Example 7 Here is the TGBA corresponding to the formula f = pU q.

• I = Now[f]

• T = Now[f]⇔ q ∨ (p ∧Next[f])

• Acc[f] = ¬Now[f] ∨ q

Figure 2.2 gives a graphic reprensentation of the automaton. But we do not need this explicit represen-
tation to perform operations on that automaton (as we have seen in Section 1.2.2).

Now[f] Now[f]

q

¬p ∧ ¬q

¬q

q

p ∧ ¬q

Figure 2.2: TGBA corresponding to f = pU q.

2.2 ELTL

This version is based on the same assertion as the previous one but elementary formulæ are
defined as follows:

el(f) = {As | A ∈ automatop(f), s ∈ Q}, where automatop(f) denotes the set of automaton
operators appearing in f and Q denotes the set of states of A.

The naive construction can be modified as follows:

2. Represent all compatible transitions between states, i.e. states labeled by As can only
have successors labeled by Ar (if r is a successor of s in A labeled by a formula f which is
true now) or labeled by anything (if there exists a final state r successor of s in A labeled
by a formula f which is true now).

4. Define accepting transitions, i.e those respecting premises made by automaton operators
(an accepting run has to be found).

2.2 ELTL 14

The symbolic algorithm uses four Booleans variables for each elementary formula As: one
denoted Now[As] (which means that the automaton operator A is currently in the state s), and
one denoted Next[As] (which means that the automaton operator A is in the state s at the next
moment), plus two denoted Now[Aαs] and Next[Aαs]. It also uses one Boolean per acceptance
condition (i.e. per automaton operator A) denoted Acc[A]. As in the LTL version, only Now
variables are used to represent the different states.

As we have seen in Section 1.1.3, there is (in the ELTL we consider) two possible acceptances
for automaton operators: finite and looping, and we have to ensure that accepting conditions are
well defined in both cases, i.e. to make sure that an accepting run is found. In the finite case,
when an accepting run is found, it is valid to be accepting afterwards because we are not trying
to find one anymore. In order to do that, we use the alpha variables defined above: we use
Now[Aαs] as meaning “we are not verifying As” which is always false but in states which have
a predecessor labeled by Ar where r is a final state. The looping case being defined dually.

The algorithm is thus slightly different depending on the acceptance: Acc variables are not
contrained in the same way, and the operator � used below is actually⇒ in the finite case and
⇐ in the looping case.

The resulting constructed TGBA from an LTL formula f is defined as follows:

• I = Now[f],

• T =
∧
As

(Now[As]⇔
∨

s
g−→r,r/∈F

(φ[g] ∧Next[Ar]) ∨
∨

s
g−→r,r∈F

φ[g])∧

........
∧
As

(Now[Aαs]�
∨

s
g−→r,r/∈F

(φ[g] ∧Next[Aαr]) ∨
∨

s
g−→r,r∈F

φ[g])∧

........
∧
As

(Acc[A]⇒
∧
s∈Q

(Next[Aαs]⇔ Next[As]),

For finite automaton operators:

• ∀A,Acc[A] =
∧
s∈F

(¬Now[Aαs] ∨
∨

s
g−→r,r∈F

φ[g]),

For looping automaton operators:

• ∀A,Acc[A] =
∧
s∈F

(Now[Aαs] ∨ ¬
∨

s
g−→r,s∈Q

φ[g]).

The Boolean function φ being defined inductively as follows:

• φ(p) = p, for every proposition p ∈ AP.

• φ(¬f1) = ¬φ(f1)

• φ(f1 ∧ f2) = φ(f1) ∧ φ(f2)

• φ(A) = Now[Ai], where i is the initial state of A. There is an abuse here (and before)
because we implicitly consider the arguments as part of the automaton operators but it
actually simplifies the notations.

Chapter 3

Implementation

The first part of the implementation was to integrate ELTL formulæ in Spot, which means first
write AST (Abstract Syntax Tree) classes to represent them in memory, and secondly a parser
that instanciates an AST from a formula given in a file or by a string, as it was already the
case for LTL formulæ. Then we could implement LaCIM for ELTL to make our extended LTL
actually usable in Spot. This is presented in the following sections. Spot is a C++ library, and
thus everything here might be considered from a C++ point of view.

3.1 AST

LTL and ELTL formulæ only differ in the way temporal operators are defined, and thus we
wanted to maximize sharing between LTL and ELTL ASTs.

A first idea was to define two specific ASTs which cannot be instanciated in any way to repre-
sent invalid formulæ. But in that case, it is not straightforward to share classes which are used in
both logics, for example the class representing binary operators in LTL cannot be used directly
because U is not per se a valid binary operator in ELTL (it’s an automaton operator). In order to
solve this, we wrote generic versions of existing LTL nodes that are also present in ELTL using
templates, which was a lot of rewriting. Furthermore, this brought us new issues: first, some
parts of the library were broken by the use of templates like the python wrapper which uses
SWIG. Second, considering that ELTL ASTs have one more node (for automaton operators), we
were not able to share visitors between both logics directly either. We finally decided to drop
this idea and to revert all modifications.

Instead, we decided to integrate our new node in the existing LTL AST hierarchy, which is
now able to reprensent both logics. We just had to handle the cases in visitors and algorithms
where a given node is not possible for either of the logics. Only few modifications where made
without breaking anything.

3.2 Parser

The parser reads formulæ from a file in a specific format, and is implemented using Bison in
the src/eltlparse directory of Spot. A few tests were also written in src/eltltest.

Define an ELTL formula means two things: first, define all automaton operators we want to
use and second, define the actual ELTL formula using those automaton operators. Automaton
operators are basically NFAs which alphabet is the set of all arguments of that operator plus

src/eltlparse
src/eltltest

3.2 Parser 16

the constant true (cf. Section 1.1.3), which means that we need to abstract the arguments in the
definition of automaton operators.

A ELTL file is split in two parts delimited by the ’%’ character: the definition of the automaton
operators and the ELTL formula. The Figure 3.1 below shows a simple file for the constant true
without any automaton operators defined. Comments are available using ‘#’.

Automaton operators definition.
%
ELTL Formula.
1

Figure 3.1: Simple file for the constant true.

Automaton operators Syntactically, an empty meaningless automaton operator is simply de-
fined by ‘A=()’, and used in the formula with ‘A()’. Transitions composed of a source state, a
destination state and a label need to be added to define actual automaton operators. States are
represented as integers and labels are either arguments of the automaton operator (denoted by
$0, $1, . . .) or the constant true. Thus, a transition from the state 0 to the state 1 labeled by the
first argument is defined by ‘0 1 $0’. A state s can be defined as accepting by adding the line
‘accept s’, in this case the operator is no longer finite accepting but loop accepting as discussed
in Section 1.1.3. A complete example is represented on Figure 3.2 below.

A=(
0 1 $0
1 2 true
0 0 $1
accept 2

)
%
A(f,g)

0 1 2

g

f >

Figure 3.2: ELTL formula file, with ‘A(f,g)’ representation.

The source state of the first transition becomes the initial state, and there is no default accept-
ing state. All binary operators can also be used in infix notation like U in Figure 3.4.

Aliases As it was already said, some temporal operators are defined as abbreviations of other
ones like F a = >U a (cf. Equation 1.1). It seems natural to be able to define them this way as
well in ELTL files. Thus we implemented the possibilty to define aliases of automaton operators
as shown on Figure 3.3.

ELTL formulæ All usual logical connectives can be used in a ELTL formula, and this part of
the parser is greatly inspired from the LTL parser of Spot. The only major difference is that
unary operators cannot be used without parenthesis around their argument, which would be
ambiguous for the ELTL parser considering the fact that operators’ names are unknown.

17 Implementation

Include In order to avoid having to redefine common temporal operators, as those present
in LTL, the parser provides an include directive. The ltl_defs file Figure 3.3 defines usual LTL
operators (cf. Figure 1.1) while Figure 3.4 uses some of them.

Finite acceptance.
X=(

0 1 true
1 2 $0
accept 2

)
U=(

0 0 $0
0 1 $1
accept 1

)

Looping acceptance.
G=(

0 0 $0
)

Aliases.
F=U(true, $0)
R=!U(!$0, !$1)
Weak=G(F($0))
Strong=G(F($0))->G(F($1))

Figure 3.3: Usual LTL temporal operators file: ltl_defs.

include ltl_defs
%
X(f) & f U g | Strong(f,h)

Figure 3.4: ELTL file using ltl_defs.

We could also have defined G as an alias (G = R(false, $0)) which would have given us
exactly the same translated TGBA for any ELTL formula using G.

3.3 LaCIM

LaCIM (ELTL) is implemented – like its LTL equivalent – as a const visitor but on ELTL formulæ
and is avalaible in src/tgbaalgos/eltl2tgba_lacim.hh.

Correctness LaCIM is a rather short but a very complex algorithm and to be sure that we
implemented it correctly, we included it with other translation algorithms in tests using LBTT in
Spot. Indeed, LBTT (Tauriainen and Heljanko, 2002) is a tool to check and compare translation
algorithms from LTL to Büchi automata. It works by comparing results of each algorithm with
each other on random formulæ, and by using them to model check randomly generated states

src/tgbaalgos/eltl2tgba_lacim.hh

3.3 LaCIM 18

spaces. It is very useful to find errors, and we managed to make our implementation correct
with it after a lot of rewriting.

Benchmarks The Table 3.1 below presents benchmarks between the different translation al-
gorithms available in Spot. LBTT was used to make those measurements on random formulæ
which were obtained by using the script src/tgbatest/spotlbtt.test of Spot.

Automaton Product
Algorithm states transitions states transitions Times
FM 657 1207 11377 48805 5.85
LaCIM (LTL) 1304 6364 25172 154034 6.24
LaCIM (ELTL) 24917 80642 336166 2317071 12.46

Table 3.1: Benchmarks between translation algorithms in Spot

Optimizations Clearly LaCIM for ELTL is far behind other algorithms. We have some ideas
to improve it which are not yet implemented by lack of time; it is some future work to do.

src/tgbatest/spotlbtt.test

Chapter 4

ELTL & PSL

LTL is not as expressive as we would like it to be; that was our first motivation to implement
ELTL in Spot. But LTL was extended in a different fashion in PSL, and this chapter investigates
the similarities between those extensions.

PSL (Property Specification Language) is a property specification language developed by Ac-
cellera and recently standardized by the IEEE. It includes as its temporal layer a linear temporal
logic that enhances LTL with regular expressions and other useful features (PSL, 2004). This
temporal layer uses so-called SEREs (Sequential Extended Regular Expressions) to define se-
quences (such as repetitions) built from Boolean expressions. Considering that ELTL temporal
operators are based on NFAs, we thought it might be possible to integrate in it some SERE op-
erators, something that is not possible in LTL where sequences cannot be actually defined. The
following sections present some interesting SERE operators and how we can integrate them in
our ELTL.

4.1 SERE operators

In LTL vocabulary, we can see SEREs operators as temporal operators which are defined from
atomic propositions and formulæ built from them like usual LTL operators. PSL is a complex
language and saying that might be considered as an abuse but from our LTL view point we are
only interested here by SEREs as temporal operators. That is why we will consider infinite paths
here as in LTL, and hold on a path shall thus be understood as hold on a path when it makes sense.
We will see how we could easily handle that problem in our integration in the next section.

Concatenation (;) The expression: a;b holds on a path iff there is a future position i such that
a holds on the path up to and including the position i and b holds on the path starting at the
position i+ 1. For example, the expression aUb;Xc holds on aaabac...

When a and b are simple atomic propositions, a;b is equivalent to the LTL formula a ∧ X b.
But when a does not hold on only one position, it is not possible anymore to define the concate-
nation in LTL because we would need to know the position i to write the proper number of X
before b.

Fusion (:) The expression: a:b holds on a path iff there is a future position i such that a holds
on the path up to and including the ith position and b holds on the path starting at the ith

position. One can note that a:Xb is the same as a;b.

4.2 Integration in ELTL 20

Length-matching and (&&) The expression: a && b holds on a path iff both a and b hold at
the current position, and furthermore both complete at the same position.

Within The expression: a within b holds iff b holds at the current position, and a starts
at or after the position in which b starts, and completes at or before the position in which b
completes.

Consecutive repetition ([*]) This operator constructs repeated consecutive concatenation.
For example a;a;a is equivalent to a[*3]. The number of repetition can also be a range as
in: a[*n:m] which holds on a path iff the path can be partitionned into between n and m parts,
inclusive, where a holds on each part. It is also possible not to specify any number: a[*].

More operators do exist but are either already present in LTL or not adaptable at our context
(like those using PSL clocks).

4.2 Integration in ELTL

Intuitively, if we want to express SERE operators in our ELTL, we need to be able to know if a
given formula just completed; something which is not possible so far in our format. Let F(a)
be the formula saying that a just finished (i.e. completed), which can be defined as follows:

F(a) =

∨

s
g−→r,r∈F

(Now[As] ∧ φ[g]), if a is an automaton operator

>, otherwise

With that formula, SERE operators can be defined as the following automaton operators:

0 1 2 3
a

>

F(a) b

a ∧ F(a)

Figure 4.1: a;b

0 1 2
a

>

b ∧ F(a)

a ∧ b ∧ F(a)

Figure 4.2: a:b

21 ELTL & PSL

0 1 2
a ∧ b

>

F(a) ∧ F(b)

a ∧ b ∧ F(a) ∧ F(b)

Figure 4.3: a && b

0 1 2 3 4
b

>

a

>

F(a)

>

F(b)

F(a) ∧ F(b)a ∧ F(a)

a ∧ F(a) ∧ F(b)b ∧ a ∧ F(a)

b ∧ a

b ∧ a ∧ F(a) ∧ F(b)

Figure 4.4: a within b

In order to be able to express those automaton operators, a finish keyword (representing F)
was added to the ELTL parser. The Figure 4.5 below shows an example using it.

W=(
0 1 $0
1 2 finish($0)
accept 2

)

Figure 4.5: A temporal operator wrapping any other one using finish.

Because conjunctions of arguments are not possible directly in the definiton of an automaton
operator – but only in aliases – it is not straightforward to define PSL operators in ELTL. There
is thus some future work to do to actually integrate them in our ELTL in Spot.

Also, even if the consecutive repetition operator can be easily defined as an automaton oper-
ator when n and m are known (a[*n:m]) or when no number is specified (a[*]), this operator
does not fit very well in our ELTL format because of those integers n and m. Considering that a
generic version doesn’t seem possible, another future work is thus to investigate how we could
integrate it anyway.

Conclusion

The work we presented allows Spot to verify properties express in an extended temporal linear
logic (ELTL). In order to do that, we first wrote AST (Abstract Syntax Tree) classes to represent
this new logic in memory. Then, we implemented a parser that reads an ELTL formula given in
a file or by a string. Finally, the LaCIM translation algorithm to TGBA for this extended logic
was written. Everything which has been done is based on the existing LTL implementation,
making the library consistent. As mentioned before, there is still some work to do on LaCIM
for ELTL to reduce the size of the TGBA produced.

A simple test program which uses everything we have implemented was also written in the
following file: src/tgbaalgos/eltl2tgba.cc. It reads an ELTL formula from a string or
a file, and outputs the TGBA corresponding to the formula constructed by LaCIM in the DOT
language.

Similarities between ELTL and the temporal layer of PSL which enhances LTL with regular
expressions were also investigated. We showed how some PSL operators using regular expres-
sions could be defined in ELTL with automaton operators. However, this definition in ELTL is
not easy to write because PSL operators do not fit very well in our ELTL format, and another
future work is thus to investigate how we could integrate it more nicely.

One can use what has been done to check specifications of finite-state systems that were not
expressible before with Spot.

Acknowledgements

I wish to thank my advisor Alexandre Duret-Lutz for valuable feedback and for his everyday
time and patience to teach me.

src/tgbaalgos/eltl2tgba.cc

Bibliography

Andersen, H. R. (1997). An introduction to binary decision diagrams. Lecture notes.

Bryant, R. E. (1992). Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293–318.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. (1990). Symbolic model
checking: 1020 states and beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in
Computer Science, pages 1–33, Washington, D.C. IEEE Computer Society Press.

Couvreur, J.-M. (1999). On-the-fly verification of temporal logic. In Wing, J. M., Woodcock, J.,
and Davies, J., editors, Proceedings of the World Congress on Formal Methods in the Development of
Computing Systems (FM’99), volume 1708 of Lecture Notes in Computer Science, pages 253–271,
Toulouse, France. Springer-Verlag.

Couvreur, J.-M. (2000). Un point de vue symbolique sur la logique temporelle linéaire. In
Leroux, P., editor, Actes du Colloque LaCIM 2000, volume 27 of Publications du LaCIM, pages
131–140, Montréal. Université du Québec à Montréal.

Duret-Lutz, A. (2007). Contributions à l’approche automate pour la vérification de propriétés de sys-
tèmes concurrents. PhD thesis, Université Pierre et Marie Curie.

Duret-Lutz, A. and Poitrenaud, D. (2004). Spot: an extensible model checking library using
transition-based generalized Büchi automata. In Proceedings of the 12th IEEE/ACM Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS’04), pages 76–83, Volendam, The Netherlands. IEEE Computer Society Press.

Giannakopoulou, D. and Lerda, F. (2002). From states to transitions: Improving translation of
LTL formulæ to Büchi automata. In Peled, D. and Vardi, M., editors, Proceedings of the 22nd
IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed Systems
(FORTE’02), volume 2529 of Lecture Notes in Computer Science, pages 308–326, Houston, Texas.
Springer-Verlag.

Holzmann, G. J. (1990). Design And Validation Of Computer Protocols. Prentice Hall PTR.

Holzmann, G. J. (2003). The Spin Model Checker: Primer and Reference Manual. Addison-Wesley.

PSL (2004). Property specification language, reference manual.

Tauriainen, H. and Heljanko, K. (2002). Testing LTL formula translation into Büchi automata.
International Journal on Software Tools for Technology Transfer, 4(1):57–70.

BIBLIOGRAPHY 24

Vardi, M. Y. (1986). An automata-theoretic approach to automatic program verification. In
Proceedings of the 1st IEEE Symposium on Logic in Computer Science (LICS’86), pages 332–344.
IEEE Computer Society Press.

Vardi, M. Y. and Wolper, P. (1994). Reasoning about infinite computations. Information and
Computation, 115(1):1–37.

Wolper, P. (2000). Constructing automata from temporal logic formulas: A tutorial. In
Brinksma, E., Hermanns, H., and Katoen, J.-P., editors, Proceedings of the FMPA 2000 summer
school, volume 2090 of Lecture Notes in Computer Science, pages 261–277, Nijmegen, the Nether-
lands. Springer-Verlag.

Wolper, P., Vardi, M. Y., and Sistla, A. P. (1983). Reasoning about infinite computation paths.
In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science (FOCS’83), pages
185–194. IEEE Computer Society Press. Later extended and published as Vardi and Wolper
(1994).

	Introduction
	1 Preliminaries
	1.1 Linear Temporal Logics
	1.1.1 Definitions
	1.1.2 LTL
	1.1.3 ETL

	1.2 TGBA
	1.2.1 Definition
	1.2.2 Symbolic representation

	2 LaCIM Algorithm
	2.1 LTL
	2.2 ELTL

	3 Implementation
	3.1 AST
	3.2 Parser
	3.3 LaCIM

	4 ELTL & PSL
	4.1 SERE operators
	4.2 Integration in ELTL

	Conclusion
	Bibliography

