Symbolic Optimal Reachability in
Weighted Timed Automata*

Patricia Bouyer, Maximilien Colange, and Nicolas Markey

LSV — CNRS, ENS Cachan, Université Paris Saclay

Abstract. Weighted timed automata have been defined in the early
2000’s for modelling resource-consumption or -allocation problems in
real-time systems. Optimal reachability is decidable in weighted timed
automata, and a symbolic forward algorithm has been developed to solve
that problem. This algorithm uses so-called priced zones, an extension of
standard zones with cost functions. In order to ensure termination, the
algorithm requires clocks to be bounded. For unpriced timed automata,
much work has been done to develop sound abstractions adapted to
the forward exploration of timed automata, ensuring termination of the
model-checking algorithm without bounding the clocks. In this paper,
we take advantage of recent developments on abstractions for timed
automata, and propose an algorithm allowing for symbolic analysis of all
weighted timed automata, without requiring bounded clocks.

1 Introduction

Timed automata [AD94] have been introduced in the early 1990’s as a powerful
model to reason about (the correctness of) real-time computerized systems. Timed
automata extend finite-state automata with several clocks, which can be used to
enforce timing constraints between various events in the system. They provide a
convenient formalism and enjoy reasonably-efficient algorithms (e.g. reachability
can be decided using polynomial space), which explains the enormous interest
that they raised in the community of formal verification.

Hybrid automata [ACHH93] can be viewed as an extension of timed automata,
involving hybrid variables: those variables can be used to measure other quantities
than time (e.g. temperature, energy consumption, ...). Their evolution may follow
differential equations, depending on the state of the system. Those variables
unfortunately make the reachability problem undecidable [HKPV98], even in the
restricted case of stopwatches (i.e., clocks that can be stopped and restarted).

Weighted (or priced) timed automata [ALP01,BFH"01] have been proposed
in the early 2000’s as an intermediary model for modelling resource-consumption
or -allocation problems in real-time systems (e.g. optimal scheduling [BLRO05]).
Figure 1 displays an example of a weighted timed automaton, modelling air-
crafts (left) that have to land on runways (right). In (single-variable) weighted

* This work was partly supported by ERC project EQuallS (FP7-308087) and FET
project Cassting (FP7-601148).

/ early land?
and| .x» c:=0
/
\ arr — arr Iand' C 2 delay

Iate

Fig. 1. A (simplified) model of the Aircraft Landing System [LBB101]: aircrafts (left)
have an optimal landing time T4, within a possible landing interval [Teary, Tiate]. The
aircraft can speed up (which incurs some extra cost, modelled by k.) to land earlier
than i, or can delay landing (which also entails some penalties, modelled by P; and k).
Some delay has to occur between consecutive landings on the same runway, because of
wake turbulence; this is taken into account by the model of the runways (right).

timed automata, each location carries an integer, which is the rate by which
the hybrid variable (called cost variable hereafter) increases when time elapses
in that location. Edges may also carry a value, indicating how much the cost
increases when crossing this edge. Notice that, as opposed to (linear) hybrid
systems, the constraints on edges (a.k.a. guards) only involve clock variables:
the extra quantitative information measured by the cost is just an observer of
the system, and it does not interfere with the behaviors of the system.

Optimal cost for reaching a target, and associated almost-optimal sched-
ules, can be computed in weighted timed automata [ALP01,BFHT01,BBBRO7].
The proofs of these results rely on region-based algorithms (either priced re-
gions [BFHT01], or corner-point refinements [ALP01,BBBR07]). Similarly to
standard regions for timed automaton [AD94], such refinements of regions are not
adapted to a real implementation. A symbolic approach based on priced zones has
been proposed in [LBBT01], and later improved in [RLS06]. Zones are a standard
symbolic representation for the analysis of timed-automata [BY03,Bou04], and
priced zones extend zones with cost functions recording, for each state of the
zone, the optimal cost to reach that state. A forward computation in a weighted
timed automaton can be performed using priced zones [LBB101]: it is based on
a single-step Post-operation on priced zones, and on a basic inclusion test be-
tween priced zones (inclusion of zones, and point-to-point comparison of the cost
function on the smallest zone). The algorithmics has been improved in [RLS06],
and termination and correctness of the forward computation is obtained for
weighted timed automata in which all clocks are bounded. Bounding clocks of a
weighted timed automaton can always be achieved (while preserving the cost),
but it may increase the size of the model. We believe that a better solution
is possible: for timed automata and zones, a lot of efforts have been put into
the development of sound abstractions adapted to the forward exploration of
timed automata, ensuring termination of the model-checking algorithms without
bounding clocks [BY03,BBFL03,BBLP06,HKSW11,HSW12].

In this paper, we build on [LBBT01,RLS06], and extend the symbolic algo-
rithm to general weighted timed automata, without artificially bounding the
clocks of the model. The keypoint of our algorithm is an inclusion test between
abstractions of priced zones, computable from the (non abstracted) priced zones
themselves. It can be seen as a priced counterpart of a recently-developed inclu-
sion test over standard zones [HSW12]: it compares abstractions of zones without
explicitly computing them, which has shown its efficiency for the analysis of
timed automata. We prove that the forward-exploration algorithm using priced
zones with this inclusion test indeed computes the optimal cost, and that it
terminates. We also propose an algorithm to effectively decide inclusion of priced
zones. We implemented our algorithm, and we compare it with that of [RLS06].

Related work. The approach of [LBBT01,RLS06] is the closest related work. Our
algorithm applies to a more general class of systems (unbounded clocks), and
always computes fewer symbolic states on bounded models (see Remark 1); also,
while the inclusion test of [RLS06] reduces to a mincost flow problem, for which
efficient algorithms exist, we had to develop specific algorithms for checking
our new inclusion relation. We develop this comparison with [RLS06] further
in Section 6, including experimental results.

Our algorithm can be used in particular to compute best- and worst-case
execution times. Several tools propose WCET analysis based on timed automata:
TIMES [AFM 03] uses binary-search to evaluate WCET, while Uppaal [GELP10)
and METAMOC [DOT"10] rely on the algorithm of [RLS06] mentioned above;
in particular they require bounded clocks to ensure termination. A tentative
workaround to this problem has been proposed in [ARF14], but we are uncertain
about its correctness (as we explain with a counter-example in [BCM16]).

All proofs are available in the research report [BCM16].

2 Weighted timed automata

In this section we define the weighted (or priced) timed automaton model, that
has been proposed in 2001 for representing resource consumption in real-time
systems [ALP01,BFH*01]

We consider as time domain the set R>(of non-negative reals. We let X be
a finite set of variables, called clocks. A (clock) valuation over X is a mapping
v: X — Ry that assigns to each clock a time value. The set of all valuations
over X is denoted R);o' Let t € Ry, the valuation v + ¢ is defined by (v +
t)(z) = v(x) +t for every x € X. For Y C X, we denote by [Y « OJv the
valuation assigning 0 (respectively v(z)) to every x € Y (respectively x € X \ V).
We write 0x for the valuation which assigns 0 to every clock x € X.

The set of clock constraints over X, denoted C(X), is defined by the grammar
gui=xz~c | gAg, where z € X is a clock, c € N, and ~ € {<,<,=,>,>}.

Clock constraints are evaluated over clock valuations, and the satisfaction
relation, denoted v = g, is defined inductively by v = (z ~ ¢) whenever v(z) ~ ¢,
and v |= g1 A g2 whenever v = g1 and v = go.

Definition 1. A weighted timed automaton is a tuple A = (X, L, £y, Goal,
E, weight) where X is a finite set of clocks, L is a finite set of locations, ly € L
is the initial location, Goal C L is a set of goal (or final) locations, E C L X
C(X) x 2% x L is a finite set of edges (or transitions), and weight : LUE — 7Z is
a weight function which assigns a value to each location and to each transition.

In the above definition, if we omit the weight function, we obtain the well-known
model of timed automata [AD90,AD94]. The semantics of a weighted timed
automaton is that of the underlying timed automaton, and the weight function
provides quantitative information about the moves and executions of the system.

The semantics of a timed automaton A = (X, L, £y, Goal, E) is given as
a timed transition system T4 = (S5, sg, —) where S = L x R§O is the set of
configurations (or states) of A, sg = (fo,0x) is the initial configuration, and —
contains two types of moves:

— delay moves: (¢,v) EN (L,v+1)if t € Ryp;
— discrete moves: (£,v) < (£',v') if there exists an edge e = (£,g,Y,¢) in F
such that v = g, v' = [Y « 0Jv.

A run g in A is a finite sequence of moves in the transition system 74, with
a strict alternation of delay moves (though possibly 0-delay moves) and discrete

. . t e t e
moves. In the following, we may write a run ¢ = s — 8§ — 81 —» 85 —> 8.

t1,e ta,e .
more compactly as 0 = s —— 51 —— s5---. If o ends in some s = (£,v)

with ¢ € Goal, we say that g is accepting. For a configuration s € S, we write
Runs(A, s) the set of accepting runs that start in s.

In the following we will assume timed automata are non-blocking, that is,
from every reachable configuration s, there exist some delay ¢, some edge e and

. t,e .
some configuration s’ such that s — s’ in A.

We can now give the semantics of a weighted timed automaton A = (X, L, ¢y,
Goal, E, weight). The value weight(¢) given to location ¢ represents a cost rate,
and delaying ¢ time units in a location ¢ will then cost ¢ - weight(¢). The value
weight(e) given to edge e represents the cost of taking that edge. Formally, the
cost of the two types of moves is defined as follows:

cost ((£,v) 5 (6,0 + t)) = { - weight(¢)
cost ((£,v) & (e',v')) — weight(e)
A run o of a weighted timed automaton is a run of the underlying timed

automaton. The cost of g, denoted cost(p), is the sum of the costs of all the
simple moves along o.

Ezxample 1. We consider the weighted timed automaton 4 depicted in Fig-
ure 2 (left). When a weight is non-null, we add a corresponding decoration
to the location or to the transition. A possible run in A is:

0 = (£0,0) 25 (£6,0.1) <5 (£1,0.1) <% (£5,0.1) =2 (£5,2) = (©,2)

=1
z:=0
=2
l3 es~J7 g y>10Az=1
o (@] T ®
+1 /20

Lo

Fig. 2. Examples of weighted timed automata

The cost of g is cost(p) =5-0.14+1-1.9+ 7 = 9.4 (the cost per time unit is 5
in £g, 1 in £3, and the cost of transition es is 7).

The optimal-reachability problem

For this model we are interested in the optimal-reachability problem, and in
the synthesis of almost-optimal schedules. Given a weighted timed automaton
A= (X, L, £, Goal, E, weight), the optimal cost from s = (¢, v) is defined as:

Optcost = inf t
ptcost 4(s) QERl}rl;ls(.A,s) cost(p)

If e >0, arun p € Runs(A, s) is e-optimal whenever cost(g) < Optcost 4(s) + €.

We are interested in Optcost 4(so), simply written as Optcost ,, when sq is
the initial configuration of A. It is known that Optcost 4 can be computed in
polynomial space [ALP01,BFHT01,BBBRO07], and that almost-optimal schedules
(that is, for every € > 0, e-optimal schedules) can also be computed.

The solutions developed in the aforementioned papers are based on refinements
of regions, and a symbolic approach has been proposed in [LBBT01,RLS06],
which extends standard zones with cost functions: this algorithm computes the
optimal cost in weighted timed automata with nonnegative weights, assuming
the underlying timed automata are bounded, that is, there is a constant M such
that no clock can go above M. This is without loss of generality w.r.t. optimal
cost, since any weighted timed automaton can be transformed into a bounded
weighted timed automaton with the same optimal cost; it may nevertheless
increase the size of the model, and more importantly of the state-space which
needs to be explored (it can be exponentially larger). We believe that a better
solution is possible: for timed automata and zones, a lot of efforts have been put
into the development of sound abstractions adapted to the forward exploration of
timed automata, ensuring termination of the model-checking algorithm without
bounding clocks [BY03,BBFL03,BBLP06,HKSW11,HSW12].

Building on [LBB101,RLS06], we extend the symbolic algorithm to general
weighted timed automata, without assuming bounded clocks. The keypoint of
our algorithm is an abstract inclusion test between priced zones. It can be
seen as a priced counterpart of a recently-developed abstract inclusion test
over standard zones [HSW12]; this test compares abstractions of zones without
explicitly computing them, and has shown its efficiency for the analysis of timed

automata. We prove that the symbolic algorithm using priced zones and this
inclusion test indeed computes the optimal cost, and that it terminates.

3 Symbolic algorithm

In this section we briefly recall the approach of [LBB*01,RLS06], and explain
how we extend it to the general model, explaining which extra operation is
required. The rest of the paper is devoted to proving correctness, effectiveness
and termination of our algorithm.

3.1 The symbolic representation: priced zones

Let X be a finite set of clocks. A zone is a set of valuations defined by a generalized
constraint over clocks, given by the grammar v = z~c | z—y~c | YA7,
where z,y € X are clocks, ¢ € Z, and ~ € {<,<,=,>,>}. Zones and their
representation using Difference Bound Matrices (DBMs in short) are the standard
symbolic data structure used in tools implementing timed systems [BY03,Bou04].

To deal with weighted timed automata, zones have been extended to priced
zones in [LBBT01]. A priced zone is a pair Z = (Z,() where Z is a zone, and
¢:]Rgo — R is an affine function. In a symbolic state (¢, Z), the cost function ¢
is meant to represent the optimal cost so far (that is, {(v) is the optimal cost
so far for reaching configuration (¢,v)). In [LBB*01], it is shown how one can
simply represent priced zones, and how these can be used in a forward-exploration
algorithm. The algorithm is shown as Algorithm 1, and we parametrize it by an
inclusion test = between priced zones.

Let A = (X, L, 4y, Goal, ', weight) be a weighted timed automaton. The
algorithm makes a forward exploration of A from ({y, Zy) with Zy = (Zp, (o),
where Zj is the initial zone defined by /\xe xZ = 0 and (p is identically 0
everywhere. Then, symbolic successors are iteratively computed, and when the
target location is reached, the minimal cost given by the priced zone is computed

Algorithm 1: Symbolic algorithm for optimal cost, with inclusion test <

1 COST + oo

2 PASSED «+ ()

3 WAITING <+ {({o, Z0)}

4 while WAITING #) do

5 select (¢, Z) from WAITING

6 if £ € Goal and infCost(Z) < CosT then
7 L CoST « infCost(Z)

8

9

if for all (¢, Z') € PASSED, Z A Z’ then
L add (¢, Z) to PASSED

10 add Post(¢, Z) to WAITING

11 return CoOST

(for a priced zone Z = (Z,(), we note infCost(Z) = inf,cz ((v)), and compared
to the current optimal value (variable COST). An inclusion test between priced
zones is performed, which allows to stop the exploration from (¢, Z) when Z < Z’
and (¢, Z’) already appears in the set of symbolic states that have already been
explored. In [RLSO06], the algorithm uses the following inclusion test €, which
refines the inclusion test of [LBBT01]: inclusion £ € Z’ holds whenever Z C Z’
and ((v) > ¢'(v') for every v € Z. As shown in [RLS06], this algorithm computes
the optimal cost in A, provided it terminates, and this always happens when the
weights in A are nonnegative, and when all clocks in A are bounded.

In the present paper, we define a refined inclusion test C between priced
zones, which will enforce termination of Algorithm 1 even when clocks are not
upper-bounded, and, to some extent, when costs are negative.

We now give some definitions which will allow to state the correctness of the
algorithm. Given a timed automaton A, a location ¢ and a priced zone Z = (Z, (),
we say that (¢, Z) is realized in A whenever for every valuation v € Z, and for
every € > 0, there exists a run g from the initial state (¢p,0x) to (¢,v), such that
¢(v) < cost(p) < ((v) + €. For a location ¢, a priced zone Z = (Z,() and a run o
starting in a configuration s, we say that ¢ ends in (¢, Z) if p leads from s to a
configuration (¢,v) with v € Z and cost(p) > ((v). The post operation Post on
priced zones used in Algorithm 1 is described in [LBBT01]. Its computation is
effective (see [LBBT01]), and is such that (see [RLS06]):

— every (¢, Z) € Post™({y, Zp) is realized in A, where Post™ denotes the iteration
of the Post operator;

— for every run p from a configuration s to a configuration s’, and every mixed
move 7 from §', if ¢ ends in (¢, Z), then o7 ends in an element of Post(¢, Z).

— for every run g from (€g,0x), there exists (¢, Z) € Post™({y, Zg) such that o
ends in (¢4, Z) (this is a consequence of the previous property).

The purpose of this work is to propose an inclusion test = such that the
following three properties are satisfied:

1. (Termination) Algorithm 1 with inclusion test C terminates;

2. (Soudness w.r.t. optimal reachability) Algorithm 1 with inclusion test C
computes the optimal cost for reaching Goal;

3. (Effectiveness) There is an algorithm deciding C on priced zones.

We now present our inclusion test, and show its soundness for optimal reachability.
We then turn to effectiveness (Sect. 4), and then to termination (Sect. 5).

3.2 The inclusion test

Our inclusion test is inspired by the inclusion test on (pure) zones proposed
in [HSW12].! We start by recalling an equivalence relation on valuations. We

! Contrary to pure reachability, we cannot use the preorder <y (which distinguishes
between lower-bounded constraints and upper-bounded constraints) [BBLPO6], since
it does not preserve optimal cost (not even optimal time).

assume a function M : X — NU{—oo} such that M (x) is larger than any constant
against which clock z is compared to in the (weighted) timed automata under
consideration. Let v and v’ be two valuations in R);O. Then, v =), v’ iff for every

clock z € X, either v(z) = v'(x), or v(z) > M(z) and v'(z) > M(z). We note
[v]ar the equivalence class of v under =j;.

Lemma 2. If v =5 v, then, for any £ € L, Optcost 4(¢,v) = Optcost 4(£,v).

We now define our inclusion test for two priced zones Z = (Z,() and 2’ =
(Z',{’); it is parameterized by M, which gives upper bounds on clocks:

ZCy Z'iffYoe Z Ve>0, I €Z st.v=p v and '(v') < ((v) +e.

Theorem 3. When using Cyy, provided Algorithm 1 terminates, it is sound
w.r.t. optimal reachability (the returned cost is the optimal one).

Remark 1. Remember that the inclusion test € of [RLS06] requires Z C Z’ and,
for every v € Z, ((v) > ('(v). It is easily seen that Z € Z’ implies Z Ty Z’ for
any M; hence the branches are always stopped earlier in our algorithm (which
uses Cjy) than in the original algorithm of [RLS06] (which uses €). Moreover,
€ does not ensure termination of the forward exploration when clocks are not
bounded: on the automaton of Figure 2 (right), where the optimal time to
reach the right state is 10, the forward algorithm successively computes zones
r<1An<y—x<n+1, for every integer n. Any two such zones are always
incomparable (for €).

4 Effective inclusion check

In this section we show that we can effectively check the inclusion test C,; of
priced zones. For the rest of this section, we fix two priced zones Z = (Z, () and
Z' = (Z',{’), and a function M. To improve readability, we write = and C in
place of =), and Cjy.

4.1 Formulation of the optimization problem
We first express the inclusion of the two priced zones as an optimization problem.

Lemma 4. ZC Z' <= sup,cyinf, ¢, (' (V') —((v) < 0.

Note that Z C Z’ already requires some relation between zones Z and Z’:
indeed, for the above inclusion to hold, it should be the case that for every v € Z,
there exists some v’ € Z’ such that v = v'. Interestingly, this corresponds to the
test on (unpriced) zones developed in [HSW12] (with L = U = M); this can
be done efficiently (in time quadratic in the number of clocks) as a preliminary
test [HSW12, Theorem 34].

y upper facet of Zy w.r.t. y
po ~—_
upper facets
of Zy wrt. y

|
|
\
!
|
1
|
|
|
1

lower facets of Zy and Z3 w.r.t. y

Fig. 3. Two-dimensional zones Z and Z’, Fig. 4. Simple facets of Zy and Z%
and sub-zones Zy and Z3 for Y = {z}. w.r.t. clock y.

Remark 2. The constraint v = v’ is not convex, and we have a bi-level optimiza-
tion problem to solve. Hence common techniques for convex optimization, such as
dualization [BV04], do not directly apply to the above problem. Still, it is possible
to transform it into finitely many so-called generalized semi-infinite optimization
problems (GSIPs) [RS01] (using Zy’s as defined later in this section). As far as
we know, such problems do not have dedicated efficient algorithmic solutions.
We thus propose a more direct solution, that benefits from the specific structure
of our problem (see for instance Section 4.3); it provides a feasible way to solve
our optimization problems, hence to decide C on priced zones.

In order to compute the above optima, we transform our problem into a
finite number of optimization problems that are easier to solve. Let Y C X.
A zone Z is M-bounded on Y if, for every v € Z, {z | v(z) < M(z)} =Y.
We note Zy the restriction of Z to its M-bounded-on-Y component: Zy =
ZNNyey (@ < M(2)) N4y (x > M(z)). Note that Zy may be empty, and
that the family (Zy)y cx forms a partition of Z. We also define Zy as the priced
zone (Zy, (). We define the natural projection my : R, — RY | which associates
with v € RE the valuation v € RY that coincides with v on Y.

Lemma 5. The following two properties are equivalent:

(i) for every v € Z, there is v’ € Z' such that v/ = v
(i1) for everyY C X, my(Zy) C my (Z%).

This allows to transform the initial optimization problem into finitely many
optimization problems.

Lemma 6. sup inf ('(v) —((v) = max sup inf ('(v')—((v).
veZ v'ez’ YCX veZy v'ezl,

r— ’
v =v v =V

Corollary 7. Z T Z' iff for every Y C X, Zy C Z,

10

In the sequel, we write

S(2.2.Y) = sup inf (W) C(v)
vEZy V' EZY

r—
v =v

Lemma 4 and Corollary 7 suggest an algorithm for deciding whether Z C Z’:
enumerate the subsets Y of X, and prove that S(Z,2’,Y) < 0. We now show
how to solve the latter optimization problem (for a fixed Y'), and then show how
we can drive the choice of Y so that not all subsets of X have to be analyzed.

4.2 Computing S(Z,2",Y)

We show the following main result to compute S(Z, Z’,Y"), which produces a
simpler optimization problem, allowing to decide the inclusion of two priced
zones, on parts where cost functions are lower-bounded.

Theorem 8. Let Z = (Z,() and Z' = (Z',{") be two non-empty priced zones,
and let Y C X be such that my (Zy) C my (Zy,) and ¢ and ¢' are lower-bounded
on Zy and Z3, respectively. Then we can compute finite sets Ky and KY of zones
over'Y, and affine functions Cp and Cp for every F € Ky and F' € KY s.t.:

S(Z,2')Y)= max max sup C(p(u)—Cr(u). (1)
FeKy F'eKl, ueFNF

The idea behind this result is to first rewrite S(Z,2’,Y) into:

e o (g <9)-(8 o)

which decouples the dependency of v' on v. The algorithm then uses the notion
of facets (introduced in [LBB'01]), which corresponds to the boundary of the
zone w.r.t. a clock (if W is the zone, a facet of W w.r.t. x is W N (z = n) or
WnN(x—y =m) whenever x i n or x —y > m is a constraint defining W). Given
a clock z € X \ 'Y, we consider the facets of Zy w.r.t. z that minimize, for any
w € Tx\{z}(Zy), the function v — ((v) when 7x\(;}(v) = w. The restriction
of (on such a facet is a new affine function, which we can compute. We then
iterate the process for all clocks in X \ Y. We do the same for ¢’. This yields the
result claimed above: sets Ky and K’y are sets of projections of facets over Y.

Facets are zones, and so are their projections on Y and intersections thereof.
Additionally, all functions (r and (f, are affine; hence the supremum in Eq. (1) is
reached at some vertex ug of zone FNE’, for some facets F and F’. By construction
of ¢ and (%, we get

S(Z,Z2,Y)= inf (W)= inf ((v)
v' ez, vEZy
m(v')=ug 7(v)=ug

In particular, ug has integral coordinates. We end up with the following result,
which will be useful for proving the termination of Algorithm 1:

11

Corollary 9. Let Z = (Z,() and Z2' = (Z',{’) be two non-empty priced zones,
and let Y C X be such that my (Zy) C ny (Z3,) and ¢ and ¢’ are lower-bounded
on Zy and Z3, respectively. Then the following holds:

S(Z,2',Y)= max | min ¢'(v') — min C(v)]
’U.(]Gﬂ'y(Zy) ’UIGZg/ vELy
UOENY v'=ug v=ug

The requirement for lower-bounded priced zones in Theorem 8 is crucial in
the proof. But the case when this requirement is not met can easily be handled
separately, so that C can always be effectively decided:

Lemma 10. Let Z = (Z,¢) and 2" = (Z',(’) be two non-empty priced zones.

— If ¢ is not lower-bounded on Z but ' is lower-bounded on Z', then Z IZ Z'.
— Let Y C X such that my (Zy) C wy (Z3). If ¢ is not lower-bounded on Zs,,
then Zy T Z5,.

Corollary 11. Let Z2 = (Z,¢) and Z' = (Z',{’) be two priced zones. Then we
can effectively decide whether Z C Z'.

4.3 Finding the right Y

Applying Lemma 6, the main obstacle to efficiently decide Cj; is to find the
appropriate Zy in which the sought supremum is reached. Unless good arguments
can be found to guide the search towards the best choice for Y, an exhaustive
enumeration of all the Y’s will be required.

Ezample 2. We consider the zone Z defined by the constraints x > 0,y > 1,z <y
and y < z + 2. We fix M(z) = 2 and M (y) = 3. We then consider Z’ = Z. The
zone Z is equipped with a constant cost function ¢. In Figure 5(a), Z' is attached
¢'(z,y) = = +y, and the expression of the function f(v) =infy ez, v=p0 ¢ (V')
is given in each Zy, for Y C X. It is then easy to see that the supremum of f is
reached at the point (2,3), in the middle of the zone. In Figure 5(b), we take
¢'(z,y) = 2z — y, and the expression of the function f(v) =inf,cz/. v=,,0 ' (V')
is given in each Zy. The supremum of f is then reached at the point (2,2), on
the border, but not at a corner of the zone. The latter example also shows that
f is not continuous on the whole zone Z.

Nevertheless, in many cases, we will be able to guide the search of the Zy
where the sought optimal is to be found. The following development focuses on
the zone, not on the cost function. Given a zone Z, we define a preorder < on
the clocks, such that if Zy # @, then Y is downward-closed for <. In other words,
whenever z <y, y € Y and Zy # (), then z € Y. The knowledge of < can be a
precious help to guide the enumeration of non-empty Zy’s. Indeed, if Zy # 0,
Y is downward-closed for <, and candidates for Y are thus found by enumerating
the antichains of <. In particular, if < is total, then there are at most | X| + 1
sets Y such that Zy # 0.

12

Y={y} Y=A{zy} Y={y} Y=A{zy}
4
M(y)=3
w+g/
Y =0 Y = {z} Y =0 Y = {z}
M(z) =2 M(z) =2
(a) The sought supremum is (b) The sought supremum is
reached in the middle of the zone. reached on the border of the zone.

Fig. 5. The supremum may lie in the middle of zones or facets

To be concrete, let X<as and X s be the (disjoint) sets of clocks such that
Z C(z < M(x)) and Z C (z > M(x)), respectively. We define the relation <z
as the least relation satisfying the following conditions:

— for each x € X<y, foreach y € X, z 2z y;
— for each y € X5y, for each x € X, x <7 y;
—forallz,y € X\ (X<mUXsnm), Z C (x—y < M(z)— M(y)) implies z <z y.

Note that, since <z is the least relation satisfying the above conditions, we have
x Az y when (a) z € Xop and y € X \ Xsar, and when (b) z € X \ X<ui
and y € X<y. It is then not difficult to show that <z is a preorder such that:
y € X<y and z 2z y implies z € X<y, and € X5 and © <z y implies
yeXom.

Lemma 12. Let Y C X such that Zy # 0. Then'Y is downward-closed for <z.

The preorder <z can be computed in polynomial time, since it only requires
to check emptiness of zones, which can be done in time polynomial in | X| (cubic
in | X| with DBMs for instance).

We recall that, if Z is a zone generated in a timed automaton where only
resets of clocks to 0 are allowed, for any pair of clocks z,y, it cannot be the case
that Z crosses the diagonal hyperplane of equation z = y.

Proposition 13. If Z is generated by a timed automaton, and all clocks have
the same bound M, then <z is total.

Proof. Let x and y be two clocks. Since Z is generated by a timed automaton,
it is contained either in the half-space of equation [z < y], or in the one of
equation [z > y|. By definition of <z, and since M (z) = M (y), the former entails
x =<z vy, and the latter y <z x. Any two clocks are thus always comparable, and
= is therefore total. O

13

Under the assumptions of Proposition 13, there are polynomially many subsets
Y C X to try. Note that these assumptions are easily realized by taking M =
max,ex M(z) as the unique maximal constant for all the clocks. Formally,
C 47 is an under-approximation of the exact version of Cjs. This approximation
does not hinder correctness, and illustrate the trade-off between the complexity

of the inclusion procedure and the number of priced zones that will be explored.

5 Termination of the computation

In this section we prove termination of our algorithm, by exhibiting an appropriate
well-quasi-order. We fix a timed automaton A and a maximal-constant function M
(for every clock = € X, the integer M (x) is larger than any constant with which
clock z is compared in A).

Proposition 14. C is a preorder (or quasi-ordering).

We now consider the “converse” preorder J, defined over priced zones by
Z' 3 Z iff ZC Z'. We show that J is a well quasi-ordering (wqo). Thus the
relation J has no infinite antichain, which entails termination of Algorithm 1.

We now gather the results to exhibit a sufficient condition for J to be a wqo.

Theorem 15. For every p € Z, 1 is a well-quasi-order on (non-empty) priced
zones whose cost functions are either not lower-bounded, or lower-bounded by .

Corollary 16. Algorithm 1 terminates on weighted timed automata, which gen-
erate priced zones with a uniform lower bound on the cost functions,

We can argue that infinite antichains for J generated by a forward exploration
of A actually corresponds to infinite paths in A with cost —oco. While this
condition can be decided (using the corner-point abstraction of [BBL0S§]), we do
not want to check this as a preliminary step, since this is as complex as computing
the optimal cost. Furthermore, symbolically, this would amount to finding a cycle
of symbolic states which is both w-iterable [JR11,DHS"14] and cost-divergent;
this is a non-trivial problem. We can nevertheless give simple syntactic conditions
for the condition to hold: this is the case of weighted timed automata with
non-negative weights (this is the class considered in [LBBT01,RLS06]); let T} be
the minimum (resp. maximum) delay that can be delayed in £ if location £ has
positive (resp. negative) cost: if along any cycle of the weighted timed automaton,
the sum of the discrete weights and of each Tp.weight(¢) is nonnegative, then the
above condition will be satisfied; this last condition encompasses all the acyclic
weighted timed automata, like all scheduling problems [BLRO05].

6 Experimental Results

We have implemented a prototype, TiAMo, to test our new inclusion test. It is
based on the DBM library of Uppaal (in C++),2 which features the inclusion

2 http://people.cs.aau.dk/~adavid/UDBM/

14

test of [RLS06]. We added our inclusion test (also in C++). This core is then
wrapped in OCaml code, in which the main algorithm is written. The source
code is publicly available online: http://git.lsv.fr/colange/tiamo.

As we have seen, termination in presence of negative costs is not guaranteed.
We thus limited our experiments to models with positive costs only.

TiAMo is able to prune the state space using the best cost so far. Concretely,
it would not explore states whose cost exceeds the current optimal cost. This can
dramatically reduce the state space to explore, but is sound only when all costs
in the model are non-negative. On such models, the user can provide a hint, a
known cost to TiAMo (obtained for example by a reachability analysis, or by
other independent techniques) to be used to prune the model. Moreover, TiAMo
reports, during the computation, the best known cost so far. Such values are
upper bounds on the sought optimum, and may be interesting to get during long
computations.

A direct comparison between TiAMo and Uppaal® (or Uppaal-CORA?) is
difficult: the source code of Uppaal (and Uppaal-CORA) is not open, and it is
often hard to know what is precisely implemented. For instance, on the unbounded
automaton of Figure 2, the algorithm described in [LBB*01,RLS06] does not
terminate. Depending on the way it is queried (asking for the fastest trace, or
with an inf query), Uppaal terminates or runs forever on this model.

In order to measure the impact of the inclusion test on the algorithm, we
decided to compare the performance of TiAMo running one or the other inclusion
test (€ or C). Our primary concern is to compare the number of (symbolic)
states explored, and the number of inclusion tests performed.

We run our experiments with and without pruning activated. Deactivated
pruning allows to measure the impact of the choice of the inclusion test itself.
It is also more representative of the behavior that can be expected on models
with negative costs, for which pruning is not sound.

The models. We briefly describe the models used in our experiments. The first
two are case studies described on the web page of Uppaal-CORA.

The Aircraft Landing System (ALS) problem has been described in Figure 1:
it consists in scheduling landings of aircrafts arriving to an airport with several
runways, subject to timing constraints. Early and late arrivals induce a cost,
which is to be minimized globally. We use the original version form Uppaal-CORA,
with two runways and 10 aircrafts. The model has 5 clocks (one global clock,
plus two per runway) and 14,000 discrete states.

In the Energy-optimal Task-graph Scheduling (ETS) problem, several proces-
sors having different speeds and powers are to be used to perform interdependent
tasks. The aim is to optimize energy consumption for performing the given set
of tasks within a certain delay. The model we used for our experiments is the
one described in [BFLM11, Example 3]. It has 2 clocks (one per CPU) and 55
discrete states.

3 http://www.uppaal .org/
4 http://people.cs.aau.dk/~adavid/cora/

15

WAITING | # PASSED | # stored | # tests |# succ. tests|time (s.)

a|C] 11,820 4,785 9,324 3.7 x 10%° 13,676 0.3
2| tle| 32,322 13,036 26,555 [2.9 x 10°° 32,263 0.7
R TC17 x 10°% [1.5 x 10°°]6.9 x 10%°]8.1 x 10°°] 1.2 x 10°7 | 312.7

NEE

‘e TO TO TO TO TO TO
@la [C 107 84 83 174 66 0.0
m|Tle 664 606 590 17,684 455 0.0
2 |a|E 6.0 10%° [4.8 x 10°°[5.6 x 10°°[6.2 x 10| 1.7 x 10°° 11.3
Elt|el1.5 x 10°¢ (1.3 x 10°6|1.4 x 10°¢|9.1 x 10°7| 7.0 x 10°° 27.5
& o |[E]1:3 X 10%9]1.3 x 10°°[1.3 x 10°°[2.5 x 10°7| 7.0 x 10%° | 23.9
> '|el5.8 x 10°¢ (5.8 x 10°0|5.4 x 10°¢|1.1 x 10°?| 1.9 x 10°¢ | 111.2
S| 14 13 14 135 3 0.0
5|t|e TO TO TO TO TO TO
,: = 14 14 14 135 3 0.0
e TO TO TO TO TO TO

Table 1. Experimental results

In the Vehicle Routing Problem with Time Windows (VRPTW) problem,
a fleet of vehicles with limited capacity is to be scheduled to deliver goods
to customers. Deliveries should respect the customers preferred time windows.
We use the version downloadable from the Uppaal-CORA website, with a few
syntactical modifications to account for the limits of the parser of TiAMo. The
cost function used in this example is a combination of the distance travelled by
the vehicles, the time to achieve deliveries, and the demand satisfied on time.
The model considers 3 vehicles and 7 customers, and has 4 clocks (one for each
vehicle and a global clock) and about 150,000 discrete states.

Finally, we also ran TiAMo on the model Figure 2, to illustrate that = handles
unbounded models. This model has two clocks and two discrete states.

Ezxploration strategies. TiAMo implements several strategies to explore the
symbolic state space. We retain here only the one called SBFS, a modification
of BFS based on the observation that, if s subsumes s’, the successors of s’
are subsumed by successors of s. Successors of s are thus explored first, until
all successors of s’ in the WAITING list are subsumed. This is a very naive
implementation of a strategy proposed in [HT15]. The strategy has two variants,
depending on whether pruning is activated (+P) or not (-P). For the ETS
problem, both yield very similar results, so we chose to only present +P.

Experimental results. The results are summed up in Table 1. For each model,
and for different combinations of inclusion test and exploration strategy, we
indicate the number of symbolic states added to the WAITING list, added to the
PASSED list, as well as the number of tests (successful or not) that have been
performed. We also indicate the maximal size of the list PASSED; although not
detailed in Algorithm 1, the tool ensures that PASSED remains an antichain. This
minimizes the number of inclusion tests. When a new element is added to the
PASSED list, all elements of PASSED subsumed by the new one are removed, so
that the size of PASSED does not necessarily increase.

16

The mention “TO” means that the computation does within the time bound
of 120 minutes. We observe that C always explores fewer states than &, for
any given exploration strategy. Though this was expected (recall Remark 1),
we believe the reduction is impressive. It is significant even for small models
(such as ETS). The case of ALS with no pruning shows that the higher complexity
of C can be largely compensated by the reduction in the size of the state space
to explore. On the model of Figure 2, our inclusion C ensures termination, while
€ does not.

7 Conclusion

In this paper we have built over a symbolic approach to the computation of optimal
cost in weighted timed automata [LBBT01,RLS06], by proposing an inclusion test
between priced zones. Using that inclusion test, the forward symbolic exploration
terminates and computes the optimal cost for all weighted timed automata,
regardless whether clocks are bounded or not. The idea of this approach is based
on recent works on pure timed automata [HSW12], where a clever inclusion test
“replaces” any abstraction computation during the exploration.

We will pursue our work with extensive experimentations using our tool
TiAMo. We will also look for more dedicated methods for specific application
domains, like planning problems.

References

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho.
Hybrid automata: an algorithmic approach to specification and verification
of hybrid systems. In Proc. Workshop on Hybrid Systems (1991 & 1992),
volume 736 of Lecture Notes in Computer Science, pages 209-229. Springer,
1993.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems.
In Proc. 17th International Colloguium on Automata, Languages and Pro-
gramming (ICALP’90), volume 443 of Lecture Notes in Computer Science,
pages 322-335. Springer, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183-235, 1994.

[AFM103] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. TIMES: A tool for schedulability analysis and code generation of
real-time systems. In Proc. 1st International Workshop on Formal Modeling
and Analysis of Timed Systems (FORMATS’03), volume 2791 of Lecture
Notes in Computer Science, pages 60—-72. Springer, 2003.

[ALP01] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in
weighted timed automata. In Proc. 4th International Workshop on Hybrid
Systems: Computation and Control (HSCC’01), volume 2034 of Lecture
Notes in Computer Science, pages 49-62. Springer, 2001.

[ARF14] Omar Al-Bataineh, Mark Reynolds, and Tim French. Finding best and
worst case execution times of systems using Difference-Bound Matrices. In

[BBBRO7]

[BBFLO3]

[BBLOS]

[BBLPOG]

[BCM16]

[BFHT01]

[BFLM11]

[BLRO5]

[Bou04]

[BVO04]

[BY03]

[DHS ™ 14]

[DOT*10]

17

Proc. 12th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS’14), volume 8711 of Lecture Notes in Computer
Science, pages 38—52. Springer, 2014.

Patricia Bouyer, Thomas Brihaye, Véronique Bruyere, and Jean-Francois
Raskin. On the optimal reachability problem. Formal Methods in System
Design, 31(2):135-175, 2007.

Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim G. Larsen.
Static guard analysis in timed automata verification. In Proc. 9th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’03), volume 2619 of Lecture Notes in Computer Science,
pages 254-277. Springer, 2003.

Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal infinite schedul-
ing for multi-priced timed automata. Formal Methods in System Design,
32(1):2-23, 2008.

Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelanek.
Zone based abstractions for timed automata exploiting lower and upper
bounds. International Journal on Software Tools for Technology Transfer,
8(3):204-215, 2006.

Patricia Bouyer, Maximilien Colange, and Nicolas Markey. Symbolic optimal
reachability in weighted timed automata. Technical Report abs/1602.00481,
CoRR, 2016. Available at http://arxiv.org/abs/1602.00481.

Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul
Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-cost reachability
for priced timed automata. In Proc. jth International Workshop on Hybrid
Systems: Computation and Control (HSCC’01), volume 2034 of Lecture
Notes in Computer Science, pages 147-161. Springer, 2001.

Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey.
Quantitative analysis of real-time systems using priced timed automata.
Communication of the ACM, 54(9):78-87, 2011.

Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal schedul-
ing using priced timed automata. ACM Sigmetrics Performancs Evaluation
Review, 32(4):34-40, 2005.

Patricia Bouyer. Forward analysis of updatable timed automata. Formal
Methods in System Design, 24(3):281-320, 2004.

Stephen Boyd and Lieven Vandenberghe. Conver optimization. Cambridge
University Press, 2004.

Johan Bengtsson and Wang Yi. On clock difference constraints and termina-
tion in reachability analysis of timed automata. In Proc. 5th International
Conference on Formal Engineering Methods (ICFEM’03), volume 2885 of
Lecture Notes in Computer Science, pages 491-503. Springer, 2003.
Aakash Deshpande, Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran,
and Igor Walukiewicz. Fast detection of cycles in timed automata. Technical
Report abs/1410.4509, CoRR, 2014.

Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen,
and Kim Guldstrand Larsen. METAMOC: Modular execution time analysis
using model checking. In Proc. 10th International Workshop on Worst-Case
Ezecution Time Analysis (WCET’10), volume 15 of OpenAccess Series in
Informatics (OASIcs), pages 113—-123. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2010.

18

[GELP10] Andreas Gustavsson, Andreas Ermedahl, Bjorn Lisper, and Paul Pettersson.

Towards WCET analysis of multicore architectures using UPPAAL. In
Proc. 10th International Workshop on Worst-Case Execution Time Analysis
(WCET’10), volume 15 of OpenAccess Series in Informatics (OASIcs), pages
101-112. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.

What’s decidable about hybrid automata? Journal of Computer and System
Sciences, 57(1):94-124, 1998.

[HKSW11] Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz.

[HSW12]

[HT15]

[JR11]

[LBB*01]

[RLS06]

[RSO1]

Using non-convex approximations for efficient analysis of timed automata.
In Proc. 30th Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS’11), volume 13 of LIPIcs, pages 78-89.
Leibniz-Zentrum fiir Informatik, 2011.

Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstrac-
tions for timed automata. In Proc. 27th Annual Symposium on Logic in
Computer Science (LICS’12), pages 375-384. IEEE Computer Society Press,
2012.

Frédéric Herbreteau and Thanh-Tung Tran. Improving search order for
reachability testing in timed automata. In Proc. 13th International Confer-
ence on Formal Modeling and Analysis of Timed Systems (FORMATS’15),
pages 124-139. Springer, 2015.

Rémi Jaubert and Pierre-Alain Reynier. Quantitative robustness analysis of
flat timed automata. In Proc. 14th International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS’11), volume 6604
of Lecture Notes in Computer Science, pages 229-244. Springer, 2011.

Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Angskar Fehnker, Thomas
Hune, Paul Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-
optimal reachability for priced timed automata. In Proc. 13th International
Conference on Computer Aided Verification (CAV’01), volume 2102 of
Lecture Notes in Computer Science, pages 493—-505. Springer, 2001.

Jacob I. Rasmussen, Kim G. Larsen, and K. Subramani. On using priced
timed automata to achieve optimal scheduling. Formal Methods in System
Design, 29(1):97-114, 2006.

Jan-J Riickmann and Oliver Stein. On linear and linearized generalized
semi-infinite optimization problem. Annals of Operations Research, 101(1-
4):191-208, 2001.

