
FSMXML and its application in Vaucanson

Florian Lesaint

Technical Report no0818, May 2008
revision 1734

Last year, we started to work on a new proposal of an XML automata description format, now called
FSMXML. This year we are presenting a final version of our work. It takes the form of an rfc. FSMXML
mainly includes a full generalized rational expressions support, can describe any kind of automaton and
has been made easier to support. We redesigned the VAUCANSON XML parser structure to get rid of a
bad management of dependencies. It is updated according to the rfc.

Nous avions commencé l’année dernière à travailler sur une nouvelle proposition de format XML de
description d’automates, devenu FSMXML. Nous présentons cette année une version aboutie de ce travail
sous forme de rfc. FSMXML comprend notamment une gestion complète des expressions rationnelles
généralisées, il permet de décrire n’importe quel type d’automate et sa gestion est facilitée. Nous avons
repensé la structure du parseur XML de VAUCANSON pour nous affranchir d’une mauvaise gestion de
dépendances et l’avons mise à jour conformément à la rfc.

Keywords
Vaucanson, FSMXML, XML Proposal, Format, Input, SAX, Xerces, XML, XSD

Laboratoire de Recherche et Développement de l’Epita
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 53 14 59 47 – Fax. +33 1 53 14 59 22
florian.lesaint@lrde.epita.fr – http://publis.lrde.epita.fr/200806-Seminar-Lesaint

florian.lesaint@lrde.epita.fr
http://publis.lrde.epita.fr/200806-Seminar-Lesaint

2

Copying this document

Copyright c© 2008 LRDE.
Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

Contents

1 Introduction 4

2 Our proposal: FSMXML 5
2.1 Presentation . 5
2.2 Overview . 5
2.3 Design principles . 7
2.4 Automata and rational expressions types . 8
2.5 Generalized rational expressions . 10
2.6 Automata . 11
2.7 Extra information . 12
2.8 Related works . 14
2.9 Further work . 15

3 Implementation in VAUCANSON 16
3.1 Vaucanson I/O system . 16
3.2 From DOM to SAX . 17
3.3 SAX Parser implementation . 17

3.3.1 Terminology . 17
3.3.2 Implementation . 18

3.4 Optimisations . 19
3.4.1 Space consumption . 19
3.4.2 Time consumption . 20
3.4.3 Useless dependencies . 21

3.5 Annex problems . 23
3.5.1 Rational expressions design . 23
3.5.2 Algebra interface . 23
3.5.3 Transition design . 23

3.6 Further work . 24

4 Conclusion 25

A Bibliography 26

Chapter 1

Introduction

Automata are used in lots of programs and projects. Libraries such as OpenFst (Riley et al., 2007)
or VAUCANSON (VAUCANSON Group, 2001) are dedicated to them. The need of a description
format for storing and exchanging data is natural.

Automaton description formats already exist, however they do not aim at being universal.
All of them are dedicated to the needs of a specific program and part of them do not even have
open specifications.

Designing an universal automaton exchange format aims at providing the community with a
simple communication standard for a good interaction with programs that deal with automata
and thus for any kind of them (Transducers, Büchi automata, . . .).

FSMXML (VAUCANSON Group, 2004) defines such a description format.

Since FSMXML was written by the VAUCANSON Group, it is also used by the diverse tools of
the VAUCANSON Project. The support of FSMXML led to an important update of the input and
output system of VAUCANSON. Working on a parser dedicated to FSMXML while specifying
it gave us the opportunity to improve the format to avoid as much as possible implementation
problems. It also helped us to improve the bad input performances of the library.

This document summarizes the work realized in two years. The first part describes FSMXML
and gives explanations of the choices made. The second one is on the implementation of the
support of FSMXML within the VAUCANSON library.

Acknowledgements

Jacques Sakarovitch for his help and work on FSMXML. Alexandre Duret-Lutz and Maxime
van Noppen for their comments on earlier drafts of this report. The whole VAUCANSON Group
since 2002.

Chapter 2

Our proposal: FSMXML

2.1 Presentation

Origin

The VAUCANSON library provides an eXtensible Markup Language (XML) Input/Output sys-
tem since 2004. The first XML formalism was designed as a proposal for the Conference for
Implementation and Application of Automata (CIAA) 2004 (CIAA, 2004) to establish a stan-
dard for describing automata. Since then, the VAUCANSON Group has successively improved
the format and submitted different papers on the subject.

FSMXML is the result of four years of thoughts and experiences on the subject. My work
started two years ago with the rewriting of the proposal presented at CIAA 2005 (CIAA, 2005).

Scope

As said in the introduction, there are different kinds of automata: automata on finite words
or on infinite words, automata on tuples of words (often called transducers), automata with
multiplicity (usually called weighted automata), timed automata, counter automata, pushdown
automata, Petri nets. . .

FSMXML is currently restricted to weighted automata and transducers on finite words, which are
the current types supported by the VAUCANSON library. FSMXML also describes standalone
rational expressions. FSMXML is in fact only the first step to an universal automaton exchange
format.

2.2 Overview

This overview only gives a brief example on how an automaton such as the one in Figure 2.1 is
described through an XML file such as the one in Figure 2.2. A more detailed description of the
tags and attributes is done in the following sections.

People who are interested in the complete possibilities of FSMXML or more complex exam-
ples over weighted automata, transducers,. . . might want to look at the FSMXML dedicated web
page (VAUCANSON Group, 2004).

2.2 Overview 6

s1 s2

b

b

Figure 2.1: Visual representation of A1, a Boolean automaton on alphabet {a, b}.

1 <fsmxml xmlns="http://vaucanson.lrde.epita.fr" version="1.0">
<automaton name="A1"> <!-- description of the automaton -->
<valueType> <!-- automaton type -->
<semiring type="numerical" set="B" operations="classical"/>

5 <!-- semiring where should be taken weigth values -->
<monoid type="free"

genKind="simple" genSort="letter" genDescrip="enum">
<!-- automaton alphabet -->
<monGen value="a"/>

10 <monGen value="b"/>
</monoid>

</valueType>
<automatonStruct> <!-- automaton structure -->
<states>

15 <state name="s0"/>
<state name="s1"/>

</states>
<transitions>
<transition source="s0" target="s0">

20 <label>
<monElmt>
<monGen value="b"/>

</monElmt>
</label>

25 </transition>
<transition source="s0" target="s1">
<label>
<monElmt>
<monGen value="b"/>

30 </monElmt>
</label>

</transition>
<initial state="s0"/> <!-- s0 is an initial state -->
<final state="s1"/>

35 </transitions>
</automatonStruct>

</automaton>
</fsmxml>

Figure 2.2: Overview of the FSMXML description of A1.

7 Our proposal: FSMXML

A brief example on how standalone rational expressions are described in FSMXML can be
seen in Figure 2.3

1 <fsmxml xmlns="http://vaucanson-project.org" version="1.0">
<regExp name="c1-behaviour"> <!-- description of the expression -->

<valueType> <!-- rational expression type -->
<semiring type="numerical" set="N" operations="classical" />

5 <monoid type="free"
genKind="simple" genSort="digit" genDescrip="enum">

<monGen value="0"/>
<monGen value="1"/>

</monoid>
10 </valueType>

<typedRegExp> <!-- rational expression -->
<star>
<sum>
<monElmt>

15 <monGen value="0"/>
</monElmt>
<one/>

</sum>
</star>

20 </typedRegExp>
</regExp>

</fsmxml>

Figure 2.3: |C1| = (0 + ε)∗

2.3 Design principles

Our experience and work on several XML proposals led us to apply some rules in the design of
FSMXML. Knowing them might help to understand the choices we made.

Rule 1: XML is not for Human

Even if XML is said to be Human-readable, the format is not intended to be directly used by
Humans. Therefore we did not simplify it to make it easily readable but rather made it as easy
as possible for a program to parse and use it.

The first consequence of this rule was to remove all the default values of the previous version
of the XML proposal. Each default value within a format introduces extra checking for the input
parser and an ambiguity within the output system.

Rule 2: Match and regroup concepts

Although FSMXML should not be read by Human, behind a program, there are always devel-
opers who will have to implement parsers. Therefore, the format is meant to be logical and to
match as much as possible mathematical concepts and the automata theory.

This rule forbids us to have two different representations for a same concept. Allowing it
would lead to some problems for the outputs of the format: if we give a file to a program

2.4 Automata and rational expressions types 8

that only converts the XML into an internal representation and then converts it again in XML
(identity), the output should be identical.

Rule 3: Distinguish required from optional data

Automata are often described using graphs with states and transitions, and a lot of representa-
tion conventions. We tried to separate required information from optional ones.

Rule 4: A coding style

For each part of the format, the question is always the same:
“How should we represent it? With a tag or with an attribute ?”
Most of the time, both answers are correct; the rule followed here was to have the same be-
haviour for similar representation problems.

Rule 5: Attractiveness

The format is currently used by only one program. . . VAUCANSON itself. Our objective was to
make it more attractive for the community.

The first consequence of this rule was to rename our proposal into FSMXML for Finite State
Machine XML. It gives to the community, instead of XML proposal for universal automaton de-
scription, a name that can easily be identified.

2.4 Automata and rational expressions types

Weighted automata on finite words, transducers on finite words, and generalized rational ex-
pressions are represented over a monoid and might take a weight within a semiring. This
information is kept within <valueType>, it describes in which object can be taken the value of
the label of a transition.

A significant improvement of FSMXML was to take into account tuples or products of an
arbitrary number of items.

Monoids

An automaton is either represented on a free monoid or over a product of free monoids. To be as
generic as possible, we took k-tape automata into consideration, therefore a product can take an
arbitrary number of free monoids (a transducer can be seen as a 2-tape automaton).

Generators of monoids, which are the symbols of the alphabet can either be simple symbols
or tuples of simple symbols of arbitrary dimension. By “symbols”, we refer to simple types in
programming languages such as characters, digits, integer, or a mix of them.

To enable such a high level of possibilities, tags and attributes like <monCompGen>, <genSort>,
<genCompSort>, genKind, genSort were introduced in the grammar. Examples of their use
can be seen in Figure 2.4.

Semirings

A weighted automaton takes its weights within either a numerical or a series semiring. By “nu-
merical semiring”, we refer to simple types of numbers in programming languages such as

9 Our proposal: FSMXML

integers, reals, By “series semiring”, we refer to semirings that can be recursively defined
using a numerical semiring and a (product of) free monoid(s).

Kleene-Schützenberger Theorem states that a (finite) automaton over the product A∗ × B∗

with multiplicity say in N is equivalent to an automaton over A∗ with multiplicity in the semir-
ing of (rational) series over B∗ with multiplicity in N. Following our VAUCANSON’s rational
expression’s writing conventions, a transition “{3} (a, b)” in a free monoid product transducer
would be “{{3}x} b” in a transducer with rational weights (rw_transducer).

<valueType>
<semiring type="numerical" set="N" operations="classical"/>
<monoid type="free" genKind="simple" genDescrip="enum" genSort="letter">

<monGen value="a"/>
<monGen value="b"/>

</monoid>
</valueType>

(a) Type for a Boolean automaton over {a, b}∗

<valueType>
<semiring type="numerical" set="N" operations="classical"/>
<monoid type="product" prodDim="2">

<monoid type="free" genKind="simple" genDescrip="enum" genSort="letter">
<monGen value="a"/>
<monGen value="b"/>

</monoid>
<monoid type="free" genKind="simple" genDescrip="enum" genSort="digit">

<monGen value="0"/>
<monGen value="1"/>

</monoid>
</monoid>

</valueType>

(b) Type for an automaton over {a, b}∗ × {a, b}∗ with multiplicity in N

<valueType>
<semiring type="series">

<semiring type="numerical" set="N" operations="classical"/>
<monoid type="free" genKind="simple" genDescrip="enum" genSort="letter">

<monGen value="a"/>
<monGen value="b"/>

</monoid>
</semiring>
<monoid type="free" genKind="simple" genDescrip="enum" genSort="letter">

<monGen value="a"/>
<monGen value="b"/>

</monoid>
</valueType>

(c) Type for an automaton over {a, b}∗ with multiplicity in N〈〈A∗ × B∗〉〉

Figure 2.4: Examples of value types.

2.5 Generalized rational expressions 10

2.5 Generalized rational expressions

By “generalized” we refer to rational expressions that can takes weights in a semiring. In the
sequel, rational expressions will be used for “generalized” rational expressions.

The support of standalone rational expressions is natural as the behaviour of a finite automa-
ton over any monoid can be denoted by a rational expression and vice versa. Moreover tools like
TAF-KIT, which are part of the VAUCANSON project, provide commands to convert automata
to rational expressions and vice versa, using FSMXML as their input/output system.

The major part of the work on rational expressions was done by Florent Terrones, followed
by Jacques Sakarovitch. The work left was on the best way to represent the leaves of rational
expressions.

Rational expressions are commonly represented as strings however they are always imple-
mented as trees (see Figure 2.5). Since XML has a tree structure and given Rule 1, we took
advantage of it and avoided using strings. We made the choice that the tree should be binary
(which matches the implementation of the VAUCANSON library).

×

*

×

3 a

b

<typedRegExp>
<product>
<star>
<leftExtMul>
<weight value="3"/>
<monElmt>

<monGen value="a"/>
</monElmt>

</leftExtMul>
</star>
<monElmt>
<monGen value="b"/>

</monEltmt>
</product>

</typedRegExp>

Figure 2.5: Tree representation of ({3} a)∗ × b and its FSMXML equivalent

A standalone rational expression is described within <regExp>which takes a <valueType>
describing the alphabet and the semiring the expression is based on. It takes a <typedRegExp>
which describes the tree structure of the expression. Refer to Figure 2.3 for a complete example.

Weights

<weight> describes a weight value taken in the semiring defined in <valueType>.
Depending of the type of semiring numerical or series, <weight> takes either a simple at-

tribute value when dealing with simple symbols or a complete rational expression.

Internal nodes: operations

sum, product

<sum> and <product> stands respectively for the sum and the product of two rational expres-
sions.

11 Our proposal: FSMXML

star

<star> starifies the rational expression.

leftExtMul, rightExtMul

Since our tree is binary and weights cannot be attributes (since they can be rational expressions),
we dedicated two operations <leftExtMul> and <rightExtMul> to multiply a rational ex-
pressions with a weight respectively on the left and on the right.

Moreover allowing optional <weight>s in each internal nodes and leafs was rejected given
the Rules 1 and 2. An optional child requires extra checking from any tool.

Leaves: values

zero

<zero> is the only way to describe the null series. Although the tag exists in the grammar, it
should not be used. Since the output of FSMXML will not display a transition if its label is the
null series and sums or product with zero are always simplified.

one

<one> is the only way to describe the identity series.

monElmt

<monElmt> describes a monoid element, equivalent of a word.
For a free monoid, <monElmt> is a concatenation of generators of the monoid: in the FSMXML

formalism, a list of <monGen> as described in the monoid.
For a k-product monoid, <monElmt> is a concatenation of k monoid elements taken in the free

monoids of the product.
However, it should be possible to the value taken in one of the free monoids to be the identity,

therefore <one> is also able to describe the monoid identity of a free monoid.
No other tag like <monId> is provided, since it would have introduced two possibilities to

describe an equivalent concept, and would go against the Rule 2.

<monElmt>
<monId/>

</monElmt>
<one/>

<star>
<monId/>

</star>

<star>
<one/>

</star>

Equivalence when <monId> is seen
as the identity generator, within a free
monoid.

Equivalence when <monId> is seen
as the identity monoid element of a
free monoid.

2.6 Automata

Automata are represented as graphs with states and transitions labelled with rational expres-
sions.

An automaton is described in FSMXML within <automaton> which takes a <valueType>
describing on which alphabet and with which weights are based the rational expressions la-
belling the transitions. It also takes a <automatonStruct> which holds the automaton repre-
sentation. Refer to Figure 2.2 for a complete example.

2.7 Extra information 12

States

<states> lists all the states of an automaton.
...
<automatonStruct>

<states>
<state id="1" name="s1"/>
<state id="2" name="s2"/>

</states>

s1 s2

Transitions

<transitions> lists all the transitions of an automaton. . .

<transitions>
<transition source="1" target="1">
<label>
...
</label>

</transition>
<transition source="1" target="2">
<label>
...
</label>

</transition>
...

s1 s2

. . . and also the initial and final properties of the states, since states with initial and final prop-
erties can have a label, they are often seen as transitions with only one source or destination.

...
</transition>
<intial state="1"/>
<final state="1"/>

</transtions>
</automatonStruct>
...

s1 s2

Labels on transitions, final states, and initial states are rational expressions with the same
behaviour as the one describes within <typedRegExp> tags.

2.7 Extra information

Drawing and geometry data

Dealing with automata is often done through visual GUI, representing them as graphs. There-
fore, there is a need of storing visual representation data on the automata.

Drawing and geometry data are stored in <drawingData> and <geometricData>, they
are not necessary to the description of an automaton, therefore these tags are optional. An
exhaustive list of the possible children and attributes can be found on our dedicated web page.

Even if reducing size of the XML files was not our priority, avoiding duplicated data when
possible is always better, even more when this duplicated information might take a significant
amount of space. A proposal done last year, but yet to be added to FSMXML, are the Drawing
classes.

13 Our proposal: FSMXML

Providing a <drawingClass>, that can regroup similar visual data within one place and a
drawing attribute to elements such as <state> or <transition> to bind them with a class,
reduces the size of the file and avoids redundancy. An example of its use can be found in
Figure 2.6.

An extreme example would be to describe an automaton with half of its states red and the
rest green. Given a certain amount of states, the size of the two equivalent files can be reduced
by half.

1 <automaton name="a1">
<valueType>

...
</valueType>

5 <automatonStruct>
<states>

<state id="0">
<drawing stateFillColor="blue">

</state>
10 <state id="1">

<drawing stateFillColor="red">
</state>
...

</states>
15 ...

</automatonStruct>
</automaton>

default version.

1 <automaton name="a1">
<drawing>

<stateclass name="default"
fillColor="red"/>

5 <stateclass name="blue"
fillColor="blue"/>

</drawing>
<valueType>

...
10 </valueType>

<automatonStruct>
<states>
<state id="s0" drawing="blue/>
<state id="s1" drawing="red"/>

15 ...
</states>
...

</automatonStruct>
</automaton>

with drawing classes.

Figure 2.6: Drawing class presentation.

If Drawing classes are not par of FSMXML yet, it is because we are still discussing about the
problems that could be linked with the scattering of information.

readingDir and genDescrip

readingDir is an attribute of <automaton> that has been introduced to underline the pro-
posal aspect of FSMXML and its possible extension with new types. However nothing has been
defined on how should be described an automaton when readingDir is set to right.
genDescrip is an attribute of <monoid> which should enable the extension of format with

alternatives to numbering all the generators of a monoid. FSMXML only specifies how to de-
scribe a monoid when genDescrip is set to enum.

<monoid type="free" genKind="simple" genDescrip="range" genSort="letter">
<monGen value="a-z"/>
<monGen value="A-Z"/>

</monoid>

Figure 2.7: A plausible extension of FSMXML with genDescrip as range.

2.8 Related works 14

Representation data

In the previous version of the format, <monoid> and <semiring> were carrying attributes
such as identitySymbol and zeroSymbol. Their values could be used to write rational
expressions such as (a+ ε) within the label attribute of <transition> (this attribute is not
allowed any longer).

As you might have noticed, with <one> and <zero>, these symbols become useless. More-
over, they can lead to two different representations of a same concept, if these symbols can be
used in the value attribute of a <monGen>.

However, these symbols are still useful when we want to convert a FSMXML rational expres-
sion within a string rational expression into a program. But they are representation data, and
definitely optional.

We created an optional <writingData> child of <semiring> and <monoid> that stores
this information. An example can be seen in Figure 2.8.

<semiring type="numerical" set="N" operations="classical"/>
<monoid type="free" genKind="simple" genDescrip="enum" genSort="letter">

<writingData identitySymbol="1"/>
<monGen value="a"/>

</monoid>
...

<sum>
<monElmt>

<monGen value="a"/>
</monElmt>
<one/>

</sum>

Figure 2.8: How to represent "(a+1)" where 1 stands for the identity of the monoid.

2.8 Related works

FSMXML request for comments

The last year, we spent some time trying to write a paper on our format before realizing we
had a problem with the grammar and the definition of the objects described such as monoids
and semirings. Therefore we finally ended starting to write a request for comments (rfc) (Lesaint,
2008).

The rfc describes in a very formal way each tag of FSMXML, its attributes and children with
the concepts they are representing. It also provides a set of complete examples of FSMXML
descriptions.

XSD file

An XML Schema Definition (XSD) file has been written to match as much as possible the FS-
MXML format, and is available on the VAUCANSON Group homepage (VAUCANSON Group,
2001).

15 Our proposal: FSMXML

It is important to notice that neither XSD files nor Document Type Definition (DTD) files, the
main way to describe an XML formalism, are able to describe the complex dependencies and
constraints introduced in FSMXML. Therefore one should not base a parser only on the XSD file
provided, but rather on the rfc.

A first example is that there is no way (without extra tools such as XPath) to ensure that
the values used within <monGen> tags in a <monElmt> are previously defined in a <monGen>
within the <monoid>.

A second example is that there is no way (without extra tools) to change the behaviour of a
tag like <monoid> depending on the value given in the type attribute. An example is given in
Figure 2.9

<monoid type="free" genKind="simple" genSort="letter">
<monoid type="free" genKind="simple" genSort="letter">

<monGen value="a"/>
</monoid>
<monoid type="free" genKind="simple" genSort="digit">

<monGen value="1"/>
</monoid>

</monoid>

A <monoid> with type=free cannot have <monoid>s tags as children, however
the XSD will accept this XML description.

Figure 2.9: XSD limits on FSMXML constraints

2.9 Further work

The work done so far this year has been to finalize the rfc and the XSD file, update the descrip-
tion of the <valueType> by adding arbitrary dimensions, the specifications of the <monElmt>
leaf, and to fix the nomenclature of the tags and attributes.

The next step of this work will be to introduce FSMXML to the community. We have al-
ready started by submitting a paper to Finite-State Methods and Natural Language Processing
(FSMNLP) (FSMNLP, 2008). We might try to provide other extensions or tools that would allow
to use FSMXML within tools of alternative projects such as OpenFst.

We also expect a lot of comments and extensions from the community. It might be soon
possible to describe new types of automata within the format since the LRDE now supports
Spot (MoVe team, 2004), an object-oriented model checking library which works with Büchi
automata.

Chapter 3

Implementation in VAUCANSON

As said in the introduction, while working on FSMXML, we redesigned the XML input/output
system of VAUCANSON. The first year of our work was dedicated to the conversion of our
previous Document Object Model (DOM) implementation of the input parser into a Simple API
for XML (SAX) one. The second year was spent on the optimisation of both input and output
systems.

3.1 Vaucanson I/O system

Before all, here is a brief recall on how works the I/O system of VAUCANSON. Inputs and
outputs are done via a unique interface,

template<typename Auto, typename TransConverter, typename Format>
tools::automaton_saver_<Auto, TransConverter, Format>
automaton_saver(const Auto& a,

const TransConverter& e = TransConverter(),
const Format& f = Format());

template<typename Auto, typename TransConverter, typename Format>
tools::automaton_loader_<Auto, TransConverter, Format>
automaton_loader(Auto& a,

const TransConverter& e = TransConverter(),
const Format& f = Format(),
bool merge_states = false);

where a is the automaton we want to load or save, e is a tool that formats a transition as
wished and format is the format in which we want to read/load or write/save. VAUCANSON
currently supports XML, FSM and dot formats.

The following code expects to read on the standard input source an FSMXML Boolean au-
tomaton description:

vcsn::boolean_automaton::alphabet_t alpha;
vcsn::boolean_automaton::automaton_t aut = make_automaton(alpha);
std::cin >> automaton_loader(aut, string_out(), xml::XML());

For each format, a simple inclusion of the associated file (XML.hh, dot_format.hh, simple_format.hh,
. . .) activates the use of it.

17 Implementation in VAUCANSON

3.2 From DOM to SAX

Various mechanisms are possible to parse XML files, the main ones are DOM and SAX, de-
scribed as below:

DOM

The principle of DOM (W3C, 2000a) is to parse the document in a single pass and to build an
associated tree, which can then be traversed as many times as needed, bottom-up or top-down.

The interest of a DOM implementation is the easiness with which we can retrieve information
in the associated tree. It also comes with an important documentation and since the mechanism
is really mature, lots of good tools are available to deal with it.

DOM has of course some drawbacks, which in our case were quite problematic. Using an
associated tree wastes a huge space of memory as soon as the automaton parsed is big. VAU-
CANSON was known to swap on some automata (determinized ladybirds for example).

SAX

Unlike DOM, SAX (Megginson, 2001) describes how to parse step by step the document and
build at the same time our own objects. This also means that there is no way to browse the XML
data once more without parsing it again from the beginning.

The interest of a SAX implementation is the lack of associated tree in the process, therefore
no space is wasted with an intermediate structure. It made us change our previous DOM im-
plementation to a SAX one for the inputs to significantly reduce the opportunities of swapping
of the VAUCANSON library. A system built on a SAX implementation is also easier to maintain
compared to a DOM one.

DOM is still used for the output of the VAUCANSON library, since there is no real alternative
mechanism to DOM for writing XML. A solution would have been to write our own system. . .

3.3 SAX Parser implementation

The VAUCANSON project is using the Xerces library (The XML Apache Project, 1999), reasons
of this choice are avaiable in my previous report (Lesaint, 2007b).

3.3.1 Terminology

For a better understanding of this section, some terms should be defined.

Entering tags

This term describes a node which is represented in the XML file like this: <tagName ...>. It
contains the attributes of the tag.

Closing tags

This term describes the end of a node which is represented in the file like this: </tagName>.
Sometimes, when the tag content is empty, you will find a unique tag like <tagName .../>.
It stands for <tagName ...> directly followed by </tagName>.

3.3 SAX Parser implementation 18

Tag body

It stands for the content located between an entering tag and a closing tag. In FSMXML, a tag
body is always a list of (zero or more) tags.

<localname attributes> <!-- entrance tag -->
<child1> <!-- tag body -->
<child2> <!-- tag body -->
... <!-- tag body -->

</localname> <!-- closing tag -->

XMLString

In Xerces, strings have their specific type: XMLCh*, which are not C++ strings.

3.3.2 Implementation

SAX works with a principle of callback functions: The kernel reads the file step by step and each
time an event occurs, it calls the associated function of our handler. There are two main events:

• An entering tag is found. The kernel calls the startElement function of the current handler.

void
startElement (const XMLCh* const uri,

const XMLCh* const localname,
const XMLCh* const qname,
const xercesc::Attributes& attrs);

• A closing tag is found, the kernel calls the endElement function of the current handler.

void
endElement (const XMLCh* const uri,

const XMLCh* const localname,
const XMLCh* const qname);

If we specify “current” handler, it is because handlers can be changed on the fly, a capacity
on which is based of our system. Indeed, the easier way would be to have for each tag a specific
handler.

A problem of SAX standard implementation (like provided by Xerces) is that there is no
possibility of lookahead. There is no way to predict which entering tag will be next. Moreover,
since our grammar allows optional tags, we cannot even "assume" which tag will be next. A
specific handler for one tag is therefore impossible.

The solution chosen was to split the code dealing with each tag in 2 parts:

• A function, which is called within the current handler, after reading the entering tag and
which initializes the good handler.

• A handler, which has to process the tag body, that is to say, compute the attributes and
call functions to initialize other handlers. It is also the work of our handler to “restore”
the previous one after reading a closing tag.

Figure 3.1 shows a brief example of the mechanism of our implementation. A more detailed
explanation can be found in my previous report (Lesaint, 2007b).

19 Implementation in VAUCANSON

init: StatesHandler is set.

1 <state id="1"> is read⇒ startElement is called.

2 (in startElement) state is read⇒ statefunction is called.

3 (in statefunction) a state (with id to “1”) is created in the automaton. StateHandler is set.

4 </state> is read⇒ endElement is called.

5 (in endElement) state is read (= end)⇒ StatesHandler is restored.

Figure 3.1: Parsing process example

3.4 Optimisations

3.4.1 Space consumption

A direct result of the SAX implementation was to reduce the space used while loading the au-
tomaton. Figure 3.2 shows how much memory we spare with this conversion. This is due to the
lack of intermediate tree. Information linked to the structure itself is negligible in comparison
to the information directly connected to the automaton therefore the DOM structure should be
almost the same size of the internal representation of the automaton, thus it is logical to see that
the memory usage has been reduced by half with a SAX implementation.

Figure 3.2: Max memory size on both SAX/DOM implementation.

3.4 Optimisations 20

While benchmarking we had a very bad surprise with our DOM implementation. It was leak-
ing a lot, as seen in Figure 3.3. Therefore we do not really know if swapping, which was the
problem that lead us to a SAX implementation, was because of DOM itself or our bad imple-
mentation.

Figure 3.3: Memoryleak on both SAX/DOM implementation.

A determinized ladybird is an automaton with a lot of transitions and states. A ladybird
with 6 states when determinized reaches 26 states. We based our benchmarks on determinized
ladybirds since they are easy to generate and we focused on the size of the automaton.

3.4.2 Time consumption

Our first thought was that on huge automata, the time consumption should be partially reduced
since the time required to build an intermediate tree is avoided. Our benchmarks however, dot
not confirm our hypothesis (see Figure 3.4).

More advanced benchmarks were done on the SAX implementation, which made us notice
that an important part of the time spent in our parser was dedicated to the conversion of the
data in XMLStrings into C++ strings.

We did not find a way to improve that conversion so we tried to avoid any conversion that
was not required. There are some parts in the implementation where we only check if an XML-
String value is equal to a C++ one by converting the XMLString value. We reversed the process,
since the conversion of a C++ string into an XMLString is cheaper.

An XMLEq class now stores a list of tokens in XMLString that we might need for comparison.
The list of tokens is in fact the list of tag names of the FSMXML format. Now “transition” is
converted into XMLString only once, instead of each time a transition was parsed.

21 Implementation in VAUCANSON

Figure 3.4: Time spent loading an automaton with both SAX/DOM implementation.

No new benchmarks were done this year since we did not focus on time consumption but on
useless dependencies, described in the following section.

3.4.3 Useless dependencies

Michaël Cadilhac reported a problem of useless dependencies two years ago (ticket #33). For
simplicity reasons the previous versions of the system (including the first SAX implementation)
were including all existing contexts. Contexts are all the specialized implementations we have
on diverse types such as tropical semirings or free monoids products.

The result was that a basic program dealing only with Boolean automata would include all the
necessary tools to deal with fmp transducers, which is against logic.

This problem is even more important as we recently introduced shared libraries (libvcsn-b,
libvcsn-z, libvcsn-tdc) to reduce the compilation time of the project’s tools. This becomes useless
as soon as we use the old XML support including all the possible contexts in the VAUCANSON
library.

Some methods were explored in order to resolve this problem, each of them having its own
advantages and drawbacks. The following subsections describe our thoughts on the most plau-
sible ones.

Factories

The Factory design pattern (Alexandrescu, 2001) is generally used when objects need to be
dynamically built in a program. Given some dynamical information such as a string "boolean",

3.4 Optimisations 22

commonly called identifier, the right constructor for creating the corresponding object such as a
Boolean automaton should be called.

If you look at the rfc, you can see that some attributes are listed as Pivot. Those are the exact
values that should be required to implement such factories. In our case, different factories are
required for monoid generators, monoids, semirings, automata (given a monoid and a semir-
ing), and labels or rational expressions (given the automaton).

semiring_t*
AutFactory::create(const std::string& set,

const std::string& operations);

Figure 3.5: Example of a factory for semirings.

A implementation using this design pattern should perfectly work, if only we were not using
the Element design pattern (Régis-Gianas and Poss, 2003). The Element design pattern radically
changes the inheritance our main objects such as semirings are based on.

Therefore our create function in any possible Factory would only be able to return an El-
ement<S,T> object, which we would have to cast within an expected object. An even more
complicated problem, the semiring_t from boolean_automaton do not have the same interface
of a semiring_t from rw_transducer. The code has therefore to be specialized each time we use
a semiring.

But the main problem is that the Factory design pattern was not designed to return a tem-
plated object. Some work has already been done on the problem (Peleg, 2007), but the solution
is still in discussion and was quite hard to implement and to test within the limited time we
had.

Preprocessing conditions

A second option was to use a new set of MACROS constants to define which contexts are used
in the program and to activate or deactivate part of the code within the handlers files. For
example, the file tropical_semiring.hh would contain a TROPICAL_SEMIRING constant, and the
handlers.hh file should have a macro #ifdef condition based on that constant.

The problem is that it requires the user to include files within a specific order in its program.
This constraint cannot be checked but only specified within the documentation.

A user would hardly understand why after including XML.hh and boolean_automaton.hh, the
program fails telling him there is no XML support. We really do not want that to happen, since
it is one of the easiest way to lose a user.

It would also have implied to define MACRO constants without undefining them, which is a
bad way of programming.

Plug and play files

Finally, the chosen way is to request the user to include not only XML.hh but also files depending
of the automata he wants to use, for example max_plus.hh.

This solution is not very good, but is the better we found to solve this problem without using
Factories. It requires the user to know that he needs to include more than the XML.hh if he
wants to deal with complex automata, which can be done using an explicit message when a
type is not supported.

23 Implementation in VAUCANSON

#include <vaucanson/xml/contexts/max_plus.hh>
#include <vaucanson/xml/XML.hh>

Figure 3.6: Code required to load a Boolean automaton on a maxPlus semiring.

A good point compared to preprocessing conditions, is that the code is well separated in
different files and directories, which makes it easier to maintain and understand. Each time
a new context is added to VAUCANSON, a new file (following the same pattern as the already
present ones) should be written.

3.5 Annex problems

While updating the I/O system, several problems appeared in the conception designs used
within the VAUCANSON library, aspects that should be discussed in a near future.

3.5.1 Rational expressions design

The way rational expressions are designed is problematic as soon as we want to write them
back in XML. Our representation of rational expressions includes three leaves: one, zero, and
atom standing respectively for the series identity, the null series, and a word.

The problem is that contrary to the XML representation where a word is a list of generators,
here, the word is a single value (C++ string or integer, or pair of strings) and the VAUCANSON
monoid interface does not yet provide a way to extract the associated generators from that
word. In a letter based monoid, it should be fine, but what about more complicated once based
on integers ?

3.5.2 Algebra interface

Since the current conception of the XML parser requires the knowledge of the type of automaton
before loading it, parsing <valueType> is in fact only a checking step, which underlines the
following problem.

The semirings and monoids objects in the VAUCANSON library do not carry a string identifier
like “MaxPlus” for a MaxPlus semiring. Therefore, the I/O system has to “list” all the possible
objects that might be associated with identifiers. By listing, we mean to find a way to distin-
guish 2 contexts. Figure 3.7, which is the current way to retrieve information about a semiring,
underlines how easier it would be if semiring had a function to retrieve such an identifier.

Even more, the current implementation with the design pattern Element does not help to un-
derstand on which object we need to specialize a function to retrieve the required information.
Given a semiring s, its set can be found using the s.value() object and its operations using the
s.structure() object.

3.5.3 Transition design

When parsing a transition, we first get the source and the target in the <transition> tag and
we then get the series of that transition in the <label> tag.

3.6 Further work 24

template <typename T>
const char* get_semiring_operations(const T&)
{
return "undefined operation";

}
...
template <>
const char* get_semiring_operations<

vcsn::algebra::TropicalSemiring<vcsn::algebra::TropicalMax>
>(const vcsn::algebra::TropicalSemiring<vcsn::algebra::TropicalMax>&)

{
return "maxPlus";

}

Figure 3.7: How to retrieve the identifiers of operations given a semiring

Our first approach was to create a transition from the source to the target with a null series
and then to give the label handler a reference to that series. However, there is no easy way to
update a series within a transition.

To update a transition, we currently have to follow this procedure:

1. retrieve source i and target o of the transition t

2. create a new series s with the wanted value

3. destroy the transition t

4. create a new transition from i to o with a label s.

In our case, the problem is not that important, it only obliges us to store information about
the states until the series is build before creating a transition. However, in lots of algorithms
like ε-removal, it might significantly reduce and simplify some steps.

3.6 Further work

This year, we finalized the previous incomplete implementation of the input system. We also
significantly improved the library especially by reducing these useless dependencies. It also
helped us to underline problems with the conception of the VAUCANSON library, about which
work should be done.

Some work still remains to be done in the current implementation, such as to factorize ratio-
nal expressions operations handlers, but it should not be source of problems and is only time
consuming.

As further improvements, we should take into considerations the use of Factories and avoid
the need of knowing the type of automaton we are expecting to load. It can be a real problem
for tools like a GUI that does not know which automaton it will receive.

Chapter 4

Conclusion

This work is not the only one dealing with the I/O system of VAUCANSON, the whole interface
of VAUCANSON has been improved this year. Vivien Delmon has been working on the ratio-
nal expression parser (Delmon, 2008). Florent D’Halluin has been working on a new Graphic
interface (D’Halluin, 2008). The objective is definitely to make VAUCANSON more attractive to
new users. We are still waiting an answer from the FSMNLP committee about our last paper. A
positive answer would be great to remind the VAUCANSON project to the community.

There is still work to be done to optimize the code itself, improve the user documentation on
how input/output works in VAUCANSON. We also should spend some time on the different
further improvements previously listed in the paper, such as an FSMXML support extension
for OpenFst. We should especially take some time to determine if the annex problems listed are
slowing down the development of VAUCANSON, and act accordingly.

Appendix A

Bibliography

Alexandrescu, A. (2001). Mondern C++ Design: Generic Programming and Desgin Patterns Ap-
plied. Addison Wesley.

Brandes, U., Eiglsperger, M., and Lerne, J. (2002). GRAPHML – an XML based graph inter-
change format. http://graphml.graphdrawing.org/.

CIAA (2004). Conference for implementation and application of automata. http://www.
informatik.uni-trier.de/~ley/db/conf/wia/ciaa2004.html.

CIAA (2005). Conference for implementation and application of automata. http://www.
i3s.unice.fr/ciaa05/.

Delmon, V. (2008). Rational Expression Parser.

D’Halluin, F. (2008). Yet Another Vaucanson GUI.

FSMNLP (2008). Finite-State Methods and Natural Language Processing. http://
langtech.jrc.it/FSMNLP2008/.

Galtier, J. (2008). Improving Vaucanson’s transducers composition algorithm.

Gansner, E., Koutsofios, E., and North, S. (2004). Dot and Dotty. http://www.graphviz.
org/.

Herman, I. and Marshall, M. (2000). GRAPHXML – equivalent to GRAPHML. http://www.
cwi.nl/ftp/CWIreports/INS/INS-R0009.pdf.

Lesaint, F. (2007a). Draft of the XML Proposal. https://svn.lrde.epita.fr/svn/
lrde-publis/trunk/lesaint.07.fsmnlp/.

Lesaint, F. (2007b). XML proposal and its application in vaucanson.

Lesaint, F. (2008). FSMXML rfc. http://www.lrde.epita.fr/dload/vaucanson/
techrep/fsmxml-0.5.rfc.pdf.

Lombardy, S. and Sakarovitch, J. (2005). How expressions can code for automata.

Megginson, D. (2001). Simple API for XML 2. http://www.saxproject.org/.

MoVe team (2004). Spot. http://www.lrde.epita.fr/Spot/.

http://graphml.graphdrawing.org/
http://www.informatik.uni-trier.de/~ley/db/conf/wia/ciaa2004.html
http://www.informatik.uni-trier.de/~ley/db/conf/wia/ciaa2004.html
http://www.i3s.unice.fr/ciaa05/
http://www.i3s.unice.fr/ciaa05/
http://langtech.jrc.it/FSMNLP2008/
http://langtech.jrc.it/FSMNLP2008/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.cwi.nl/ftp/CWIreports/INS/INS-R0009.pdf
http://www.cwi.nl/ftp/CWIreports/INS/INS-R0009.pdf
https://svn.lrde.epita.fr/svn/lrde-publis/trunk/lesaint.07.fsmnlp/
https://svn.lrde.epita.fr/svn/lrde-publis/trunk/lesaint.07.fsmnlp/
http://www.lrde.epita.fr/dload/vaucanson/techrep/fsmxml-0.5.rfc.pdf
http://www.lrde.epita.fr/dload/vaucanson/techrep/fsmxml-0.5.rfc.pdf
http://www.saxproject.org/
http://www.lrde.epita.fr/Spot/

27 BIBLIOGRAPHY

Peleg, G. (2007). Subscribing template classes with object factories in c++. http://www.
artima.com/cppsource/subscription_problem.html.

Régis-Gianas, Y. and Poss, R. (2003). On orthogonal specialization in c++. http://www.
lrde.epita.fr/dload/papers/poosc03-vaucanson.pdf.

Riley, M., Schalkwyk, J., Skut, W., Allauzen, C., and Mohri, M. (2007). OpenFst library. http:
//www.openfst.org.

Sakarovitch, J. (2003). Éléments de théorie des automates. Vuibert informatique.

VAUCANSON Group (2001). VAUCANSON home page. http://vaucanson.lrde.epita.
fr/.

VAUCANSON Group (2004). FSMXML. http://vaucanson.lrde.epita.fr/
Vaucanson/XML.

W3C (1998). eXtensible Markup Language – XML. http://www.w3c.org/XML/.

W3C (1999). XML Path Language. http://www.w3c.org/TR/xpath.

W3C (2000a). Document Object Model 2. http://www.w3c.org/DOM/.

W3C (2000b). XML document type definition. http://www.w3c.org/TR/REC-xml/
#dt-doctype.

W3C (2001). XML schema description. http://www.w3c.org/XML/Schema.

W3C (2007). XSLT Transformation 2.0. http://www.w3c.org/TR/xslt.

The XML Apache Project (1999). Xalan and Xercesc libraries. http://xalan.apache.org.

http://www.artima.com/cppsource/subscription_problem.html
http://www.artima.com/cppsource/subscription_problem.html
http://www.lrde.epita.fr/dload/papers/poosc03-vaucanson.pdf
http://www.lrde.epita.fr/dload/papers/poosc03-vaucanson.pdf
http://www.openfst.org
http://www.openfst.org
http://vaucanson.lrde.epita.fr/
http://vaucanson.lrde.epita.fr/
http://vaucanson.lrde.epita.fr/Vaucanson/XML
http://vaucanson.lrde.epita.fr/Vaucanson/XML
http://www.w3c.org/XML/
http://www.w3c.org/TR/xpath
http://www.w3c.org/DOM/
http://www.w3c.org/TR/REC-xml/#dt-doctype
http://www.w3c.org/TR/REC-xml/#dt-doctype
http://www.w3c.org/XML/Schema
http://www.w3c.org/TR/xslt
http://xalan.apache.org

	1 Introduction
	2 Our proposal: FSMXML
	2.1 Presentation
	2.2 Overview
	2.3 Design principles
	2.4 Automata and rational expressions types
	2.5 Generalized rational expressions
	2.6 Automata
	2.7 Extra information
	2.8 Related works
	2.9 Further work

	3 Implementation in Vaucanson
	3.1 Vaucanson I/O system
	3.2 From DOM to SAX
	3.3 SAX Parser implementation
	3.3.1 Terminology
	3.3.2 Implementation

	3.4 Optimisations
	3.4.1 Space consumption
	3.4.2 Time consumption
	3.4.3 Useless dependencies

	3.5 Annex problems
	3.5.1 Rational expressions design
	3.5.2 Algebra interface
	3.5.3 Transition design

	3.6 Further work

	4 Conclusion
	A Bibliography

