
Crocodile: a Symbolic/Symbolic tool

for the analysis of Symmetric Nets with Bag⋆

M. Colange1 and S. Baarir2, F. Kordon1, and Y. Thierry-Mieg1

1 LIP6, CNRS UMR 7606, Université P. & M. Curie – Paris 6
4, place Jussieu, F-75252 Paris Cedex 05, France

Maximilien.Colange@lip6.fr, Fabrice.Kordon@lip6.fr, Yann.Thierry-Mieg@lip6.fr
2 LIP6, CNRS UMR 7606 and Université Paris Ouest Nanterre La Défense

200, avenue de la République, F-92001 Nanterre Cedex, France
Souheib.Baarir@lip6.fr

Abstract. The use of high-level nets, such as colored Petri nets, is very conve-
nient for modeling complex systems in order to have a compact, readable and
structured specification. Symmetric Nets with Bags (SNB) were introduced to
cope with this goal without introducing a burden due to the underlying com-
plexity of the state space. The structure of bags allows through exploitation of
symmetries to provide a compact quotient state space representation (similarly to
the construction proposed in GreatSPN).
In this paper, we present Crocodile, the first implementation of a modeling en-
vironment and model checker dedicated to SNB. Its goal is first to be a proof
of concept for experimenting the quotient graph techniques together with hierar-
chical set decision diagrams. A second objective is to enable experimentation of
modeling techniques with this new class of Petri nets.

Keywords: Symmetric Nets with Bags, Model Checking, Symmetries-based tech-
niques, Hierarchical Set Decision Diagrams.

1 Introduction

Symmetric nets with Bags (SNB) [7] are a compact and readable dialect of colored Petri
nets allowing structured specification of complex systems. They are based on Symmet-
ric Petri nets (SN), formerly known as Well-Formed Petri Nets [2], a subclass of High-
level Petri Nets3. Like SN, they allow construction of a quotient state graph represen-
tation [8], automatically derived from the specification, that preserves many properties
of interest (e.g. LTL), because bags4 in tokens remain compatible with symmetry-based
reduction techniques.

This paper presents the tool Crocodile, which allows creation and analysis of SNB.
The definition of SNB is quite recent [7], and this is the first tool that allows their
manipulation. It is composed of an Eclipse plugin for front-end modeling (based on the

⋆ Supported by the FEDER Île-de-France/System@tic—free software NEOPPOD project.
3 “Symmetric Nets” have been chosen in the context of the ISO standardization.
4 ’bag’ is a synonym for ’multiset’

Coloane editor [9]), and it uses hierarchical Set Decision Diagrams (SDD) [5] in the
back-end to support construction of the quotient state graph.

The paper is structured as follows. Section 2 informally presents SNB and their
relation to SN. Then, section 3 describes the architecture of the tool as well as its
original encoding of the quotient graph. Section 4 provides some information about
performances of Crocodile.

2 Informal Presentation of Symmetric Nets with Bags (SNB)

This section informally presents SNB. Due to lack of place, we do not introduce the
formal definitions that can be found in [7].

The SaleStore example Let us present SNB by means of a simple example, the Sale-
Store (see Figure 1). People enter the sale store through an airlock with a capacity of
two (of course, only a single person may enter too). Then, people may buy items (at
most two but possibly zero if none fits their need) and leave with the acquired items.
Let us note that this example has two scalable parameters: P, the number of involved
people in the system and G, the number of available gifts in the warehouse.

Class
 People is 1..P;
 Gift is 1..G;
Domain
 BagPeople is bag (People);
 BagGift is bag(Gift);
 PeopleBagGift is <People, BagGift>;

Var
 p in People;
 BP in unique BagPeople;
 BG in BagGift;

<BG><p>

<BP><BP>

<p,{BG}>

<Gift.all>
Gift

warehouse

shopping
[card(BG) < 3]

airlock

[card(BP) < 3 and
card(BP) > 0]

PeopleBagGift
out

People
ready

<People.all>
People
waiting

Fig. 1. The SaleStore example modelled with a SNB

The model in Figure 1 illustrates most of the main features of SNB. First, there are
several color types giving the place’s domains: simple color types like People or Gift

are called classes, while bags such as BagPeople or BagGift and cartesian products such
as PeopleBagGift are built upon basic color classes.

Variables which are formal parameters for transition binding are declared in the Var

section. A basic variable such as p can be bound to represent any element of People. A
variable such as BP represents a multiset (or bag) of People; since it is tagged by the
unique keyword, it can actually only be bound to a subset of People (each element in
BP appears at most once). Variable BG is not tagged with unique keyword; it could
be bound to any multiset of gifts (if the warehouse was configured to contain several
instances of each gift for instance).

Transition guards can be used to constrain the cardinality of a Bag variable : the
constraint [card(BP)< 3 and card(BP)> 0] on airlock model its capacity of at most 2
people (the airlock does not operate empty), while the constraint on shopping bounds
the number of gifts bought in the store by each person.

Equivalence with Symmetric Nets SNB have the same expressiveness as Symmetric
Nets but allow for more compact modeling. Like colored nets which can be seen as an

abbreviation of P/T nets, SNB can also be unfolded into an equivalent SN. Figure 2
shows such an unfolding. Transitions airlock and shopping are replicated for each
possible cardinality of the bag variable they can instantiate. Place out in the SNB is
unfolded according to the various domains obtained by “flattening” the bag token of the
PeopleBagGift type. Hence, the greater the bound on the cardinality, the more places
in the unfolded SN. Note that modeling anything the customers do once they are "out"
with their gifts would be very cumbersome in the SN.

However, designers must be careful when defining guards and initial markings so
that the model remains finite if unfolded to SN. For example, if shopping had no ware-

house place in input and no guard, an infinite number of bags could be generated (lead-
ing to an infinite unfolding). The main advice for the designers is to always bound the
cardinality of the bag-variables.

<g1>+<g2>

<g1>

<p1>

<p1>

<p1>+<p2><p1>+<p2>

<p1>

<p1><p1>

<p1>

<p1, g1>

<p1, g1, g2>

<Gift.all>

Gift
warehouse

shopping2gift

shopping1gift

airlock2

shopping0gift

airlock1

People
outwithout

People
ready

<People.all>
People
waiting

PeopleGift
outwith1

PeopleGiftGift
outwith2

Class
 People is 1..P;
 Gift is 1..G;
Domain
 PeopleGift is <People, Gift>;
 PeopleGiftGift is <People, Gift, Gift>;
Var
 p1,p2 in People;
 g1,g2 in Gift;

Fig. 2. Unfolding of the SNB presented in Figure 1 into a SN

Advantages of SNB From Figures 1 and 2, it is obvious that with bags manipulation,
SNB provide a much more compact and natural way to model system than SN.

Another advantage of SNB is to allow production of a more compact quotient reach-
ability graph in number of edges. This is due to the use of bag variables which better
express the symmetries of possible bindings of variables to values. For instance, when
choosing two People from waiting, airlock in the SNB allows P×(P−1) bindings (i.e.

choose two from P), while airlock in the SN allows 2×P× (P−1) because variables
p1 and p2 can independently be bound to any element of People. Since computing suc-
cessors in a quotient graph is a costly operation (due to the canonization procedure),
this aspect may heavily impact the performance of analysis tools.

Issues in Representing the State Space Implementation of symmetry-based tech-
niques is not a challenge anymore since tools such as GreatSPN [6] or MurPhi [11] have
efficiently implemented such algorithms for over 20 years using explicit data structures.

The challenge resides in combining so-called “symbolic” techniques based on sym-
metries with the so-called “symbolic” techniques based on decision diagrams. Such a
“symbolic/symbolic” approach was first experimented in [13] on top of Data Decision
Diagrams (DDD) [4]. Here, the hierarchical structure of SNB for both the net structure,
the types and the tokens strongly suggests to take benefits of a new decision diagram
structure: Hierarchical Set Decision Diagrams (SDD) [5]. The engine developed to gen-
erate the state graph is thus fully based on decision diagrams; note that this differs from

[1] which does not support construction of a quotient graph, but tries to deal with per-
formance evaluation of stochastic symmetric nets using decision diagrams.

Our work aims at showing that the two techniques can be combined and provide, in
favorable conditions, added gains.

3 Tool Architecture

So far, Crocodile is a “symbolic/symbolic” state space generator for SNB able to com-
pute reachability properties. As already mentioned, its purpose is to provide a first mod-
eling and analysis tool for SNB as well as to merge two well known techniques for ef-
ficient state space generation. This section sketches the tool architecture first, and then
presents the encoding technique we use for an efficient storage of quotient state graphs.

Use of the Tool Crocodile is plugged in the Coloane modeler [9] (see Figure 3). It is
written in C++ and uses the libddd [10] for SDD manipulation.

Fig. 3. Crocodile in the Coloane User Interface

Coloane is a generic graph editor in which the concrete syntax of SNB has been
plugged. Once the model is designed, it is possible to invoke Crocodile directly from
the “Coloane Services” menu. Then, a windows requesting for a reachability formula
pops out. If no formula is provided, Crocodile simply generates the state space. We
use the syntax proposed for the model checking contest [12] that has been extended to
support SNB markings. Various statistics can be displayed: number of symbolic states
in the quotient state graph, number of SDD nodes, the number of canonizations that
have been computed, etc. Assessment and performances (section 4) are computed using
a standalone version of the tool under Unix (also distributed).

Symbolic/Symbolic Representation of SNB states Let us first remind the main char-
acteristics of symbolic markings as they were presented in [3]. The main idea is to avoid

representing similar behaviors, i.e., identical behaviors with respect to values permuta-
tions. To do so, the actual “identity” of values is forgotten and only their distributions
among places are stored. Values with the same distribution and belonging to the same
color type are grouped into a so-called dynamic subclass. A symbolic marking is, then,
a cartesian product of dynamic subclasses and will represent a large number of concrete
markings (according to the cardinalities of the involved subclasses).

The originality of Crocodile is to encode these symbolic markings by means of
Hierarchical decision diagrams. SDD extend DDD by proposing a way to hierarchi-
cally encode data. They also inherit the notion of homomorphism that was defined in
DDD [4]. Both computation of successor states and their canonization are implemented
as homomorphisms.

Encoding Roughly, where BDD represent sets of boolean assignments, SDD represent
sets of set assignments. The first consequence is that SDD arcs are valued with sets,
where BDD arcs are valued with booleans. The second consequence is the hierarchy:
since arcs are valued with sets, and SDD themselves represent sets, the arcs of a SDD
may refer to another SDD. This increases the sharing capacity of decision diagrams and
highlights their hierarchical feature.

root

P
1

cardinalities of dynamic subclasses (DSC)

P
2

marking of

place P
1

1

marking of

place P
2

1

second term :

bag of DSC

1
1

...
 ref. to DSC

 ref. to DSC

 ref. to DSC

 ref. to DSC

Fig. 4. Architecture of Crocodile encoding of a symbolic marking

Let us illustrate our encoding scheme with Figure 4. A symbolic marking is repre-
sented by:

– the identification of dynamic subclasses cardinalities,
– the symbolic content of each place (as a cartesian product of dynamic subclasses).

Our encoding presents three levels. The first one (bold) corresponds to the structure
of the SNB and lists its places. The second level (thin) is reached from the arcs between
the nodes encoding places and describe their symbolic marking. The third level (dou-
ble thin) stands to encode bag tokens. As both second and third levels represent bags,
they may share a given description (its interpretation is then handled by the homomor-
phism that operate on the structure). Figure 5 shows an example of this capability for
two partial markings (only places waiting, warehouse and out are represented) of the
SaleStore example:

M1 = waiting(P1)+warehouse(G0)+out(〈P0,{G1}〉)
M2 = waiting(P1)+warehouse(G1)+out(〈P0,{G0}〉)

We assume that P0 and P1 are dynamic subclasses in People while G0, G1 are dy-
namic subclasses in Gift.

root

warehouse

outout

waiting

...

|P0|=1, |P1|=|People|-1, |G0|=1, |G1|=2

11

1

11

1

G0

1

G1

1

P0

1

P0

1

P1

Fig. 5. Example of encoding for two markings with common shared parts

This Figure shows the encoding of these two partial markings. The three levels of
hierarchy are clearly visible. We also observe that the markings G0 (and G1) are shared
at two different levels. The dotted path from the arcs below place out, corresponds to a
bag inside a bag while, from place warehouse, they are simply a bag.

Symbolic/Symbolic Representation of SNB arcs In most decision diagram-based
state space representations, reachability graph arcs are not explicitly stored in memory.
Yet, they may be reconstituted when necessary (i.e. when elaborating a counter exam-
ple) through the firing relation. This is also the case in Crocodile. We thus trade memory
against CPU when elaborating the counter example.

Summary Our objective is to stack the two so-called “symbolic” mechanisms.
First, symbolic states allow a compact representation by grouping similar states up

to permutations thanks to dynamic subclasses that gather structurally equivalent values
in color types.

Second, symbolic encoding of such a state representation allows to share common
parts of the description, thus saving memory and providing a fast way to compare sym-
bolic markings. The use of the SNB structure (graph, tokens, bags in tokens) even in-
creases the sharing capacity between levels of representation with SDD.

4 Assessment and Performances

This section shows how we assessed our tool on SNB by using a comparison with Great-
SPN [6] that is now the reference implementation of the quotient state graph for SN.
In this case, we only use the colored features of GreatSPN that also handles stochastic
nets5. We also run our tool on both the SN and SNB models of section 2 with various
values for the two scaling parameters (size of types People and Gift).

5 Well-Formed Petri Nets [2] introduce stochastic features that are not yet embedded in SNB.

Assessment since SNB encompass SN, we use GreatSPN as a comparison when pro-
cessing SN with Crocodile. In both cases, the size of the state space is the same.

We also observe the same number of states for the quotient state space for both
SN and SNB, which is consistent too. In fact, the main difference between the sym-
bolic state space of a SNB and the one of its unfolded SN is the number of symbolic
arcs. This will lead to the analysis of less successors for symbolic states and thus, less
canonizations (as illustrated in Table 1 and Figure 6).

Performance To evaluate performance of state space generation (to first verify safety
properties), we use the models presented in section 2. The SNB of Figure 1 was pro-
cessed by Crocodile while its corresponding SN was processed by both Crocodile and
GreatSPN. This enables a separate evaluation of the gain brought by the encoding com-
pared to the one coming from the use of bags in tokens.

We let the number of values in People and Gift increase progressively. Executions
were operated on a 32bits 3.2GHz Intel processor with 3GByte of memory and running
Linux. Time was measured with time and memory estimated using memusage. Table 1
summarizes the collected information. Columns show:

– P, the size of class People,
– G, the size of class Gift,
– the size (number of nodes) for both the quotient state graph and the state space (i.e.

the corresponding concrete state space),
– for SNB (with Crocodile) and SN (with both Crocodile and GreatSPN): the number

of firings6 performed to build the quotient state graph, consumed memory7 and
execution time in seconds.

Table 1 clearly shows (once again) the benefits brought by symbolic techniques
compared to explicit ones, when models exhibit symmetries.

It also shows the very low number of firings Crocodile needs to build the SNB
quotient state graph compared to GreatSPN for the SN one. Crocodile also explore more
successors for SN than for SNB, which is related to the reduced number of transitions
in the SNB. Both tools must canonize each new discovered state to check if it belongs to
an already computed one. Since the canonization algorithm is time consuming, this has
a dramatic impact on GreatSPN execution. This impact can be noticed in Figure 6(a)
that shows execution time for |People|= 6 and |Gi f t| varying from 2 to 15.

The benefits of decision diagram based representation is also highlighted when com-
paring GreatSNPN and Crocodile running on SN. For small values of P and G, shared
parts of the quotient state graph are not sufficient to overload the initial cost of the de-
cision diagram structure, this becomes false when G ≥ 8 in Table 1, thus leading to
consequent gain in memory usage. This is also visible in Figure 6(b) that shows the
evolution of memory consumption for |People|= 6 and |Gi f t| varying from 2 to 15.

When G > 9, the combinatorial explosion of firings forces GreatSPN to stop. Thus,
we can process the example for large values such as 20 peoples with 40 gifts (last line
in the table, asymptote point in the quotient state space for this system configuration).

6 They are symbolic/symbolic firings for Crocodile and symbolic firing for GreatSPN.
7 MOVF means memory overflow (around 2.03 Gbytes on our experiment machine).

Number of Nodes SNB (Crocodile) SN (Crocodile) SN (GreatSPN)

P G Quotient Ordinary # of Mem. Time in # of Mem. Time in # of Mem. Time in

Graph Space Firings in KB seconds Firings in KB seconds Firings in KB seconds

5 6 116 6.70×1005 285 502 0.4 361 703 0.7 10 430 407 17.0
5 7 120 2.75×1006 296 602 0.4 377 745 0.7 60 850 433 29.7
5 8 124 1.10×1007 303 684 0.4 388 781 0.8 99 920 71 958 2 041.1
5 9 125 4.18×1007 305 653 0.4 392 784 0.9 3 497 661 77 628 3 128.2
5 10 126 1.51×1008 306 572 0.4 394 783 0.9 — MOVF —
5 50 126 4.24×1016 306 573 0.5 394 797 1.1 — MOVF —
6 6 180 4.12×1006 496 794 0.7 652 875 1.2 28 612 422 39.8
6 7 190 1.97×1007 527 976 0.8 695 934 1.3 146 775 448 77.7
6 8 200 9.24×1007 550 1 206 0.9 730 1 087 1.6 289 301 73 855 5 857.8
6 9 204 4.22×1008 561 1 277 0.9 745 1 132 1.7 10 589 107 79 526 10 564.5
6 10 208 1.86×1009 568 1 357 1.0 756 1 183 1.8 — MOVF —
6 11 209 7.78×1009 570 1 284 0.9 760 1 184 1.8 — MOVF —
6 12 210 3.07×1010 571 1 182 0.9 762 1 227 1.9 — MOVF —
6 50 210 1.03×1019 571 1 002 1.1 762 1 245 2.1 — MOVF —
7 6 260 2.29×1007 744 1 275 1.2 967 1 242 2.0 64 531 453 83.5
7 7 280 1.24×1008 811 1 578 1.5 1 052 1 408 2.4 304 504 880 196.6
7 8 300 6.65×1008 864 1 909 1.8 1 127 1 615 2.9 680 594 75 753 12 024.3
7 9 310 3.19×1009 896 2 135 2.0 1 168 1 734 3.2 22 553 532 81 424 23 548.3
7 10 320 1.81×1010 919 2 151 2.1 1 200 1 985 3.5 — MOVF —
7 14 330 8.34×1012 940 1 981 2.0 1 232 2 132 4.0 — MOVF —
7 100 330 4.18×1027 940 1 811 2.7 1 232 2 172 4.9 — MOVF —
8 6 356 1.19×1008 1 084 1 301 1.8 1448 1 611 3.04 123 639 486 151.86
8 7 390 7.11×1008 1 208 1 967 2.33 1606 1 861 3.73 587 084 948 495.11
8 8 425 4.27×1009 1 312 2 600 3.02 1754 2 240 4.63 1 496 928 77 654 21300.24
8 9 445 2.54×1010 1 382 3 134 3.47 1845 2 379 5.2 40 063 379 83 326 43946.47
8 10 465 1.49×1011 1 436 3 496 3.93 1924 2 531 5.84 — MOVF —
8 16 495 2.90×1015 1 511 3 568 4.02 2032 2 653 6.97 — MOVF —
8 100 495 3.10×1031 1 511 3 255 5.04 2032 2 742 8.34 — MOVF —

20 40 10 626 3.17×1051 41 529 1 401 621 6016.79 57051 1 150 338 5422.91 — MOVF —

Table 1. Compared performances of Crocodile and GreatSPN on state space generation.

Let us notice two points for this model. First, the combinatorial explosion dramati-
cally increases every two increments of G. This is due to the maximum bound of gifts to
be bought (see guard in transition shopping, that bound this value to 2). This increases
can be directly observed in the charts of Figure 6. Second, the number of symbolic
markings stabilizes when |Gi f t| ≥ 2× |People|. When |Gi f t| is just below the stabi-
lization value (2× |People|), the SDD structure is not fully dense; beyond this value,
the sharing in the SDD structure is maximized. Reaching this point of maximal sharing
results in a slight decrease of memory consumption for Crocodile.

State Space Snalysis So far, Crocodile provides analysis of reachability properties.
Such properties are constraints that can be checked during state space generation. This
does not bring extra complexity (just a constant due to the property evaluation). Evalu-
ation of a reachability property is done using the following schema:

– translation of the property into constraints c on the symbolic markings (expressed
as a SDD),

– for each new symbolic state s, comparing the canonical representation of s with c

(since both are SDD, this is a fast operation).

So far, once a state verifying the property is found, the tool must reexecute the state
space generation algorithm to store the list of symbolic firings leading to the identified

0

1

10

100

1 000

10 000

100 000

2 4 6 8 10 12 14

Crocodile (SNB)

Crocodile (SN)

GreatSPN (SN)

(a) Computation time in seconds

1

10

100

1 000

10 000

100 000

2 4 6 8 10 12 14

Crocodile (SNB)

Crocodile (SN)

GreatSPN (SN)

(b) Memory consumption in Kbyte

Fig. 6. Memory and time measures for |People|= 6 and |Gi f t| varying from 2 to 15

state. Thus, verification of a reachability property may lead to building twice the state
space in the worst case. This complexity is compensated by the gain in the state space
generation.

Summary As a conclusion to these experiments, we note the two so-called “symbolic”
techniques (the one based on symmetries and the one based on decision diagram en-
coding) stack well. First, the traditional quotient state graph brings an exponential gain
with respect to the ordinary graph. Then, the SDD based encoding brings another expo-
nential gain on top of the previous one. As Figure 6 shows, most of the gains observed
on SN are brought by the simultaneous use of these techniques.

We have another confirmation that coupling the two symbolic techniques is of in-
terest. A prototype version of GreatSPN uses several variants of decision diagrams [1]:
multi-way DD (MDD), multi-terminal MDD (MTMDD), and edge-valued MDD (EV+
MDD). None of these are hierarchical and they encode Stochastic P/T nets so far. Their
results also show significant gain from the original version.

5 Conclusion

This paper presents the tool Crocodile that is original in several manners: (i) it is the first
implementation of SNB [7] and (ii) it encodes the quotient state graph with decision
diagrams (symbolic/symbolic approach).

From this work, we can draw three main results. First, SNB show good modeling
compacity when manipulating sets or bags in Petri nets. This is illustrated by our small
example: the SaleStore model and its unfolding to SN.

Second, as already foreseen in [1], the two so-called “symbolic” techniques (sym-
metry-based and decision diagram-based) stack very well. Each brings an exponential
reduction factor in performances, as shown in section 4. In particular, the hierarchical
encoding of markings in the quotient state graph even increases the sharing capacity,
thus leading to significant gains in memory.

Third, the theoretical gain in the number of arcs for SNB is experimentally demon-
strated. It increases performances already brought by the encoding technique since it
simplifies the computation of the quotient state graph (less successors to examine).
Moreover, since Crocodile relies on decision-diagrams, we do not explicitly represent
arcs, thus increasing memory gain.

Crocodile is available at http://move.lip6.fr/software/SNB/. It shows good
performances in both memory consumption and execution time. It is able to perform
analysis of reachability properties. However, computation of a counter example might
be optimized in the future. So far, it is based on a second computation of the state space.

It would also be of interest to formally define the unfolding from SNB to SN and
its reverse operation to be able to enable on-the-fly use of the techniques embedded
in Crocodile. We could then cumulate benefits of the SNB model with more classical
modeling schemes.

References

1. J. Babar, M. Beccuti, S. Donatelli, and A. Miner. GreatSPN Enhanced with Decision Di-
agram Data Structures. In 31st International Conference on Petri Nets and Other Models

of Concurrency (ICATPN 2010), volume 6128 of Lecture Notes in Computer Science, pages
308–317, Braga, Portugal, June 2010. Springer.

2. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On well-formed coloured nets
and their symbolic reachability graph. In K. Jensen and G. Rozenberg, editors, Procedings

of the 11th International Conference on Application and Theory of Petri Nets (ICATPN’90).

Reprinted in High-Level Petri Nets, Theory and Application. Springer-Verlag, 1991.
3. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A symbolic reachability graph

for coloured Petri nets. Theoretical Computer Science, 176(1–2):39–65, 1997.
4. J.-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P.-A. Wacrenier. Data

Decision Diagrams for Petri Net Analysis. In ICATPN’02, volume 2360 of LNCS, pages
1–101. Springer-Verlag, 2002.

5. J.-M. Couvreur and Y. Thierry-Mieg. Hierarchical decision diagrams to exploit model struc-
ture. In 25th IFIP WG 6.1 International Conference on Formal Techniques for Networked

and Distributed Systems, volume 3731 of LNCS, pages 443–457. Springer, 2005.
6. GreatSPN. Petri nets suite: http://www.di.unito.it/~greatspn.
7. S. Haddad, F. Kordon, L. Petrucci, J.-F. Pradat-Peyre, and N. Trèves. Efficient State-Based

Analysis by Introducing Bags in Petri Net Color Domains. In 28th American Control Con-

ference (ACC’09), pages 5018–5025, St-Louis, USA, June 2009. Omnipress IEEE.
8. T. Junttila. On the symmetry reduction method for Petri Nets and similar formalisms. PhD

thesis, Helsinki University of Technology, Espoo, Finland, 2003.
9. MoVe team. The coloane home page : http://move.lip6.fr/software/COLOANE.

10. MoVe team. The libddd home page : http://move.lip6.fr/software/DDD.
11. Murphi. Murphi description language and verifier: http://verify.stanford.edu/dill/

murphi.html.
12. SUMO’2011. Sumo model checking contest: http://sumo.lip6.fr/Model_Checking_

Contest.html.
13. Y. Thierry-Mieg, J.-M. Ilié, and D. Poitrenaud. A symbolic symbolic state space representa-

tion. In D. de Frutos-Escrig and M. Núñez, editors, FORTE, volume 3235 of LNCS, pages
276–291. Springer Verlag, 2004.

