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Abstract—Two well-accepted techniques to tackle combinato-
rial explosion in model-checking are exploitation of symmetries
and the use of reduced decision diagrams. Some work showed
that these two techniques can be stacked in specific cases.

This paper presents a novel and more general approach
to combine these two techniques. Expected benefits of this
combination are:

• in symmetry-based reduction, the main source of com-
plexity resides in the canonization computation that must
be performed for each new encountered state; the use of
shared decision diagrams allows one to canonize sets of
states at once.

• in decision diagram based techniques, dependencies be-
tween variables induce explosion in representation size;
the manipulation of canonical states allows to partly
overcome this limitation.

We show that this combination is experimentally effective in
many typical cases.

Keywords-Symmetries, Decision Diagrams, State Space Anal-
ysis

I. I NTRODUCTION

Formal verification of concurrent systems, while promis-
ing push-the-button technology to check the correctness
of systems, rapidly encounters the state space explosion
problem.

Among many techniques proposed to fight this problem,
symbolic approaches based on symmetries [1], [2] and
BDD [3] have proven successful in practice.

Symmetries.If we are given a symmetry groupG over states
and the transition relation, we can build a quotient graph of
equivalence classes (also called orbits) of states, that may
be exponentially smaller than the full state graph [4]. This
quotient graph preserves many properties of interest such as
reachability and linear temporal logic provided the property
is itself symmetric with respect toG.

To build such a graph, the approach most commonly used
[1], [5] consists in using a canonical representative of each
orbit. However, an orbit may be of exponential size with
respect to the number of elements in the state vector. Thus,
the computation of a canonical representative of an orbit has
exponential worst case complexity in time and/or memory
(if the orbit is actually built).

This work was supported by the Délégation Ǵeńerale pour l’Armement.

Junttila [5] proposes a general definition of this approach
for systems whose states are integer vectors and symmetry
groups are arbitrary permutation groups. Using the Schreier-
Sims representation [6] of permutation groups, he proposes
an algorithm effective in practice to compute a representative
of an equivalence class.

However, the proposed algorithm only deals with explicit
encoding of the state space. Thus, the problem remains hard
since the algorithm must be applied on each individual state.
This prevents a direct implementation on top of symbolic
data structures such as decision diagrams (DD).

Decision Diagrams.Reduced Ordered BDD (ROBDD) were
introduced by [7] to compactly represent boolean functions
over boolean domains such as large circuits. Since their
first use for model-checking [3], many variants of decision
diagrams have been proposed. They all allow to manipulate
large sets of states symbolically. The DD size can be
exponentially smaller than the size of the represented set.
Thanks to dynamic programming, algorithms manipulating
DD are usually polynomial in the representation size.

Unfortunately, algorithms that manipulate classical ex-
plicit data structures must be redesigned to take advantageof
DD. This is not always possible, particularly if the algorithm
involves separate treatments for every state.

Combining Symmetries and Decision Diagrams.Indeed,
initial attempts to combine a symbolic representation of
sets of states with a computation of a quotient graph met
mitigated success. The problem, identified in [8], is that the
orbit relation –allowing to map states to their representative–
has exponential size when represented as a BDD, whichever
the variable order chosen.

Variations such as using several representatives of an
orbit, can be more effective but do not fully exploit the
symmetry group.

A slightly different approach to build a quotient graph [2],
is to use an abstract representation of orbits. This also allows
to exploit symmetries of the transition relation, however this
approach can only deal with specific groups of symmetries,
and cannot easily be generalized to arbitrary permutation
groups.

In practice, this approach can often be successfully com-



bined with symbolic representation of sets of states, as
shown in [9] for symmetries limited to the full permutation
group, or for the specific framework of Symmetric Nets
(a.k.a. Well-Formed Petri nets) in [10] [11]. However, this
approach is limited to specific symmetry groups and lacks
generality.

Contribution. We propose an algorithm allowing to work
with arbitrary symmetry groups, that can be effectively
implemented on top of symbolic data structures. Given a
total ordering on states, the smallest state in an orbit is
considered as its canonical representative.

Instead of directly representing the orbit relation, we
introduce a ”monotonic” function that, given a states,
returns a states′ in the same orbit such thats′ < s, if such an
elements′ exists. By repeatedly applying such a monotonic
function in a fixpoint, we achieve the same effect as if
we were using the orbit relation, without ever having to
explicitly compute and represent it.

Because this function operates over sets of states, it avoids
individual representative computations for each state, thus
leading to a general and efficient algorithm to combine the
use of symmetries with symbolic data structures.

Outline. Section II defines the required notions on symme-
tries and decisions diagrams. Then, section III details how
symmetries can be represented on top of decision diagrams.
An example and some benchmarks are also provided here
before a conclusion in section IV.

II. PRELIMINARIES

This section defines the notions of quotient graph and the
type of decision diagrams we use in section III.

A. Quotient graph, definitions

We recall here the theory of symmetry reduction for state
space analysis. These definitions are adapted from [5].

Definition 1. Transition system
A transition system is a tuple(S,∆,S0) such that:

• S is a finite set of states,
• ∆ ⊆ S×S is the transition relation,
• S0 ⊆ S is the set of initial states.

Transitions for(s1,s2) ∈ ∆ are noteds1 −→ s2. Symmetries
of transition systems are defined using a bisimilarity relation
between states.

Definition 2. Symmetry
Let K = (S,∆,S0) be a transition system. A symmetry ofK
is a permutation g over S such that:

• g.S0 = S0

• g is congruent with respect to the transition relation:
∀s1,s2 ∈ S,s1 −→ s2 ⇔ g.s1 −→ g.s2

G, the set of all symmetries ofK , is a group because:

• the composition is associative,

• the composition of two symmetries and the inverse of
a symmetry are still symmetries.

Definition 3. Equivalence relation≡G

Two states s1,s2 ∈ S are said to be symmetric, denoted
s1 ≡G s2, if there is a g∈ G such that g.s1 = s2. ≡G is
an equivalence relation over S.[x]G denotes the equivalence
class (also called orbit) of x under≡G.

We may now define the abstraction of a transition system
using≡G.

Definition 4. Reduced transition system
K̃ = (S̃, ∆̃, S̃0) is a reduction ofK w.r.t. G if and only if:

• S̃⊆ S,∀s∈ S,∃ s̃ ∈ S̃: s ≡G s̃,
• S̃0 ⊆ S̃ and∀g∈ G,g.S̃0 ⊆ S0,
• ∆̃ ⊆ S̃× S̃,
• if s̃1 ∈ S̃ and(s̃1,s2) ∈ ∆, then there exists̃s2 ∈ S̃ such

that s̃2 ≡G s2 and (s̃1, s̃2) ∈ ∆̃,
• if (s̃1, s̃2)∈ ∆̃ then there exists s2 ∈ S such that s2 ≡G s̃2

and (s̃1,s2) ∈ ∆.

A reduction,K̃ of K w.r.t. G preserves the reachability
property and, under appropriate conditions, linear temporal
formulae [12], [4]. Hence, the verification can be done on
K̃ . Note that this definition allows to use several represen-
tatives per orbit, generalizing the notion of quotient graph.
This approach using several representatives yields a larger
reduced structure but may be faster to build [5].

An abstract algorithm to computẽK is presented on
figure 1. Letrepr be a function that maps an elements∈ S
onto its representative ˜s∈ [s]G. Let succ be the function that
maps any states to its successors:succ(s) = {s′|s−→ s′}.

S̃:= repr(S0)
∆̃ := /0
repeat

for s∈ S̃ do
S̃′ := repr(succ(s))
∆̃ := ∆̃∪{(s, s̃′)|s̃′ ∈ S̃′}
S̃:= S̃∪ S̃′

end for
until a fixpoint is reached

Figure 1. The algorithm to generatẽK

The size of S̃ depends on the functionrepr, as S̃=
repr(S), with two extreme cases:

• if repr is the identity, thenS̃= S and K̃ = K .
• if repr maps all elements of an orbit onto the same

unique element, theñS is in bijection withS/G, and the
size of S̃ is minimal.

Computing such a unique representative is however expo-
nential in time for the worst case: the canonization problem
is equivalent to graph isomorphism. This class of complexity
is not known to have a polynomial solution [8], [5].
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Figure 2. This DDD represents the set of sequences of assignments:
{(x := 2;y := 3;z := 1;),(x := 1;y := 1;z := 1;),(x := 1;y := 2;z := 3;)}.

B. Decision diagrams

Shared Decision Diagrams (DD) are a data structure
to compactly represent sets. There are many variants of
decision diagrams used for model-checking, but they all rely
on the same underlying principles: nodes of the decision tree
are unique in memory thanks to a canonical representation,
the number of paths through the diagram (states) can be
exponential in the representation size (nodes in the DD),
equality of two sets can be tested in constant time, using
caches most operations manipulating a DD are polynomial
in the representation size, the effectiveness of the encoding
strongly depends on the chosen variable ordering [13].

In this paper we rely on Data Decision Diagrams (DDD,
defined in [14]), which extend classical BDD in two re-
spects:1) variables are considered to have an integer domain
instead of a Boolean one, and,2) operations over DDD
are encoded using homomorphisms instead of the usual
fashion where another decision diagram with two variables
per variable of the state signature is used.

A DDD is a data structure for representing a set of
sequences of assignments of the formω1 := v1;ω2 :=
v2; . . . ;ωn := vn, also notedω1

v1−→ ω2
v2−→ ·· ·ωn

vn−→ 1, where
ωi are variables andvi are integer values. We assume
no implicit variable ordering and the same variable can
occur several times in an assignment sequence (though with
some constraints, see [14]). We define the terminal1 to
represent the empty assignment sequence, that terminates
any valid sequence. The terminal0 represents the empty set
of assignment sequences.

Definition 5 (DDD). Let Var be a set of variables, and for
any ω in Var, let Dom(ω)⊆N be the domain ofω. The set
D of DDD is defined inductively by:
δ ∈D if either δ ∈ {0,1} or δ = 〈ω,arc〉 with ω ∈ Var, and
arc : Dom(ω)→D is a mapping where only a finite subset
of Dom(ω) maps to other DDD than0.

By convention, edges that map to the DDD0 are not
represented.

For instance, consider the DDD shown in figure 2. Each
path in the DDD thus corresponds to a sequence of assign-

ments. In this work, we use DDD to represent states inN
n,

thus each assignment sequence represents a system state.

Operations and Homomorphisms.DDD support standard
set operations:∪, ∩, \. The semantics of these operations
are based on the sets of assignment sequences that the DDD
represent.

DDD also offer a concatenationδ1 · δ2 which replaces
terminal1 of δ1 by δ2. This corresponds to a cartesian prod-
uct. Basic and inductive homomorphisms are also introduced
to define application specific operations. A more detailed
description of DDD homomorphisms can be found in [14].

A basic homomorphism is a mappingΦ : D 7→ D sat-
isfying Φ(0) = 0 and ∀δ,δ′ ∈ D,Φ(δ∪ δ′) = Φ(δ)∪Φ(δ′).
Many basic homomorphisms are hard-coded. The sum+
operation between two homomorphisms (∀δ ∈ D,(Φ1 +
Φ2)(δ) = Φ1(δ)∪Φ2(δ)) and the composition of two ho-
momorphisms◦ (Φ1 ◦Φ2(δ) = Φ1(Φ2(δ))) are themselves
homomorphisms.

A homomorphismc is a selector iff ∀δ ∈ D,c(δ) ⊆ δ.
This allows to represent Boolean conditions, asc selects
states satisfying a given condition; thus the negation ofc
is c̄(δ) = δ\c(δ). As a shorthand for ”if-then-else”, we use
IfThenElse(c,h1,h2) = h1◦c+h2◦ c̄, whereh1 andh2 are
homomorphisms.

The fixpoint h⋆ of a homomorphism, defined ash⋆(δ) =
hk(δ) where k is the smallest integer such thathk(δ) =
hk+1(δ), is also a homomorphism provided a finitek exists.

Besides providing a high level way of specifying a
system’s transition relation, homomorphisms can be used
to express many model checking algorithms directly. For
instance, given a DDDs0 representing initial states and
a homomorphismsucc representing the transition relation,
we can obtain reachable states by the equationReach=
(succ+ Id)⋆(s0).

Specifying model checking problems as homomorphisms
allows the software library to enable automatic rewritings
that yield much better performances, such as the saturation
algorithm [15].

III. SYMMETRIES AND SYMBOLIC STRUCTURES

In this section we will develop our ideas about how to
combine Symmetries and Symbolic Structures in a general
framework.

A. Assumptions

StatesWe make the assumption that the system’s states S
are vectors of integers, of fixed sizen: S⊆N

n.

Symmetries We consider symmetries that permute
the indexes: ∀g ∈ G,∀v = (v1,v2, . . . ,vn) ∈ S,g.v =
(vg.1,vg.2, . . . ,vg.n). The group of all permutations over a
set of sizen is denoted bySn.

We then manipulate symmetry groups as sets of permu-
tations. Conversely, given a set of permutationsH, let 〈H〉
denote the group generated byH.



States are totally ordered. We use lexicographic ordering,
noted<. The canonical representativeŝ of an orbit [s]G
is defined as its smallest element (with respect to<). Thus,
∀s∈ S, ŝ= min[s]G.

B. Symbolic Symmetry algorithm

Given these premises, we use the algorithm of figure 3 to
canonize a set of states.

set canonize(H ⊆ Sn,S⊆N
n):

repeat
for g∈ H do

S′ := {s|s∈ S,g.s< s}
S:= S∪g.S′

S:= S\S′

end for
until S no longer evolves
return S

Figure 3. Symbolic algorithm to canonize a set of states.

This algorithm iterates over the permutations ofH, ap-
plying each one only to the states that it reduces. If the
permutations inH are permutations of the symmetry group
G of the system, we are ensured that at each step of the
algorithm, each state is either left as is, or mapped to a
strictly smaller state belonging to its orbit. Since each orbit
has a minimum (its canonical representative) this algorithm
is guaranteed to converge.

Admittedly, the algorithm might visit each state of an
orbit (in decreasing order, one by one), yielding worst case
exponential complexity. Since the problem is equivalent
to graph isomorphism, this is not surprising. In practice
however, with an appropriate choice of a small set of
permutations inH, this algorithm can be quite effective.

Let us note that the order in which the permutations of
H are considered in the ”for” loop (or equivalently, in the
composition©g∈H ) does not impact correctness, but may
impede performance.

Actually, the choice ofH is critical to overall performance
of this algorithm. If H = G, then this algorithm converges
after a single iteration of the outer loop (”repeat”). In other
words, for each state,H contains the permutation that maps
it to its representative. However, this means that, on the
worst case, the size ofH is exponential inn. This is
congruent with the observations of [8] in which the orbit
relation is shown to be exponential in representation size.

A contrario, whenH is small, many iterations may be
necessary for the algorithm to converge, but each element of
H is likely to reduce larger subsetsS′. Since the complexity
of applying a permutation to a set of states is related to the
representation size (in DDD nodes) and not to the number of
states in the set, manipulating larger sets lowers the overall
complexity.

Monotonic< Property. To obtain minimality, we would like
to chooseH such thatset canonize(H,S) = {min[s]G|s∈
S}.

In essence this means we require that any states that is
not the minimum of its orbit[s]G can be reduced (according
to <) by applying a permutation ofH.

Definition 6 (monotonic<). Let G be a subgroup ofSn.
H ⊆ G is monotonic< w.r.t. G if and only if:

• ∀s∈ S,(∃g∈ G,g.s< s =⇒ ∃h∈ H,h.s< s).

In algorithm 3, when states can no longer be reduced
by any permutation ofH, by definition of themonotonic<
property, the states inS are the canonical representatives
of the input states. WhenH is monotonic< w.r.t. G, the
algorithm returns the set of canonical representatives of the
input states.

If H is notmonotonic< w.r.t. G, the algorithm behaves like
the one of figure 1 when several representatives are used.

C. Symbolic encoding

States being elements ofNn are naturally represented as
a DDD of n variables. Note that by assumption, the system
size is fixed in number of variables. For systems requiring to
dynamically allocate variables, a pool size bound must then
be known a priori. However we are allowed to use integers
with a priori unknown bounds as variables. This feature
of DDD is exploited here, but the algorithm could work
with boolean variables and any type of Decision Diagrams.
Labels of states, if we consider a Kripke structure instead
of a transition system, can be encoded as additional state
variables.

To encode algorithm of figure 3 using homomorphisms,
we define for any permutationg∈ Sn :

• reduces(g), a selector homomorphism to retain states
that are reduced byg, i.e. reduces(g)(S) = {s|s ∈
S,g.s< s},

• apply(g), a homomorphism to applyg to each state of
a set, i.e.apply(g)(S) = {g.s|s∈ S}

The full algorithm is then expressed by the equation:

set canonize(H) =

(©g∈H IfThenElse(reduces(g),apply(g), Id))⋆

Since convergence is ensured by the fact each orbit has a
minimum, the fixpoint⋆ is well-defined. The homomorphism
set canonize(H) can be applied to any set of states, yield-
ing their canonical representatives whenH is monotonic<.

Apply and Reduces.The homomorphismreduces, given
that we are using lexicographic order, and that states are in
N

n, is expressed as a composition of variable comparisons.
For instance, consider the permutationg= (2,3,1,4) of S4.
We haveg−1 = (3,1,2,4). Henceg reducess= (s1,s2,s3,s4)
iff
sg−1.1 < s1∨(sg−1.1 = s1∧(sg−1.2 < s2∨(sg−1.2 = s2∧(. . .))))



This general formula is instantiated for this specificg in
the following way:

s3 < s1∨ (s3 = s1∧ (s1 < s2∨ (s1 = s2∧s2 < s3)))
Let us note that since position 4 is invariant byg, there

are only three nested variable comparisons. Subsequent
conditions are trivially simplified away. This condition is
expressed using a selector homomorphism allowing com-
parison (by< and =) of the value of two variables of a
state. The full condition homomorphism is expressed using
composition◦ for ∧ and the sum+ for ∨.

The homomorphismapply is built as a composition of
transpositions of adjacent elements notedτi,i+1. The original
DDD definition [14] includes a general homomorphism to
swap arbitrary variables of a DDD. Transposition of adjacent
variables is a particular case of this.

We compute a path with the minimal number of these
transpositions necessary to achieve the desired effect and
compose them to buildapply. For instance, withg =
(2,3,1,4) of S4,

g= τ2,3◦ τ1,2

Let us note that the DDD homomorphism framework
allows to easily define these complex operations, hence the
implementation using libDDD [16] is straightforward. As a
beneficial side effect, since a given transpositionτ can occur
in several permutations, various permutations may benefit
from the cache for transpositions.

Our algorithm can be implemented using other decision
diagrams libraries, although swap and comparison of vari-
ables may not be offered natively.

Note that the same algorithmic bricks can be used to
compute the orbit of states, using the equation:

orbit(H) = (©g∈H(apply(g)+ Id))⋆

If 〈H〉= G, applyingorbit(H) to a set of statesS returns
the set

⋃
s∈S[s]G.

Illustrative example. Let us detail the run of the al-
gorithm on a small illustrative example. Figure 4 shows
the intermediate DDD produced by the application of
set canonize(H) to a system of three variables. With
G = S3 as symmetry group, we chooseH = {τ1,2,τ2,3},
which ismonotonic< w.r.t. G, as will be proved in III-D. We
focus on the inner loop in algorithm 3. Each step corresponds
to the application of an elementg of H to the states reduced
by g in the current DD. At the end of the algorithm, another
iteration is necessary to check for convergence.

As we can see through this toy example, each step of the
algorithm simultaneously reduces several states. In a single
step, each permutation reduces all the states it can, even if
they belong to different orbits.

States that belong to the same orbit are progressively
collapsed onto their representative. Because of sharing of
sub-structures, notice that states(2,1,3) and(2,3,1) in 4(a)
are collapsed onto(2,1,3) in 4(b). (2,1,3) is not a canonical

representative, but it is smaller than(2,3,1). At this step,
the two states are merged, allowing to share any subsequent
canonization step. In general, each step –with complexity
polynomial in the DD size– might merge exponentially many
states. This contrasts with explicit approaches that canonize
all these states individually.

D. Finding a monotonic<

As previously explained, whatever the choice ofH ⊆ G
the algorithm of Fig. 3 is still valid. On the other hand, the
choice of H is critical to its efficiency. IdeallyH should
be monotonic< w.r.t. G to obtain maximal reduction, and
heuristically for decision diagram based implementations,
H should be as small as possible.

In the general case, the computation of a setH
monotonic< w.r.t. G that is of minimal size, is inO (nn)
with a brute force algorithm.

Efficient data structures to store groups of permutations
such as the Schreier-Sims representation [6] could provide
a candidate to defineH. However, the generating set they
provide is notmonotonic< in general. Even when it is, its
size can be much larger than necessary. For instance, the
Schreier-Sims representation of the full group of permuta-
tions Sn is quadratic inn, whereas amonotonic< set of size
n exists.

We provide in this section an appropriate setH for
common symmetry groups.

Proposition 1. The set of adjacent transpositions is
monotonic< for Sn.

Proof: Let s= (s1, . . . ,sn) ∈ N
n be a state, such that

∃g ∈ Sn,g.s < s. This means thats is not sorted, and
therefore, there exists an indexi such thatsi > si+1. Thus
s′ = τi,i+1.s= (s1, . . . ,si+1,si , . . . ,sn)< s.

Proposition 2. Let r be the rotation(2,3, . . . ,n,1), and G=
〈r〉 = {id, r, r2 . . . rn−1}. Then G is the only monotonic< set
w.r.t. G.

Proof: For 0< i ≤ n, let s= (1,2, . . . i−1,0, i+1, . . .n).
Then the only rotation inG that reducess is r i .

These two groups are the most frequently encountered
groups of symmetries in the literature, as they occur natu-
rally in many symmetric systems. This gives usmonotonic<
sets of sizen for these two groups. The two properties above
are still true when considering groups that act on a subset
of the system variables.

When the symmetries of the system arise from sev-
eral symmetry groups (i.e. symmetries of subsystems), we
choose to use the union of their respectivemonotonic< sets.

Let G = 〈E∪F〉, and HE, HF be monotonic< sets w.r.t.
E andF respectively.HG = HE ∪HF is monotonic< w.r.t. G
if E and F act on disjoint sets of variables. Otherwise, we
are not ensured thatHG is monotonic< w.r.t. G, but it can
still be used as a good candidate set for the algorithm.
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Figure 4. UsingG = S3, we obtainH = {τ1,2,τ2,3}. set canonize(H) applied to (a) successively gives (b), (c), (d). (d) is the set of canonical
representatives{(1,2,3),(1,3,3)}.

# generated states time (s) Memory (MB)
Model Scale LoLa DD DD-Sym LoLa DD DD-Sym LoLa DD DD-Sym

Soft. Product Line 80 486 3.8685·1025 486 540 135 193 364 273 558
Soft. Product Line 100 606 4.0564·1031 606 1,488 238 399 558 411 964
Soft. Product Line 120 726 4.2535·1037 726 3,284 389 776 795 589 1,305
Soft. Product Line 140 — 4.4601·1043 846 — 581 1,417 — 800 1,311
Soft. Product Line 160 — 4.6768·1049 966 — 844 2,472 — 1,014 1,314
Soft. Product Line 180 — 4.9040·1055 — — 1,167 — — 1,256 —
Soft. Product Line 200 — 5.1422·1061 — — 1,587 — — 1,560 —

clients servers 5 22,840 805,284 192 1 4 1.4 14 122 58
clients servers 6 425,646 11,368,449 448 27 18 3.8 234 383 140
clients servers 7 3,630,511 157,169,826 1,024 452 67 8.8 1,971 1,232 267
clients servers 8 — 2,130,740,721 2,295 — 306 19 — 3,200 521
clients servers 12 — — 42,926 — — 350 — — 4,004

SaleStore 5 4,456 71,238 106 0.1 0.93 0.32 3.9 36 17
SaleStore 10 1,410,608 184,554,369 496 111 37 3.2 689 708 99
SaleStore 15 — 207,629,747,172 1,186 — 692 12.5 — 4,190 303
SaleStore 20 — — 2,176 — — 30 — — 722
SaleStore 30 — — 5,056 — — 154 — — 2,455
SaleStore 40 — — 9,136 — — 495 — — 4,194

Table I
PERFORMANCES OF STATE SPACE GENERATION USINGLOLA , PLAIN DD AND THE COMBINATION OF DD WITH SYMMETRIES.

Other types of symmetries on data values,
such as v = (ob j1,ob j2 . . . re f1, re f2), and g.v =
(ob jg.1,ob jg.2 . . .g.re f1,g.re f2) can be integrated into
our algorithm seamlessly. This symmetry is of interest as
it corresponds to the case whereob j1 and ob j2 contain
similar objects andre f1, re f2 are references to these objects,
that need to be reindexed if we exchange the positions of
the two objects. This case is encountered when canonizing
the memory (heap in particular) of a concurrent system.

E. Assessment

In this section, we assess our algorithm on some examples.
We compare our approach to an implementation of Junttila’s
algorithm for symmetry reduction and to symbolic model
checking without the use of symmetries.

The tool LoLa [17] uses a Schreier-Sims representation
of the symmetry group and produces a reduced system with
potentially several representatives per orbit. It works with

explicit data structures, thus its memory consumption grows
linearly with the number of representative states. LoLa is a
well maintained and mature software.

On the other hand, we compare our algorithm to li-
bITS [16], [18], a model checker implemented using DDD,
but no symmetries. Up to the addition of symmetries, it
uses the same encoding (states, transition relation) as our
prototype DD-Sym.

Table I compares the size of the produced state space
(time and memory consumption during its elaboration), for
these three tools. Experiments were run on a Xeon 64 bits
at 2.6 GHz processor with a time limitation of 1 hour and
memory limit of 5Gbytes. The following models (shown in
annex) were processed:

Software Product Line [19]. It is a model extracted and
then adapted from a case study concerning a software
configuration process. Features and configuration options are
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Figure 5. Clients servers model: time to build the state space.
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Figure 6. Software Product Line model: time to build the state space.

fully symmetric domains, that do not interact directly. Thus,
the union of their respectivemonotonic< sets ismonotonic<
w.r.t. the symmetry group of the model. LoLa and DD-Sym
both compute the quotient graph, with one representative
per orbit. The symmetry group exhibited by this model is
particularly simple; this means the canonization procedure
has a relatively low complexity. The classical DD imple-
mentation has the best performance on this example, and
LoLa the worst. However, DD-Sym’s memory consumption
does not grow beyond 1.3Gbyte, at the point where the
DD garbage collector activates. This means that DD-Sym,
on this model, does not compute intermediate structures
whose size exceeds 1.3Gbyte, and could actually run within
a memory confined to 1.3Gbyte. This limit is paid in time,
as the garbage collection frees the DD caches. In deed,
DD-Sym fails earlier than the classical DD implementation,
due to time confinement. On the other hand, the classical
DD implementation, that uses the same garbage collection
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Figure 7. Clients servers model: memory to build the state space.
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Figure 8. Software Product Line model: memory to build the statespace.

mechanism, has a much bigger memory peak.

Clients servers [10].It models a simple remote procedure
call protocol betweenn clients andn servers sharing a
common communication channel. Clients (resp. servers) are
considered indistinguishable up to their identity. Thus, we
have a full symmetry group on clients and a full symmetry
group on servers. We use the union of their respective
monotonic< sets, which is not itselfmonotonic< w.r.t. the
symmetries of the whole system. However, on this model,
DD-Sym scales better than the other tools. Although the re-
duction factor is good, the multiple representatives approach
in LoLa still retains too many states to cope with larger scale
parameters. DDDs are able to handle up to 2 billion states,
but fail earlier than our prototype.

SaleStore [11]. It models a shopping mall where clients
can shop for gifts. Clients and gifts form two fully sym-
metric domains, that interact when a client buys some gifts.
Similarly to the clients servers model, we use the union of



the monotonic< sets. Again, the number of states in LoLa’s
representation grows very fast; it fails before the purely
symbolic approach. DD-Sym allows the symbolic approach
to scale up to much larger model parameters, as the number
of representatives grows very slowly.

Discussion on the Results of Table I and figures 5 to 8.
The three tools do not compute the same representation
of the state space, hence they don’t always find the same
number of states. The classical DD tool computes the full
transition system without any symmetry reduction, while
both Lola and DD-Sym compute a quotient structure and
the number of states shown is actually the number of orbit
representatives computed.

Both DD-Sym and Lola use an algorithm which might
lead to several representatives of an orbit being represented.
LoLa’s strategy to compute several representatives for each
orbit reduces the cost of canonization, and is supposed to be
a good trade-off between the time-consuming canonization
and the size of the quotient graph. Our own algorithm may
produce several representatives if the provided setH is not
monotonic< w.r.t. G.

In order to control when the tested tools achieve full
reduction, we have processed small instances of the models
with another tool that is guaranteed to perform full reduction.
In practice, both LoLa and DD-Sym compute a single
representative per orbit for the Software Product Line model,
achieving full reduction. For the two other models, the sets
H we use to canonize are notmonotonic<. In spite of this,
DD-Sym only computes a single representative per orbit
for the SaleStore model. On the client-server model, neither
LoLa nor DD-Sym achieve maximum reduction, but LoLa
computes many more representative than we do.

LoLa fails on the Software Product Line model, due to
the time confinement, although it consumes 33% memory
more than the DD classical implementation. As previously
explained, DD-Sym’s memory consumption reaches a max-
imum when the garbage collector activates. DD-Sym then
fails on bigger instances due to time confinement, but would
consume less memory than the classical DD implementation
if the time limit were higher.

For the two other models, DD-Sym exhibits the best
performances, and LoLa the worst. DD-Sym handles the
models for higher scaling parameters, and its time and
memory consumption grow slower than the two other tools.
LoLa handles fewer instances and its time and memory
consumption are higher than the pure-DD tool.

The great number of states handled by the DD tool with a
reasonable amount of memory shows the strength of deci-
sion diagrams to compress large state sets. Moreover, this
assessment fully validates our novel approach, as it favorably
compares to both Junttila’s algorithm and the classical DD
approach. We thus have designed a way to combine the two
symbolic approaches so that their respective optimizations

can stack.
These results, while preliminary, are encouraging. It al-

lows our DD checker to scale better for some symmetric
models. It also favorably compares to explicit symmetry-
based methods.

DD-Sym will be integrated into the ITS framework, and
extended to use Hierarchical Set Decision Diagrams [18].

IV. CONCLUSION

We have presented a novel approach to combine symme-
tries with symbolic data structures. It relies on the choiceof
an appropriate subset of symmetries, that allows to compute
a reduced state space without needing to represent the orbit
relation. Our algorithm supports arbitrary symmetry groups.
Even if a monotonic< set cannot be computed easily, we
provide an approximation that works well in practice for
commonly encountered symmetries. We ensure correctness
even if the provided set of symmetries does not respect the
monotonic< property; this simply yields a larger state space.

Although our experiments are so far limited, we show that
this approach can improve a method that only uses decision
diagrams.

We are currently investigating the definition of
monotonic< sets for other symmetries, such as those
encountered when considering memory addresses and
pointers.

Another perspective in the context of local symmetries
[20] [21] involves adaptation of the set used for canonization
during the state space construction.
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