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Abstract—The main limit towards practical model-checking
is the combinatorial explosion of the number of states. Among
numerous solutions proposed to tackle this problem, Decision
Diagrams (DDs) have been proved efficient. They are however
low-level data structures: translating a high-level model to them
can be cumbersome. Indeed, little work towards their better
usability has been undertaken.

We propose an abstract mechanism for the manipulation of
DDs, where system transitions are described in terms of rewrite
rules. We describe how basic rewrite rules can be assembled
through strategies, to describe complex transition relations (e.g.
involving various levels of synchronization among parallel com-
ponents). The strategies and rewrite rules offer a higher-level
interface, where the nature of underlying DD is hidden, close to
high-level languages used to model concurrent systems. We also
describe specific strategies that we use to automatically translate
high-level modeling languages (namely Petri Nets and imperative
languages) to rewrite strategies, ultimately translated in terms of
operations on DDs.

Keywords—symbolic model checking, term rewriting, semantics

I. INTRODUCTION

New languages and formalisms are born every year. Some
of these languages need to provide verification features to
their users. Ideally, these new languages should be able to
reuse existing tools to offer these features without too much
effort. Implementing a simulation engine for a formalism is
usually not a complicated task. Nevertheless, performing a
more thorough analysis almost always confronts the language
developer with the difficulty of the semantics definition and
the State Space Explosion (SSE) problem [1]. One of the
techniques used to harness the SSE problem is symbolic model
checking [2]. The problem thus reduces to reusing a symbolic
model checker.

However, current symbolic model checkers are severely
limited in the kind of models they can verify. Indeed, most
symbolic model checkers can only handle models that use a
predefined set of data types and operations, mostly integers and
Booleans. This limitation is due to the underlying Decision
Diagrams (DDs) and the lack of generality of the data type
models they support.

This limitation makes the reusing of model checkers for
languages other than their initial target almost impossible in
practice. In fact, the translation of high level languages to
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Fig. 1. Our approach and contribution

model checker low level formalisms presents several draw-
backs: it can significantly increase model size, its correctness
is hard to verify, and it is far from being straightforward.
Two practical examples of these problems can be found in
the Model-Checking Contest (MCC) [3]: the Drink Vending
Machine and CSRepetition models. For the former, its textual
representation as a Coloured Petri net (CPN) (high level) is
only 24 Kb, while its textual representation as a Place/Transi-
tion Petri net (PN) is 139.9 Mb. The two versions of the latter
model were proven to have different semantics where several
tools reported different state spaces for them. This shows that
even a translation that has been known for years and that
presents no theoretical difficulty is still prone to errors.

Another popular approach translates the verification prob-
lem into a boolean SAT or SMT problem [4]. Verifiers thus eas-
ily benefit from improvements and breakthroughs in SAT/SMT
solving. Nevertheless, the translation of data structures to
SAT requires finite domains, which is a severe limitation of
the method. Several years of research have demonstrated the
efficiency of symbolic data structures to handle the SSE, and
recent work [5] shows that it remains a serious competitor
to SAT solving-based techniques. Also, SMT/SAT solvers are
limited in general to integers and Boolean data types.

Rather than using an existing symbolic model checker or
SAT/SMT solver, one can also write a translation directly to the
data structure used for symbolic model checking, i.e., DDs [6],
[7], [8], [9]. The problem here is almost the same as with
translation to model checkers. The data types supported by



most DDs are integers and Booleans. A notable exception
are ΣDDs [7], which support custom defined operations and
data types based on Abstract Data Types (ADTs). However,
their usage in model checking was limited to the rewriting of
sets of terms in the model checking of Algebraic Petri nets
(APNs) [10].

Finally, whichever approach is chosen to implement the
model checker, the user has to deal with optimizations. Model
checkers usually provide such optimizations for free for their
primary targetted formalisms. However, information relevant
to optimization is sometimes “lost in translation”. Taking
advantage of model checker built-in optimizations complicates
even more the reuse of an existing model checker.

A lot of work has been undertaken to raise the level of
abstraction of DDs, from Binary Decision Diagrams (BDDs),
based entirely on Boolean functions, to recent ΣDDs, manipu-
lating ADTs to handle high level specifications. This evolution
is detailed in Section VII. Nevertheless, translating a high level
model to ΣDDs still requires a comprehensive knowledge of
the DD structure.

We propose a framework to abstract the DD-specific parts.
On one hand this helps to ease the translation process. On the
other hand it allows further research to be focused specifically
on DDs. To tackle the aforementioned problems our framework
systematizes the construction of a symbolic model checker.
Our framework, shown in Figure 1, comprises three layers.
Each layer describes the semantics of the formalism at a dif-
ferent level of abstraction. The upmost layer is the denotational
semantics of the formalism expressed as functions on mathe-
matical objects. It represents an abstract view of the semantics.
A concrete semantics in this layer is given by Structured
Operational Semantics (SOS) rules [11]. The middle layer
represents the operational semantics using Set Rewriting (SR).
The building blocks of a SR-based semantics are strategies. SR
is our core contribution and is fully introduced in Section III. It
allows to express semantics, optimizations and model checking
computations. It shows a concrete view of the semantics and
can easily be translated to a very fast and memory efficient
representation for model checking. This translation is omitted
from this paper for space reasons, we detail it in [12]. The
bottom layer is based on ΣDDs. Actual computations are done
in this layer. We provide a working implementation of the
strategies for the middle layer, the translation to the lower
layer, and the ΣDD-based lower layer. The user only has to
provide the Term Rewriting (TR) strategies (in Figure 1, the
“User-defined translation”) in order to automatically have an
efficient symbolic model checker for the source formalism.
The main contribution of this paper is the introduction of SR
together with a systematic approach to produce the “User-
defined translation” from Figure 1.

Outline Section II first presents the abstract semantics of a
concurrent system. Section III and Section IV are at the heart
of our contribution, introducing set rewriting, and its usage
to represent the semantics. Section V sketches the DDs used
for implementation. Section VI proposes an experimental
assessment. Finally, related work is discussed in Section VII,
and Section VIII concludes the paper.

II. ABSTRACT SEMANTICS

We choose to describe the abstract semantics with the well-
known SOS rules. The semantics in this form is given as a
set of inference rules called SOS rules. Each rule, based on
predicates defined on semantic domains, provides a way to
deduce the existence of a transition in the semantics. A set of
SOS inference rules, i.e., rules satisfying certain constraints,
produces a sound transition system.

We consider only SOS rules of the form

c

s→ a(s)
(1)

where s ∈ Γ is the state from the state space Γ, c ∈ Cond is
a condition, and a ∈ Act is a function that transforms a state
to another state. The arrow → represents a visible transition
in the transtion system.

For languages with a more imperative structure, SOS rules
may be presented differently. For example one can have
rules that contain sub-transitions in the numerator. We do not
consider such rules, but the translation method we provide
later allows to represent equivalent semantics with only simple
rules.

For example, Petri nets (PNs) have a very simple semantic
definition based on one inference rule. Formally, a PN is an
n-tuple 〈P, T, in, out,m0〉 where P is a finite set of places, T
is a finite set of transitions, and in and out are respectively the
pre and post conditions (in curried form) in : T → (P → N)
and out : T → (P → N). The marking (or state) is a mapping
from places to integers: m : P → N. Each transition t yields
a semantical rule:

m ≥ in(t)

m→t m− in(t) + out(t)
(2)

where m,m1,m2 ∈ (P → N), m1 ≥ m2 is true if and
only if ∀p ∈ P : m1(p) ≥ m2(p), and (m1 + m2) :
p 7→ m1(p) + m2(p). SOS rule (2) clearly corresponds to
the template presented by Rule (1).

III. SET REWRITING STRATEGIES

In this section we present the core of our contribution,
namely a language to describe operations on DDs and its
semantics. The semantics of this language is given over sets
of terms. Its building blocks are Set Rewriting (SR) strategies.
Our ultimate goal is to translate a semantics given in SOS
rules to a semantics described using SR. Basically SR needs a
way to represent the states and a way to describe a transition,
i.e., the SOS rule. In SR one describes states using terms,
and SOS rules using SR strategies. In the same way that a
SOS rule describes how to compute the successor of a given
state by some transition, SR describes how to compute the
set of successors of a set of states. This section is divided in
two subsections. We first give the formal definition of Term
Rewriting (TR) in Section III-A, which can be skipped by
the familiar reader. We then describe our SR strategies, which
bring some original definitions.



R =


1. not(true) false

2. not(false) true

3. and(true, $x) $x

4. and(false, $x) false


Fig. 2. Boolean rewrite rules

A. Term Rewrite Systems

The theory in this section was defined in [12] with the
more complete Order-Sorted Signature [13], limited here to
Many-Sorted Signature (MSS) [14] for simplicity. For a formal
language, a MSS lists the data types (sorts), and the symbols
available in the language (function names). The sentences of
a language are generated from its MSS.

A Many-Sorted Signature is a pair Σ = 〈S, F 〉, where S
is a finite set of sorts and F = (Fω,s)ω∈S∗,s∈S is a (S∗×
S)-sorted set of function names. Every f ∈ Fε,s is called a
constant, with ε the empty string.

Each sentence in the formal language described by a MSS
is called a term. Let Σ = 〈S, F 〉 be a MSS and X be an
S-sorted set of variables. The set of terms over Σ with sort
s ∈ S, denoted by (TΣ,X)s, is the least set inductively defined
by:

• x ∈ (TΣ,X)s for all x ∈ Xs, and c ∈ (TΣ,X)s for
all c ∈ Fε,s;

• f(t1, . . . , tn) ∈ (TΣ,X)s for all f ∈ Fs1,...,sn,s , and
for all ti ∈ (TΣ,X)si with 1 ≤ i ≤ n.

Composite terms, i.e., not reduced to a constant or a
variable, consist of a function symbol concatenated to terms
of compatible sorts, called subterms.

The operational semantics of a system is defined through
successive rewritings of the term until a final value is reached.
A rewrite step is described by rewrite rule (or TR rule), an
ordered pair of terms l  r ∈ TΣ,X × TΣ,X . A set of rewrite
rules is a Term Rewrite System (TRS). For example, the
signature of Booleans consists of a single sort B, two constants
true and false, a single unary function symbol not and a single
binary function symbol and. Figure 2 shows TRS for this MSS.
Please note that variables (in rules 3 and 4) are prefixed by a
dollar sign $.

A substitution θ : X 7→ TΣ,X is a set of variable
assignments. θ naturally extends from variables to terms: in
postfix notation, tθ is the term t where each variable x has
been replaced by xθ. For the substitution θ = {x 7→ false},
we have and(true, x)θ = and(true, false).

A term s rewrites to t by some rewrite rule l  r in
R (also noted s

〈l,r〉,C−→ t) if there is a term C with a single
occurrence of the fresh variable X , and a substitution θ such
that s = C{X 7→ lθ} and t = C{X 7→ rθ}. If we have
C = X we say that the rules is applied at the root of the term.
For the term t = and(true, not(false)), there are two possible
rewrite steps from the rules in Figure 2: t →R not(false) by
rule 3, and t→R and(true, true) by rule 2.

B. Strategies

Strategies are at the heart of Set Rewriting (SR), and are
inspired from the strategy languages of Maude [15], Tom [16]

and ELAN [17]. We use strategies to describe the different
transitions of a system. Each strategy may represent either one
or several transitions. The main particularity of our approach
is that our strategies are defined on sets of terms, and not
only terms. In particular, given a set of states (expressed as
terms), a strategy operationally describes how to obtain the
set of successor states of the given set. We also introduce
two brand new strategies, namely the Union and Fixpoint

strategies. Apart from describing operational semantics, our
strategies have two secondary goals to improve their model
checking capabilities. First, we want to completely remove non
determinism for the application of rewrite rules. Removing non
determinism allows to have a faster implementation and makes
reasoning on rewrite rules easier. Second, we want to control
how rules are applied. This allows us to tune the computation
described by the strategy to make it even faster.

A strategy is a partial function Strat : P(TΣ,X) 7→
P(TΣ,X)1. If defined on a set of terms T , a strategy applied
to T yields a new set of terms. We say that a strategy fails
on sets of terms on which it is not defined. Our framework
provides means to describe such partial functions using rewrite
rules, and to combine them using predefined strategy opera-
tors. These are themselves strategies, i.e., they can be again
combined to create even more complex strategies. The users
can also create their own combination operators. Below we
introduce the different strategies of our framework.

A simple strategy is the SR equivalent of a TR rule.
Whereas a TR rule describes a local transformation of a term,
an SR simple strategy describes a local transformation on a
set of terms. A simple strategy consists of an ordered list of
TR rules. Intuitively its application proceeds as follows: in the
ordered list, pick the first rule that can rewrite at least one term
of the input set. If no such rule exists, then the whole strategy
fails; otherwise, the picked rule is applied to all the terms of
the input set. The result of the operation is the set containing
all terms that could be rewritten by the picked rule. Note that
in our setting the application of the TR rule is always done at
the root of the terms. More formally:

{r1, · · · , rn} [T ] =


fail if no rule in {r1, · · · , rn}

can be applied
Rewrk

(T ) if k is minimal s.t. rk
is defined on the set T

where the ri’s are rewrite rules, T ∈ TΣ,X is a set of terms,
and Rewr(T ) =

{
t|s ∈ T ∧ s r,X−→ t

}
with s

r,X−→ t denoting
the rewriting of s to t with rule r applied at root.

To describe operations that modify subterms (instead of
only the root of the term), we use the One(S) or the Onek(S)

strategy. The One(S) strategy is a parametric strategy that takes
one parameter. It is defined in terms of the Onek strategy.
Intuitively, the application of Onek(S) to a set of terms T
amounts to the application of S to the set T ′ of all the k-
th subterms of terms of T . If S fails on T ′, then Onek(S) fails
on T . Otherwise, each element of S(T ′) was, before rewriting,
a subterm of an element of T ; the final result of the strategy
is a set containing all elements of T with their original k-th
subterm replaced by the rewritten element in S(T ′). In practice,

1We use the notation 7→ to differentiate partial function from total functions



ITE(S1, S2, S3)[T ] =

{
S2[S1[T ]] if S1 succeeds
S3[T ] if S1 fails

Sequence(S1, S2)[T ] = ITE(S1, S2, Fail)[T ]

Choice(S1, S2)[T ] = ITE(S1, Identity, S2)[T ]

Union(S1, S2)[T ] =


fail if S1[T ] or

S2[T ] fails
S1[T ] ∪ S2[T ] otherwise

Identity[T ] = T

Fail[T ] = fail

Not(S)[T ] =


fail if S[T ] = T

T if S[T ] fails
T\S[T ] if S[T ] succeeds

FixPoint(S)[T ] =

{
T if S[T ] = T

FixPoint[T ′] if S[T ] = T ′

Fig. 3. Semantics of Set Rewriting strategies

all of this book keeping is done by the ΣDD structure. Its
formal semantics is the following (note that Onek(S) cannot
return an empty set, it would fail instead):

One(S)[T ] =


Onek(S)[T ] if k = min(1, · · · , n) s.t.

Onek(S)(T ) 6= fail

fail otherwise

Onek(S)[T ] =


{f(t1, · · · , t′, · · · , tn) |
f(t1, · · · , tk, · · · , tn) ∈ T and t′ ∈ S(tk)}

fail if the above set is empty

Simple strategies along with One are at the core of SR.
With them it is possible to describe local transformations at
any position of a term. These strategies have a direct translation
to ΣDDs. The rest of the strategies are combination strategies
and are depicted in Figure 3. Using the combination strategies
one can describe a global transformation, e.g., apply a set of
local transformations atomically. The Sequence strategy can
be used for that as well as to chain two strategies, handling
the case when they are not defined. The Union strategy allows
to reintroduce the non-determinism of the semantics in our
framework. The Fixpoint strategy describes fixpoint compu-
tations, usually smallest fixpoints so as to ensure convergence.
It is for instance used to compute the whole state space, as a
transitive closure of the transition relation. The ITE strategy is a
general operation to conditionally apply strategies. It subsumes
Sequence, and is typically used to describe optimization for the
evaluation of the rewrite rules.

IV. FROM SOS RULES TO SET REWRITING STRATEGIES

In this section we present a systematic way to translate SOS
rules to strategies. It is worth noting that there are approaches
to translate SOS rules to rewrite rules [18]. However, to the
best of our knowledge there is no research concerning the
transformation of SOS rules to standard rewrite strategies.
Besides, our strategy language has certain particularities that
render our approach unique due to its application on sets of
terms. In this section we take a pedagogical approach. First we
present a general approach to translate a semantics given with
SOS rules. Then we study the translation of two formalisms:
Petri nets and Divine [19] (a SPIN-like [20] formalism).

A. General approach

We assume that the goal of the user is to have a working
symbolic model checker for models of his formalism. The
typical user of our framework starts with two things: a for-
malism, which has a syntax and a semantics (SOS rules), and
instances of the formalism (we call these models). To achieve
this goal the user must provide what we call the “User-defined
translation” (the translation). The translation transforms a
model of the given formalism to an SR model. The SR model
consists of three things: a signature (cf. Section III-A), an
initial state, and a set of transitions expressed as strategies.
Since SR also allows the definition of new strategies, an SR
transition system also supports the definition of new strategies.
We omit such definitions from the translation. However, we
clearly indicate each time a new strategy is being defined.
In practice, the translation consists of two functions: 1) a
function compState (“compile state”) that translates a model
to a signature Σ and an initial state t0 ∈ TΣ, and 2) a
function comp (“compile”) that translates model transitions
to SR transitions.

The compState function is easy to derive. Indeed, one only
needs to recreate the data structure that contains a state using
terms. This structure is usually a map from variable names
to some data type. For the sake of brevity and because of
its simplicity, we omit a general description of compState
function. We present only the description of the states for the
case studies in the next subsections.

Before defining the comp function we give a more formal
structure to the simple SOS presented in Rule (1). We say that
a function returning a Boolean is a predicate. We then define
the set Cond inductively: If pred is a predicate, then pred ∈
Cond . Also, if p, p′ ∈ Cond , then p∧p′ ∈ Cond . Finally, if a
is a function such that a ◦ p is a predicate, then a ◦ p ∈ Cond .
Similarly we define the set Act . If act : Γ −→ Γ is a function
that transforms a state to another, then act ∈ Act . Also, if
a, a′ are functions such that their composition a◦a′ : Γ −→ Γ
then a ◦ a′ ∈ Act .

The comp function takes SOS rules (representing a tran-
sition) and returns an equivalent strategy. As stated before
we treat only the case of SOS rules of the format shown in
Rule (1) (we call them simple SOS rules). To overcome the
limitation of simple SOS rules we proceed in three stages.
First we describe formally the different predicates and actions,
i.e., the predicates in the set Cond and the functions in the set
Act . Second, we craft the simple SOS rules from the functions
and predicates we defined. Finally, we provide the specific
translation for the predicates and functions to strategies. The
general translation is given below. We provide placeholder
functions for the translation of the formalism specific parts.

Let us formally describe the comp function. The comp
function obviously depends on the formalism being com-
piled. That dependency is visible in the userPredComp and
userActComp functions. These two functions are specific to
each formalism. Here we factor out the specific parts and



nat zero: nat
s: nat 7→ nat

pname P1: pname
P2: pname
...

mapping empty: mapping
map: pname, nat, mapping 7→ mapping

TABLE I. TERM SIGNATURE FOR PETRI NET MARKINGS

present a very general function.

comp :
c

s→ a(s)
7→ Sequence(comp(c), comp(a))

: c ∧ c′ 7→ Sequence(comp(c), comp(c′))

: a ◦ a′ 7→ Sequence(comp(a), comp(a ′))

: a ◦ p 7→ Sequence(comp(a), comp(p))

: pred 7→ userPredComp(pred)

: act 7→ userActComp(act), if act : Γ→ Γ

This definition relies on a few assumptions. First, the strat-
egy resulting from compiling a condition, i.e., the strategy
comp(c), must fail if the condition is not satisfied by any
term of the input set. This ensures that if a condition in a
SOS rules does not hold then its corresponding strategy fails.
Second, if the condition strategy succeeds on input T resulting
in T ′, then T ′ must be the subset of T that satisfies condition
c. Third, the compilation of an action guarded by c needs to
be always defined on all the inputs that pass condition c.

In the following case studies we show examples of the
definition of both formalism specific functions. This includes
also the translation of concrete predicates and actions to
strategies. In the following case studies we treat strategies
and rewrite rules as if they worked on single terms. For most
cases, reasoning on terms greatly simplifies the creation of a
translation and is also correct. Each time that the single term
reasoning does not apply we precise accordingly.

B. Case Study: Petri nets

This translation is implemented in our tool Strategy
Generic Extensible Modelchecker (StrataGEM) [21].

1) The intermediate language: Given the set of places
of one PN we define its set of states as the set Γ =
{m | m : P → N} of all potential markings. We first define
one predicate testp,n : Γ −→ B(= {true, false}) to test if a
place p in a given state contains at least n tokens. We also
need an action to decrease the number of tokens in a place
and another one to increase the number of tokens in a place.
We propose the following functions: decp,n and incp,n, where
p is a place and n a strictly positive integer, both functions
are of type Γ −→ Γ. We can now define the simple SOS rule
corresponding to a PN transition as follows:

t =
true =

∧
p∈P testp,in(t)(p)(m) P = {p1, . . . , pn′}

m→ a(m)

with a = decp1,in(t)(p1)◦· · ·◦decpn′ ,in(t)(pn′ )
◦incp1,in(t)(p1)◦

· · · ◦ incpn′ ,in(t)(pn′ )
(semantically, the order of application

does not matter).

2) Describing the state: In our framework states are
simple terms: the set of states of a PN is the set of its
markings (i.e., mappings from P to N, see Section II).
We propose the signature described in Table I. There is
a sort for natural numbers, a sort for places and a sort
representing a map. Natural numbers are encoded as terms
being either zero, or suc(t) where t is an integer term.
For clarity, integer terms are often replaced by plain integers.
For instance, the initial state of a PN with three places is
map(P1, 0, map(P2, 5, map(P3, 0, empty))). mapping is
an inductive structure, which allows to define generic strategies
to read and modify it. The same structure can be used for a
system whose states represent sets of variable assigments.

3) The comp function: To complete the definition of comp,
we proceed to define the userPredComp and userActComp
functions. Our goal is to define simply how a specific predicate
or action is written as a strategy.

We start by translating the predicate testp,n.
Our testing strategy first locates the place p thanks
to a parametric strategy applyTo(checkLoc, S) =
ITE(checkLoc, S, One3(applyTo(checkLoc, S)). The
applyTo strategy takes two parameters: a all-or-nothing
strategy checkLoc to select the appropriate location, and a
strategy S to be applied at the position selected by checkLoc.
The applyTo strategy first applied checkLoc. If it fails, we
have not reached the desired location, and applyTo applies
itself recursively on subterms. When the appropriate depth is
reached, checkLoc succeeds returning its input set unchanged,
and S is applied. Thus, our translation is done by creating
sound checkLoc and S strategies.

Since for a given PN we know all the places, we can di-
rectly define a checkLocp strategy for each place p: checkLocp
= { map(p, $x, $m)  map(p, $x, $m) }2. Given a set
of terms, the strategy checkLocp returns only the subset of
elements whose first subterm contains the place p. In particular
it fails if no term in the set contains the place p at the first sub-
term. We then propose testCondn = { map($p, compInt(n)
, $m) map($p, compInt(n) , $m) that performs the actual
test. The function compInt : N −→ TΣ,X takes a natural
number n and returns a term capable of matching a larger or
equal number. Its definition is given below:

compInt : N→ TΣ

: 1 7→ s($x)

: n 7→ s(compInt(n− 1))

Using the aforepresented functions we can define the
userPredComp function as follows:

userPredComp : testp,n 7→ applyTo(checkLocp, testCondn)

Finally we need to define the userActComp strategy, based
on the translation of our decp,n and incp,n functions. The
modularity of our framework allows to reuse the strategies we

2For simplicity the term p corresponds to the place p. Please note that
p is not supposed to be a variable (in the rewriting sense) but a constant
representing a place.



already defined, thus we proceed directly to outline the form
of the userActComp function:

userActComp : decp,n 7→ applyTo(checkLocp, decStratn)
: incp,n 7→ applyTo(checkLocp, incStratn)

Finally this definition only leaves us with the definition
of a translation for decStratn and incStratn. Let us
consider decStratn = { map($p, compInt(n) , $m)  
map($p, $x, $m)}. This strategy simply removes n tokens
from p. incStratn presents exactly the same structure, only
that the terms on the rule are inverted.

C. Case Study: Divine

This translation is also implemented in our tool StrataGEM.
Divine is a language whose syntax resembles that of SPIN [20].
The Divine formalism is aimed at modeling concurrent sys-
tems. A Divine model features a set of processes and global
variables. Each process defines a set of internal variables and
transitions. Each transition might read and write its owner
process’s variables as well as the global ones. For the sake
of brevity we only present formal definitions on a need-to-
know basis. For the moment we consider a Divine instance as
a tuple 〈V, P, (Vp)p∈P 〉, where V is the set of global variables,
P the set of processes, and (Vp)p∈P a family of sets indexed
by the processes, each set represents the local variables of a
process. We assume that for all p, p′ ∈ P (p 6= p′), we have
Vp ∩ Vp′ = Vp ∩ V = ∅. Also, without loss of generality we
suppose that variables always store integers i ∈ Z. Also, we
present here only a simplified version of Divine. We focus
mainly on transitions.

The set of expressions Expr is inductively defined as the
smallest set containing all integers, all variables of the Divine
model, and additions and substractions thereof (we limit to
two operators for the sake of brevity). An assignment is a
pair v := e were v is a variable and e an expression. We
also consider the set of Booleans B. A guard is a boolean
combination of comparisons (only equality here for simplicity)
between expressions.

A transition in Divine consists of a guard expression
followed by a list of variable assignments. Formally we write
a transition as trans g; as ∈ Trans , where g ∈ Guards and
as ∈ Assign .

1) The intermediate language: As we did with PNs, we
proceed to describe the actions and predicates that form the
building blocks of our SOS rules. We propose an intermediate
language working on a stack machine, i.e., a machine that uses
a pushdown stack instead of machine registers. The state of the
machine is represented by a tuple 〈st ,m〉, where st ∈ Stack ∪
Guards is a stack of integers (or a guard expression), and m ∈
M =

{
m | m : V ∪

⋃
p∈P Vp −→ N

}
is a map from variables

to natural numbers. Thus, we define a the set of a states of a
Divine model as a Γ = (Stack ×M) ∪ (Guards ×M).

The intermediate language is depicted completely in Fig-
ure 4. Machine stack operations have the following semantics:
push (do not confuse with pushn which is an instruction of the
intermediate language) adds an element to the stack and returns
the stack, pop removes the top element of the new stack and
returns the stack, and top returns the top element of the stack.

test : BoolExpr ×M → {true, false}

: 〈b, ρ〉 7→
{

true , if b = true
false , otherwise

pushn : Stack ×M → Stack ×M
: 〈st, ρ〉 7→ 〈push(n, st), ρ〉

add : Stack ×M → Stack ×M
: 〈st, ρ〉 7→ 〈push(top(st) + top(pop(st)), pop(pop(st))), ρ〉

subt : Stack ×M → Stack ×M
: 〈st, ρ〉 7→ 〈push(top(st)− top(pop(st)), pop(pop(st))), ρ〉

readv : Stack ×M → Stack ×M
: 〈st, ρ〉 7→ 〈push(ρ(v)), ρ〉

writev : Stack ×M → Stack ×M
: 〈st, ρ〉 7→ 〈pop(st), ρ[v = top(st)]〉

eq : Stack ×M → BoolExpr ×M
: 〈st, ρ〉 7→ 〈top(st) = top(pop(st)), ρ〉

Fig. 4. Semantics of the Intermediate language

Using the operations in Figure 4 one can describe the semantics
of Divine using simple SOS rules. The intermediate language
is a set of functions and consequently they are composed
according to their profile to produce a pre-condition and a
post-condition in the SOS rule.

Our next step is to provide a description of a Divine
transition by a simple SOS rule. We present such a function
in Figure 5. The function creates a simple SOS rule for each
Divine transition.

The translation of trans g; a is :
true = lComp(g)(〈st ,m〉)
〈st ,m〉 → lComp(a)(〈st ,m〉)

which has the same shape as the rules already presented. The
complexity is hidden in the compilation function.

To illustrate the working of this function we present
an example. Let us consider a system with two global
variables v, v′ ∈ V and translate the following transition:
trans v = 1 + v′ ; v := v + 1. The reader can verify
that the corresponding simple SOS rule is the following:
true = test ◦ eq ◦ readv′ ◦ add ◦ readv ◦ push1(〈st ,m〉)
〈st ,m〉 → writev ◦ add ◦ readv ◦ push1(〈st ,m〉)
This rule describes exactly what is happening to the stack

and memory after the evaluation of this Divine instruction.
One may argue that some sub-expressions are similar on the
top and in the bottom and then produce inefficiencies. It must
be noted that this is automatically optimized by the underlying
operational mechanisms based on memoization.

2) Describing the state: This set of states is almost exactly
the same as the one we used for PNs. Thus we encode it using
the signature presented in Table I. We also need to encode
the stack. To avoid the declaration of new data structures we
encode the stack using a new variable on top of the existing
map. We also intentionally omit a declaration for the integer
sort and refer the reader to the examples available for our tool.
For example, given the term m that represents a map, and an
integer n, we represent the pair map integer with the following
term: map(t, n, m).

Concerning the Boolean expressions that we allow in
the state, we extend the signature with the Boolean type



lComp : DivBasicExpr → Cond ∪Act

: c and c′ 7→ lComp(c) ∧ lComp(c)

: true 7→ true

: false 7→ false

: e = e′ 7→ test ◦ eq ◦ lComp(e) ◦ lComp(e′)

: e+ e′ 7→ add ◦ lComp(e) ◦ lComp(e′)

: e− e′ 7→ subt ◦ lComp(e) ◦ lComp(e′)

: id := e 7→ writev ◦ lComp(e)

: a; a 7→ lComp(a) ◦ lComp(a)

: n 7→ pushn
: v 7→ readv

Fig. 5. Translation from Divine to simple SOS rule

and we add an operator test: bool, mapping 7→ state. The
Boolean type contains the constants: true and false. It
also contains the comparison operator eq: nat, nat 7→ bool.
Using these types we can now define the comp func-
tion. We also define operations in the signature, such as
+: nat, nat 7→ nat and -: nat, nat 7→ nat. We call terms
containing one of such operation (plus, substraction, eq) oper-
ation terms.

3) The comp function: Given our intermediate lan-
guage, we only need to provide the userPredComp and
userActComp. For userPredComp we only have one transla-
tion to do, i.e., the test predicate. The translation is straightfor-
ward because most of the work is done by the other functions.
The translation is given below:

userPredComp : test 7→ test(true, $m)  $m

This translation assumes that the functions that are applied
before the test reduce the conditions to either true or false.
Then when we apply the aforementioned rule to a set of terms
we obtain the desired behavior. The rule returns only the terms
where the condition is true (recall that the rule is applied to a
set of terms) and fails if no term can be rewritten by it.

Next we treat the translation of actual operations, in our
case operations on integers. We have defined three operations
in Figure 4: add , subt , and eq . The principle for treating
operations is always the same. We need a set of rules that
performs the actual transformation and a strategy that ensures
that the rules are applied correctly to the set of terms. We
present the two parts for the eq translation. First, we define
the actual rules using the following simple strategy:

equals = {eq(0, 0) true,
eq(suc($n1), suc($n2)) eq($n1, $n2),

eq(0, suc($n1)) false,

eq(suc($n1), 0) false }

The next step is to define the strategies that apply the equals

strategy. We assume that the set of terms on which the equals

strategy is applied does not contain operation terms. Given
a set of terms T , where for each t ∈ T we have t of the
form test(eq(t1, t2), t3), we want to reduce it to a set
of terms T ′. The new set T ′ contains only elements of the
form test(true, t1) or test(false, t1). Thus, we need
to define an applyEquals strategy to accomplish this result.
One might argue that the semantics of the simple rule cannot

accomplish the task because it removes all elements that were
not rewritten. Thus we need to declare a new strategy:

RewriteSet(S) = Choice(Union(S, Not(S)),

Choice(S, Not(S)))

The RewriteSet strategy enables to use SR rule without
removing the terms that were not rewritten. To do this, it uses
the Not strategy (cf. Figure 3 for its semantics). Its workings
is easy to explain. It tries to do the union of the SR simple
strategy with the its complement (i.e., the Not strategy). If one
of the two fails, then it tries to execute only one of them.
Finally, we can present the a strategy that applies the equals

strategy obtaining the desired result:

applyEquals = One1(Fixpoint(RewriteSet(equals)))

The strategies for handling the other operations all follow
the same pattern presented for the eq operator. The only
difference is the simple strategy. The rules contained in the
simple strategies are the same rules that one would use in a
classical TR setting.

Finally, we need to describe the readv and writev trans-
lations. We present here the strategy readV. It reads a value
from the map and then puts it on top of the stack. First, we
present it with its auxiliary strategies:

checkV = map(j, $n, $s) map(j, $n, $s)

findVAndApply(S) = ITE(checkV, S,

One3(findAndApply(S)))

upSwap = map($v, $n, map(stackH, $n, $s)) 

map(stackH, $n, map($v, $n, $s))

upAux = Choice(upSwap,

Sequence(One3(upAux), upSwap))

endUp = map(stackH, $n, map($v, $n, $s)) 
map(t, $n, map($v, $n, $s))

up = Choice(endUp, upAux)

copy = map(j, $n, $p)  map(stackElt,

$n, map(j, $n, $p))

readV = Sequence(findVAndApply(copy), up)

The first two strategies (checkV and findVAndApply) are
similar to what we already saw for PNs. The up strategy is
composed of two auxiliary strategies. upAux just swaps two
subterms. endUp finishes the swapping by setting the name of
the auxiliary variable to t. The copy strategy just copies a term
as its name implies. Finally, the reading strategy readV does
exactly what we need, it finds the variable and moves it up the
set of terms to create the stack.

To conclude we can add a mapping to the userActComp
function as follows:

userActComp : readv 7→ readV

The translation of writev is very similar to that of readv
and we leave it as an exercise to the reader.



D. Model checking and optimization

Our approach is also useful to describe the model checking
computation. For example, we can define a strategy that
computes the whole state space as:

calculateSS = Fixpoint(Union(Identity, T1, . . . , Tn))

where the Ti are the transition strategies. Our tool requires
the user to enter only the transition strategies: the state space
computation derives from them.

The last application of our language is the description of
optimizations. Our language allows us to describe common De-
cision Diagrams optimizations like hierarchy [6], anonymiza-
tion [22] and saturation [23].

Hierarchy is an optimization introduced by SDD which
allows to group parts of the DD to better handle hierar-
chical systems. In our framework subterms are translated
to hierarchical Decision Diagrams (see Section V). Thus,
to employ this technique in our approach it suffices to
create a signature supporting the creation of hierarchical
clusters. For example, if a system consists of several pro-
cesses, variables that belong to a single process are grouped
together. For example, using the signature in Table I and
adding a cluster operation c: mapping, cluster 7→ cluster

variables gather as follows: c(map(P1_v1, 0, map(P1_v2, 0,

empty), c(map(P2_v1, 0, map(P2_v2, 0, empty)), endc),
where Pn_vn is the nth variable for the nth process. The point
of the hierarchy is that each subterm is treated as a subsystem.
As each subterm is translated to a standalone DD this is also
the case for our approach.

Anonymization is another optimization for DDs. The
idea is to remove variable names in the DD to pro-
mote sharing and operation caching. In our approach
one way of performing anonymization is to rename
the variables in the clusters to have identical clusters.
For the example of last paragraph anonymization cre-
ates the following term: c(map(v1, 0, map(v2, 0, empty),

c(map(v1, 0, map(v2, 0, empty)), endc). This is efficient
especially if both processes have similar behavior. In fact, since
all operations in the DDs are cached, only one process will
be effectively computed. The computation for the other will
retrieve the results from the cache. The effect is multiplied
even more because each rewrite step in a ΣDD rewrites several
terms at the same time.

Finally, we can also describe different variants of satura-
tion using strategies. Saturation is a well-known optimisation
technique for DDs. Given the flexibility of strategies, we can
even describe different saturation strategies for each cluster.
An example of a saturation strategy in our framework is the
following:

Satn(S) =Sequence(Choice(Onen(Satn(S)), FixPoint(S),

Fixpoint(S))

This strategy goes to the last subterm of the terms and does a
fixpoint on it. Then, it goes upwards and at each level applies a
fixpoint. Of course other more agressive variants of saturation
can be described with our approach.

bool bool
{and}

bool 1
{false}

bool

bool

bool

{not}

1
{true, false}

1

bool 1
{true}

Fig. 6. ΣDD

1) Constraints: Our framework does not currently support
non-linear rules, i.e., where a variable appears more than
once in the same side of the rule. Indeed, linear rules are
directly translatable to DD operations, whereas the translation
of non-linear rules can be done in several ways. Depend-
ing on the applications, some ways are better than others.
Thus, we decided to let the user choose how to implement
non-linear rules. For example, the following pattern simu-
lates the copy rule, presented earlier, for natural numbers:
map(i, $n, $p)  map(stackElt, $n, map(i, $n, $p)):

doubleVar = {suc($n1) doubleVar(0, 0, suc($n1)),
0 doubleVar(0, 0, 0) }

duplicateVar = doubleVar($n1, $n2, suc($n3)) 

doubleVar(suc($n1), suc($n2), $n3)

extractValue = map($v, doubleVar($n1, $n2, 0), $s) 

map(stackH, $n1, map($v, $n2, $s))

copy = Sequence(

One2(Sequence(doubleVar,

Fixpoint(RewriteSet(duplicateVar))),

extractValue)

This principle can be generalized for any sort, if one can
define an inductive copy (rules duplicateVar) of the val-
ues based on the generators (0,succ in duplicateVar). The
strategy RewriteSet remembers the number rewritten by
duplicateVar. It forces the strategy to also keep the terms
that were not rewritten. This is one of the few cases where the
strategies do not shield the user from the effects of dealing
with sets. The pattern needs to be defined only once.

V. DECISION DIAGRAMS LAYER

What we defined until now can be directly implemented
in a rewrite term tool but it is not efficient, in particular when
there is a lot of similarities in the computed terms. ΣDDs,
introduced in [12], generalize Hierarchical Set Decision Dia-
gram (SDD) [6] and allow to encode sets of terms. The ΣDD
framework also provides means to perform set rewrite steps
using less computational steps than needed if the operation
were performed sequentially. We do not explain ΣDDs in depth
here but just show their interest to represent sets of terms with
efficient sharing and unicity of the representation.

Figure 6 shows a ΣDD encoding the following
set: {not(true) , not(false), and(false, true),
and(false, false), and(true, true)}. The dotted lines
on the edges show the hierarchy of subterms (or sets of
subterms) which themselves are ΣDDs. Identical structures are
memorised once as the true constant term in the figure. ΣDDs
can encode all possible sets of terms of a given Many-Sorted



Model Instance Marcie StrataGEM Number of
time (s) time (s) states

FMS 10 0.557 6.411 2.50 · 109

20 0.953 7.692 6.02 · 1012

50 23.147 29.819 4.24 · 1017

100 time/out 351.027 2.70 · 1021

Kanban 10 0.457 5.976 1.01 · 109

20 0.583 6.716 8.05 · 1011

50 3.728 10.957 1.04 · 1016

100 48.23 51.881 1.72 · 1019

SharedMemory 05 0.441 6.214 1863
10 0.743 8.429 1.83 · 106

20 14.522 14.73 4.45 · 1011

50 time/out 109.25 5.87 · 1026

TABLE II. RUNTIME COMPARISON

Signature in a unique way [12] and all ΣDDs can be decoded
to a valid set of terms. Thus we propose to note the encoding
as the bijective function enc : P(TΣ) → ΣDD [12]. Using
this encoding function we now redefine the model checking
computation of section II in terms of ΣDDs for efficient
computation: enc(Fixpoint)(enc(evalt1 ∪ ... ∪ evaltj .. ∪
Identity))[enc(s0)] = states. The enc operation distribute on
all definition of strategies (i.e enc(T ∪T ′) = enc(T )∪enc(T ′)
or enc(Choice(S1, S2)) = Choice(enc(S1), enc(S2))) except
the basic rewrite rules that are natively implemented and
consequently very efficient.

VI. BENCHMARKS

To assess our approach, we have compared performance of
our prototype StrataGEM with the tool Marcie [24], a symbolic
model checker based on IDD [8]. It was the best tool for the
state space track of the Model Checking Contest (MCC) [3]
held at Petri Nets Conference 2014.

Tests are run on a Macbook Pro with 16 GB of RAM, and
a 2.5 GHz Intel Core i7 processesor. Each test has a wall-clock
time limit of 15 minutes. Models, taken from the MCC [3],
are Petri nets in PNML format, translated to StrataGEM’s
transition system (set rewriting) format.

Results are presented in Table II. Three scalable models are
considered: a Flexible Manufacturing System (FMS), a classi-
cal Kanban system and a mutual-exclusion for shared memory
model. Tools are asked to generate their state spaces. Note that
the Shared Memory Problem contains 2651 places and 5050
transitions. For large instances of the models, StrataGEM out-
performs Marcie, which is pretty clear for Shared Memory and
FMS models. StrataGEM’s ability to do clustering, saturation
and anonymization allows it treat substantially larger models
than Marcie. This supremacy is disputed for smaller instances,
mainly due to the overhead induced by the Java VM used by
StrataGEM.

These results empirically prove that the great generality
of our approach does not impact its performance, as our
prototype shows to be more than competitive against a tool
based on similar techniques. We must note also that our tool
is implemented with a small number of line of Scala code
(3700 without the parser) due to its very general and generic
principles.

VII. RELATED WORK

We first recall the evolution of the level of abstraction
of Decision Diagrams. The original symbolic approach [25]

encodes the transition relation as a binary relation between pre-
conditions and post-conditions over Boolean state variables,
using Binary Decision Diagrams [9].

In 1994, Pastor et al. [26] bring symbolic model check-
ing techniques to Petri nets (PNs), a well-known formalism
particularly adapted to express concurrency [27]. A higher
level formalism entails a bigger effort in the translation of
the semantics as Boolean functions. Pastor et al. thus focus
mainly on safe PNs, a sub-class in which places cannot contain
more than one token at once. The marking of a place is thus
a Boolean, and the translation to BDDs is straightforward.

Two generalizations of BDDs appear in the late 1990s:
Multi-valued Decision Diagrams (MDDs) [28] by Kam et al.
on the one hand, and Interval Decision Diagrams (IDDs) [29]
by Strehl and Thiele on the other hand. They respectively
generalize BDDs to an arbitrary domain and to intervals over
rational numbers.

MDDs quickly find a niche in the verification community
and are adopted by Miner and Ciardo to perform reachability
analysis of PNs [30], by exploiting the concept of locality in
PNs. Since both PNs and MDDs handle integers directly, this
work closes the semantical gap between the model and the
verification data structure, rendering the translation from one
to the other more manageable. In 2008, a variant of IDDs are
also used for the model checking of Petri nets [8], technique
examplified by the tool Marcie [24].

In 2001, Ciardo et al. introduce saturation [23], that
exploits locality to efficiently evaluate fixpoints over DDs.
Saturation adds an optimization dimension to symbolic model
checking, and allows symbolic CTL model-checking.

Ciardo et al. describe their optimization directly on the
structure, but the MDDs operations used so far did not suffice.
In 2002, Couvreur et al. attack this problem by creating the
Data Decision Diagrams (DDDs) [31], “a specialized version
of the Multi-valued Decision Diagrams representing charac-
teristic functions of sets” [31]. They also introduce a new
way to describe symbolic operations through homomorphisms,
which can express various optimizations including saturation.
Couvreur and Thierry-Mieg later improved DDD by adding
hierarchy to them, giving birth to the Hierarchical Set Decision
Diagrams (SDDs) [6]. Hierarchy is a twofold improvement, as
it provides a natural framework for hierarchical formalisms,
and also improves performance of DD.

Hostettler proposes Σ Decision Diagrams (ΣDDs) [12], a
variant of SDDs that represents sets of terms and allows sym-
bolic rewriting thereof. They are used by the tool AlPiNA [7],
a model-checker for high-level Algebraic Petri nets [10].

We wish to highlight the qualitative jump introduced by
ΣDDs. As the reader might have noticed, one of the limitations
of DD approaches lies in the translation of data types from the
program to the verification structure. Until ΣDDs, Decision
Diagrams are limited by the data types used by the source
program. Even though the theory of MDDs allows the usage
of an arbitrary data type, ΣDDs are the first to allow the user
to define custom data types at run-time.

In [21] we present a Petri net symbolic model checker
called StrataGEM entirely based on ΣDDs. We explain our



framework for the particular case of Petri nets. The present
paper describes our framework in full generality. In this paper,
we show how using our approach one can describe the data
type operations, the DD operations, and the optimizations with
only one language.

VIII. CONCLUSION AND FUTURE WORK

We have shown in this work how to translate systematically
an SOS semantics to symbolic operations expressed through
rewrite rules. The generality of the approach is supported by
efficient mechanism for the evaluation of high-level constructs
that require multiple passes on the symbolic structure. This
automated translation mechanism is intended to ease the use
of symbolic structures in model-checking through a process
transparent to the user. This is an important step towards a
generalized and low-cost usage of symbolic data structures
for model-checking. Although not demonstrated in the paper,
our symbolic operations are able to describe model-checking
(such as LTL or CTL model-checking) algorithms, and not
only the systems semantics. The benchmarks show that our
implementation can outperform state of the art tools, showing
that the technique is usable in practice. We are currently
developing extension of this framework in order to compute
automatically the inverse state computation of a rewrite system
by generating a rewrite system. This is the first step for
realising a general CTL checker based on the preset states.
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