
StrataGEM: A Generic Petri
Net Verification Framework

Edmundo López Bóbeda, Maximilien Colange, and Didier Buchs

Centre Universitaire d’Informatique
Université de Genève

7 route de Drize, 1227 Carouge, Suisse

Abstract. In this paper we present the Strategy Generic Extensible Mod-
elchecker (StrataGEM), a tool aimed at the analysis of Petri nets and other
models of concurrency by means of symbolic model-checking techniques.
StrataGEM marries the well know concepts of Term Rewriting (TR) to the
efficiency of Decision Diagrams (DDs). TR systems are a great way to de-
scribe the semantics of a system, being readable and compact, but their di-
rect implementation tends to be rather slow on large sets of terms. On the
other hand, DDs have demonstrated their efficiency for model-checking,
but translating a system semantics into efficient DDs operations is an ex-
pert’s matter. StrataGEM describes the semantics of a system in terms
of strategies over a TR system, and automatically translates these rules
into operations on DD to handle the model-checking. The ultimate goal of
StrataGEM is to become a verification framework for the different variants
of Petri nets by separating the semantics of the model from the computa-
tion that performs model-checking.

1 Introduction

Decision Diagrams (DDs) have demonstrated their efficiency towards model-
checking [1], especially for Globally Asynchronous Locally Synchronous (GALS)
systems. However, they require a careful encoding of the operations at the DDs
level. Most works in the area focus on a low-level encoding, which is a major
obstacle for non-expert modelers.

High-level interfaces, easily understandable for the user not familiar with DDs,
are desirable in order to ease and widen the use of DDs. With model-checking as
goal, such an interface should provide a language for the description of the seman-
tics of the systems to be evaluated, and an automatic translation of this seman-
tics into DDs operations. It should also feature some predefined model-checking
algorithms, along with opportunity to define new algorithms, e.g., through the
language used for the semantic description. This language should meet two cri-
teria: be expressive enough to capture the largest possible class of systems, and
be easy to read and write for a human being. This aim is similar to the princi-
ples used in successful SAT based model-checker such as bounded model-checker
where there is a separation between the encoding of the problem in propositional
logic and the SAT engines themselves.

G. Ciardo and E. Kindler (Eds.): PETRI NETS 2014, LNCS 8489, pp. 364–373, 2014.
c© Springer International Publishing Switzerland 2014

StrataGEM: A Generic Petri Net Verification Framework 365

StrataGEM is a prototype of such an interface, relying on Term Rewrite Sys-
tems (TRSs) as its language for semantic description, to achieve both expres-
siveness and readability. Term Rewriting (TR) rules are especially well-suited
to describe local modifications, which suits asynchronous systems. Standard TR
rules however suffer two drawbacks. First, GALS systems often feature various
degrees of synchronization among local modifications; such synchronizations are
not easy to express with standard TR rules. Second, model-checking algorithms
often tweak the semantics of the system to increase performance, e.g., by pri-
oritizing concurrent transitions. Such operations are not easy to describe with
standard TR rules either.

StrataGEM adresses these problems thanks to TR strategies. They enrich
the language by allowing to combine standard TR rules in various ways. Thus,
the semantics of a system is given in two steps: standard TR rules describe
atomic semantic steps, and strategies using these atoms describe more elaborate
transitions (such as synchronizations), or semantic tweaks for optimization [2,3].

Strategies also allow to describe model-checking algorithms, either built-in in
the tool or designed by the user. Thus, semantics of systems and model-checking
algorithms are treated uniformly, considerably easing the use of the tool.

As the use of TRS to describe the semantics of a system assumes to represent
states of said system as terms, the natural choice for the underlying DDs is
Σ Decision Diagrams (ΣDDs) [4]. Designed to represent efficiently large sets of
terms, they come with basic efficient manipulation operations. In particular, they
allow to apply a TR rule to a set of terms in one elementary step.

Thanks to its extensibility, StrataGEM is not only aimed at people wanting
to model-check Petri nets, but also at developers of model-checkers, willing to
implement their algorithms on top of ΣDD.

This paper is structured as follows: in Section 2 we informally present tran-
sition systems, based on TRS and strategies, as defined in StrataGEM. Sec-
tion 3 presents the tool architecture and also introduces its basic usage. Section 4
presents an assesment of the tool, comparing it to another similar model-checking
tool. The results are quite promising, the comparison with PNXDD indicating
a trend towards a better asymptotic performance for StrataGEM.

2 StrataGEM Transition Systems

In this section, we informally present how to describe Transition System (TS) in
StrataGEM. We first introduce the TRS and rewrite rules, that serve as basic
bricks to describe local evolutions of the system. We then present the strate-
gies that allow to combine these building blocks into elaborated semantics and
algorithms. Their purpose is threefold: they describe the non-local transforma-
tions of the system, the model-checking algorithms, and the optimizations that
can be done in these algorithms. Terms, that describe the states of the system,
rewrite rules and strategies, that describe its semantics, are gathered to form a
StrataGEM Transition System. To support our presentation, we use as running
example the Kanban model, expressed as a Petri Net on Figure 1.

366 E. López Bóbeda, M. Colange, and D. Buchs

tok4

Pm4

tredo4

Pback4

tback4 Pout4 tin4 P4

tsync423

P3 P2

Pm3

tredo3

Pback3

tback3tok3

Pout3

Pm2

tredo2

Pback2

tback2 tok2

Pout2tsync123

Pm1

tredo1

Pback1

tback1 tok1

Pout1

tout1 P1

Fig. 1. Kanban Petri Net

2.1 Term Rewrite Systems

The first step is to define a signature: a set of function names used to build terms
that encode the states of the system. Several encodings with different signatures
may be possible. The construction of terms in StrataGEM follows the theory of
Order-Sorted Signatures [5], which we do not detail here.

Let us describe the signature used by StrataGEM for Petri nets. Non-negative
integers are encoded as terms being either zero, or suc(t) where t is an inte-
ger term. For clarity, in the following integer terms are often replaced by plain
integers.

For a given Petri net, a function name of arity 2 is defined for each of its places.
The first argument is the marking of the place (an integer term), and the second
argument is the subsequent list of places. The function name empty of arity 0 de-
notes the empty list. The state (marking) of a Petri net is then a term containing
all places exactly once with their respective number of tokens. Thus, in our run-
ning example, an initial state would start with Pm4(0, P4(5, Pback (0, . . .))),
indicating that places Pm4 and Pback initially contain no token, whereas place P4
contains 5 tokens.

Basic local operations of the system are described in terms of rewrite rules,
and aggregated with strategies. A rewrite rule l � r states that if a term t
matches its left-hand side l, then it is replaced by its right-hand side r. Note
that both l and r may contain term variables. In the case of Petri nets, each arc
gives rise to a rewrite rule, a transition of the net is then described by a strategy
aggregating its adjacent arcs. For example, the arc removing a token from Pm4
(either to fire transition tredo4 or tok4) is described by the rewrite rule arc1 =
Pm4(suc($x), $p) � Pm4($x, $p), where values preceded by a dollar sign denote
variables. Similarly, an arc adding a token in the place Pm4 (either from transition
tback4 or tin4) is described by arc2 = Pm($x, $p) � Pm4(suc($x), $p). Note
that StrataGEM only handles linear rewriting rules, i.e., that do not contain
multiple occurrences of a variable in its left and right sides.

StrataGEM: A Generic Petri Net Verification Framework 367

2.2 Term Rewriting Strategies

Expressing the Petri Nets transitions in terms of rewrite rules would be cumber-
some, especially if the places modified by the transition are not close in the state
vector. To cope with this problem we use Term Rewriting strategies [6,7], that
are meant to control the application of rewrite rules. A TR rule might succeed
and modify the term on which it is applied or fail, in which case the strategy
returns nothing. A fail in a strategy can be seen as an exception that is raised.

Basic Strategies. The simple strategy wraps a standard rewrite rule as a strat-
egy, and applies it at the root of a given term. Thus, a simple strategy is defined
for each arc of the Petri Net, that embeds the arc rewrite rule described above.

Note that a simple strategy only applies its embedded rewrite rule at the
top of a term. If the rule is applicable to a subterm, but not to the root, then
the simple strategy fails. We denote the application of a strategy with square
brackets. For example, arc1[Pm4(suc(0), empty)] = Pm4(0, empty). However,
arc1[P4(suc(0), Pm4(suc(0), empty))] will fail, because the term where it can
be applied is a subterm of the root term, and not the root term itself.

Such basic strategies are sufficient to express the semantics of Petri Nets arcs,
and we present in the following how to combine them to express the semantics of
a whole transition. StrataGEM allows a more generic setting for simple strate-
gies. A simple strategy embeds an ordered list of rewrite rules, and applies only
the first of the rules that is applicable. We do not use this feature in the paper,
but it is quite useful when several rewrite rules are applicable to the same term.
The ordered list describes a priority between rules to resolve any ambiguity. If
no rule in the list is applicable at the root, then the simple strategy fails.

Simple strategies serve as atomic building blocks for the transition relation.
To combine them, StrataGEM provides a set of basic strategies, mostly inspired
from Tom strategy language [7]. The user may also define custom strategies.

We introduce three basic strategies, and then combine them to apply an arc
rewrite rule at the appropriate, but not a priori known, depth. The first of
these basic strategies, One(S,n), applies the strategy S to the n-th subterm of
the root. This overcomes the limitation of simple strategies to apply only at the
root of a term. The second strategy is the choice strategy, a simple conditional
application of strategies: Choice(S1,S2)[t] tries to apply S1 to t. It returns S1[t]
if this application succeeds, and S2[t] if S1 fails.

We now the third define a strategy recursively. It is for instance useful for
the recursive propagation of a strategy on subterms, to apply it at an arbitrary
depth. For instance, to apply an arc rewrite rule at the appropriate depth, we use
the recursively defined strategy ApplyOnce(S) = Choice(S, One(ApplyOnce(S),2).
ApplyOnce(S) thus tries to apply S at root level. If it fails, it tries to apply it on
the second subterm. If this also fails, given the definition of our state terms, it
means that it was applied on empty and legitimately fails. This strategy thus
descends the subterm tree until it finds a subterm where it can be applied. Note
that this does not require to know the depth where the strategy S should be
applied: this application depth is discovered dynamically.

368 E. López Bóbeda, M. Colange, and D. Buchs

We have described how to apply an arc rewrite rule at the appropriate depth.
We now describe how to encode the semantics of a Petri net transition. It is simply
the synchronization of the rewrite rules for all the incident arcs. This synchroniza-
tion is performed with the sequence strategy: Sequence(S1,S2) first applies S1, then
S2. If one of its arguments fails when applied, the sequence strategy also fails. To
improve readability, it is also possible to define a n-ary sequence strategy, that ap-
plies its arguments one after the other. Thus, if a transition t of a Petri net has
iarc1, . . . , iarcN as input arcs and oarc1, . . . , oarcP, then its semantics is given
by the strategy Sequence(iarc1, . . ., iarcN, oarc1, . . ., oarcP). This ensures that
the input arcs rules are applied before the output arcs rules, thus ensuring the en-
abling precondition: if one input place does not contain enough tokens, the whole
strategy fails.

Note that this encoding could be further improved by releasing constraints
on the order the arc rewrite rules are evaluated, so as to avoid unnecessary
walks along the term tree structure. The only constraint that should be retained
is that the enabling precondition be retained. Another improvement would be
the design of a strategy for a commutative sequence of strategies, that would
determine dynamically the order in which the arc rewrite rules are applied.

Model-Checking Strategies. Strategies are not only meant to describe the
transition relation of a system, but they can also describe how to explore the
state space to check a property. We first extend the strategies to sets of terms:
S[T] = { S[t] | t ∈ T , S does not fail on t }. The elements on which the strat-
egy fails are removed from the resulting set. If the strategy fails on all terms in
the set, then it fails on the set.

We define two more strategies to better handle sets of terms.
The first one allows to gather the results of several strategies:
Union(S1,S2)[T] = S1[T] ∪ S2[T]. The union fails if either S1 or S2 fails.
As previously done for the sequence strategy, we use an n-ary union to ease
readability. The order of its arguments is not relevant, since it is commutative.

Fixpoint applies a strategy to a set of terms until a fixpoint is
reached: Fixpoint(S)[T] = Sn[T] where n is the smallest integer s.t.
Sn[T] = Sn+1[T]. We use these strategies to encode the state space gen-
eration of a concurrent system, such as the Petri Net of Figure 1. Say
that the concurrent system has N transitions, encoded as strategies T1,
. . . , TN. The strategy that generates the state space of such a system is:
Fixpoint(Union(Identity, Choice(T1, Identity), . . ., Choice(TN, Identity))).
The Identity strategy rewrites a term to itself. Its presence in the union is
necessary to keep states computed so far. Choice keeps strategies from failing,
which would make the Union fail.

Optimizing Strategies. Most model-checking algorithms perform challenging
computations, and it is in our best interest to perform them optimally. When
using DDs, there are three main ways to improve the strategies:

– performing less operations;

StrataGEM: A Generic Petri Net Verification Framework 369

– exploiting locality;
– exploiting subparts of the system that share similar behavior.

Consider for instance the operation ApplyOnce(arc1) defined above. We recall
that arc1 = Pm4(suc($x), $p) � Pm4($x, $p). If Pm4 does not contain enough
tokens, arc1 fails, and ApplyOnce(arc1) continues its descent of the subterm
tree, eventually stopping at the end of the tree. But, by construction of our state
terms, if arc1 fails at this very level, it will not apply at any other level. Hence the
recursive descent of ApplyOnce(arc1) becomes useless. To avoid this unnecessary
and costly descent, we can first check if the appropriate depth is reached, and
apply arc1 only if true. In this case, the failure of arc1 is not pursued by a descent
on the subsequent places. We introduce a conditional strategy: ITE(S1, S2, S3) 1

first applies S1, then it applies S2 if successful. If the application of S1 fails
in the first place, it applies S3 to the input term. The trick here is to use a
strategy that checks whether the good level is reached, without modifying the
term. Let cPm4 be the rewrite rule Pm4($x, $p) � Pm4($x, $p). This rule acts
as the identity only for terms whose root is Pm4, and fails on any other ones. Thus,
ApplyOnceOpt(cPm4,arc1) = ITE(cPm4, arc1, One(ApplyOnceOpt(cPm4,arc1), 2))
performs the recursive descent only if Pm4 has not yet been reached, avoiding
the aforementioned unnecessary steps.

Another optimization consists in exploiting locality: transitions that affect the
same places can be gathered so as to be evaluated together, thus avoiding unnec-
essary upwards and downwards walks of the state term. StrataGEM introduces
the notion of clusters of places, a subset of the places of the net adjacent to a
common set of transitions. In the Kanban model, Pm2, Pback2 and Pout2 together
with transitions tredo2, tback2 and tok2 form such a cluster. These transitions
can be applied at the cluster level, rather than on the whole term. The state
terms slightly change to handle this optimization: the places of a given cluster
are encoded contiguously in the state vector, limits of clusters being highlighted
with new function names in the term. The transitions of a cluster are applied on
the corresponding subterm only, identified by said cluster limits.

Beside avoiding unnecessary walks of the terms to find the appropriate level of
application, we also note that the evaluation of a fixpoint can also be pushed at
the cluster level. This is very similar to the optimization for fixpoint evaluation
on Decision Diagrams known as saturation [2,8].

But the materialization of clusters also allows for further optimization. By
an appropriate hierarchy in the state term and renaming of the places, cluster
subterms can share their representation in memory. Thanks to DDs unicity tables
and caches, this allows to share the representation and semantics of clusters with
similar behaviors. This may considerably speed up the computations if the input
net presents a high level of similarity between its clusters.

Details about the strategies generated for this example model, both
non-optimized and optimized, are presented in http://sourceforge.net/
projects/stratagem-mc/files/ .
1 This strategy also allows to define Choice(S1, S2) as ITE(S1, Fail, S2), and
Sequence(S1, S2) as ITE(S1, S2, Fail).

http://sourceforge.net/projects/stratagem-mc/files/
http://sourceforge.net/projects/stratagem-mc/files/

370 E. López Bóbeda, M. Colange, and D. Buchs

Note that all these optimizations require to know (good) clusters for the input
system. StrataGEM features a clustering algorithm, activated by default, that
automatically detects clusters in the input net, and exploits them to use the
above optimizations. The description of the clustering algorithm goes beyond
the scope of this paper, but roughly speaking, it relies on a maximization of
the ratio between the size of the cluster (the number of places it embeds) and
its frontier (number of adjacent transitions). The automatic cluster detection
is currently only available for Petri Nets, although similar algorithms could be
designed for other input formats.

Sum Up We sum up in Table 1 the strategies available in StrataGEM. In this
table, i and n are integers, S, S1, S2 and S3 denote strategies, t and t1 through
tn denote Σ-terms, T a set of Σ-terms, and f is a symbol of arity n in Σ.

Table 1. The strategies available in StrataGEM

simple strategy wraps a term-rewriting rule as a strategy
one One(S,i)[f(t1,. . ., tn)] = f(t1,. . ., S[ti],. . ., tn)

choice Choice(S1,S2)[t] =

{
S1[t] if S1 is successful on t
S2[t] otherwise

sequence Sequence(S1,S2)[t] =

{
S2[S1[t]] if S1 is successful on t
fails otherwise

if-then-else ITE(S1,S2,S3)[t] =

{
S2[S1[t]] if S1 is successful on t
S3[t]] otherwise

union Union(S1,S2)[T] =

{
S1[T] ∪ S2[T] if S1 and S2 do not fail on T
fails otherwise

fixpoint Fixpoint(S)[T] = Sn[T] where n = min
i>0

(Si[T] = Si+1[T])

3 Architecture

We shortly describe the architecture of the tool and its usage. StrataGEM can
be used as a standalone command line tool or as a library. It is available at
http://sourceforge.net/projects/stratagem-mc/, and we also provide a
set of examples (including the Kanban model) at https://sourceforge.net/
projects/stratagem-mc/files/examples/.

3.1 Architecture and Implementation

StrataGEM is written in Scala and comprises 3700 lines of code. It is packaged
as a jar archive, as is common for Scala tools. The choice of Scala renders the
tool platform-independent.

StrataGEM features three main parts, as shown on Figure 2. The core is
the ΣDD implementation, with their relevant operations. It is extended by
a layer implementing terms, rewrite rules, strategies and their combination

http://sourceforge.net/projects/stratagem-mc/
https://sourceforge.net/projects/stratagem-mc/files/examples/
https://sourceforge.net/projects/stratagem-mc/files/examples/

StrataGEM: A Generic Petri Net Verification Framework 371

to describe a transition system. The third part is the import, that trans-
lates a model expressed in a given modeling language to a StrataGEM tran-
sition system whose semantics is described with rewrite rules and strategies.
So far, StrataGEM features an import of Petri nets expressed in PNML [9].

BEEM
Translator

Petri net
Translator

Rewrite Rules

∑ Decision Diagrams

Symbolic Model checking engine

Transition system

Terms Strategies

PNML
file

DVE file

Your
formalism

Your
Translator

StrataGEM

Fig. 2. Architecture of the StrataGEM

This import includes an auto-
matic detection of the clusters
of a Petri net, as described
above.

It also features an import
from the language GAL [10].
This language serves as an in-
termediate, and already fea-
tures translators from various
inputs, such as DVE language
used in the BEEM bench-
mark [11], amd Timed Au-
tomata, increasing the number of input formats for StrataGEM.

3.2 Standalone Tool

In its simplest form, StrataGEM currently computes the state space of the input
model. Several levels of optimization are activated through the option -t, from
the plain regular encoding described at the beginning of Section 2.2 to the use
of hierarchized clusters as described at the end of Section 2.2.

The cluster detection, activated by default, is deactivated with an option. It
can also be used alone, without computing the state space.

It is also possible to print the transition system with its rewrite
rules and strategies generated for the input model by invoking
./stratagem analyzer -ts Kanban.pnml.

Users also may add formalisms to StrataGEM. It only requires to translate the
semantics of the input formalism into rewrite rules and strategies. The syntax of
rewrite rules is quite straightforward and easy to use. All the strategies described
in this paper are available to combine rewrite rules. It is also possible to define
new strategies.

4 Benchmarks

We perform a quick experimental evaluation of our tool, to demonstrate the
feasibility of our approach. Inspired by the Model Checking Contest @ Petri
nets [12], we compare the performance of StrataGEM for the generation of the
state space of some parametric Petri nets with the performance of PNXDD [13],
a symbolic model-checker aimed at Petri nets. PNXDD also performs a cluster
detection to produce hierarchized terms [14], and participated to the MCC since
its first edition in 2011.

The compared tools present a lot of differences, so that the comparison of
the raw data should be done very carefully. First of all, StrataGEM runs on the

372 E. López Bóbeda, M. Colange, and D. Buchs

Java virtual machine, that introduces an important time and memory overhead
compared to PNXDD, written in C++. Moreover, PNXDD relies on a symbolic
engine with years of maturity, highly optimized, whereas StrataGEM has no
more than six months. The engine of PNXDD features many optimizations that
are not at all present in StrataGEM. Also, StrataGEM was designed primarily as
a demonstration prototype of the use of rewriting techniques on top of decision
diagrams. Therefore, we choose to compare the ratio between the runtimes of
both tools, so as to leverage these overheads. The evolution of the ratios among
several instances of the same model gives us an indication of how this method
scales compared to PNXDD.

Table 2. Runtime Comparison with clustering enabled

Model Instance PNXDD StrataGEM ratio
time (s) time (s) P./S.

Eratosthenes 10 0.08 0.24 0.33
20 0.11 0.79 0.14
50 0.25 1.95 0.13
100 1.14 6.48 0.18
200 6.28 24.71 0.25

RailRoad 05 0.33 3.82 0.09
10 103.90 83.06 1.25

SharedMemory 05 0.15 2.4 0.06
10 1.08 3.55 0.30
20 12.91 17.75 0.73

We perform the
comparison on three
parametric models,
expressed as Petri
nets, used in the
MCC 2013. The
results are presented
in Table 2. Besides
the first, small, in-
stances, models in the
MCC are intended
to be quite hard. That, and the current lack of fine-tuning of StrataGEM,
limits the number of instances on which exploitable results can be obtained.
An increase in the runtime ratio indicates that StrataGEM begins to close
the gap with PNXDD. On the three models, we see that the ratio of runtime
performance between StrataGEM and PNXDD evolves in favor of StrataGEM.
The decrease of this ratio for the three first instances of the Eratosthenes model
are anecdotic: the runtimes of PNXDD are close the time measurement errors
on these instances. Furthermore, we are rather interested in the asymptotic be-
havior of this ratio. We also notice that StrataGEM ouperforms PNXDD on the
last instance of the Railroad model, despite its aforementioned disadvantages.

These preliminary results are quite encouraging, and are a first validation of
the use of rewriting systems on top of symbolic data structures. As we have said,
there is room for improvement and optimization in the StrataGEM prototype.
Tuning work is planned in the near future, so as to make StrataGEM participate
at the MCC 2014, that will enable a better assessment of its performance.

5 Conclusion

We have presented StrataGEM, a prototype implementing a novel approach for
the manipulation of DDs. The operations on DDs are represented using rewrit-
ing rules and strategies to combine them. We have shown how they can describe
the semantics of a Petri net. Other languages, such as the BEEM language, is
also supported as an experimental feature. This approach is intended to address
the need for a clear and user-friendly interface for the efficient manipulation of

StrataGEM: A Generic Petri Net Verification Framework 373

such symbolic data structures. Our small assessment demonstrates that, despite
its youth, our prototype has an acceptable performance. The room left for op-
timization and tuning promises quick improvements towards a participation in
the next edition of the Model Checking Contest.

Beside this development work, future work includes the generalization of this
approach to other formalisms. Algebraic Petri Nets seem to be a good middle-
term target, and would demonstrate the flexibility of our approach.

References

1. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.: Symbolic Model
Checking: 1020 States and Beyond. Information and Computation 98(2), 142–170
(1992)

2. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation Unbound. In: Garavel,
H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Hei-
delberg (2003)

3. Wolper, P., Godefroid, P.: Partial-Order Methods for Temporal Verification. In:
Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 233–246. Springer, Heidelberg
(1993)

4. Buchs, D., Hostettler, S.: Sigma Decision Diagrams. In: Corradini, A. (ed.) TER-
MGRAPH 2009: Preliminary Proceedings of the 5th International Workshop on
Computing with Terms and Graphs. Number TR-09-05 in TERMGRAPH Work-
shops, Università di Pisa, pp. 18–32 (2009)

5. Goguen, J.A., Meseguer, J.: Order-Sorted Algebra I: Equational Deduction for Mul-
tiple Inheritance, Overloading, Exceptions and Partial Operations. Theor. Comput.
Sci. 105, 217–273 (1992)

6. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.E., Vittek, M.: ELAN: A
Logical Framework Based on Computational Systems. Electronic Notes in Theo-
retical Computer Science 4, 35–50 (1996)

7. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: Piggybacking
Rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007)

8. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Hierarchical Set Decision Diagrams and
Automatic Saturation. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008.
LNCS, vol. 5062, pp. 211–230. Springer, Heidelberg (2008)

9. International Organization for Standardization: ISO/IEC. Software and Systems
Engineering - High-Level Petri Nets, Part 1: Concepts, Definitions and Graphical
Notation. International Standard ISO/IEC 15909 (December 2004)

10. MoVe Team: GAL, http://move.lip6.fr/software/DDD/gal.php
11. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D.,

Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

12. Kordon, F., Buchs, D.: Model Checking Contest Page, http://mcc.lip6.fr/
13. MoVe Team: The PNXDD Home Page (2013), https://srcdev.lip6.fr/trac/

research/NEOPPOD/wiki/pnxdd
14. Hong, S., Kordon, F., Paviot-Adet, E., Evangelista, S.: Computing a Hierarchi-

cal Static Order for Decision Diagram-Based Representation from P/T Nets. In:
Jensen, K., Donatelli, S., Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900, pp. 121–
140. Springer, Heidelberg (2012)

http://move.lip6.fr/software/DDD/gal.php
http://mcc.lip6.fr/
https://srcdev.lip6.fr/trac/research/NEOPPOD/wiki/pnxdd
https://srcdev.lip6.fr/trac/research/NEOPPOD/wiki/pnxdd

	StrataGEM: A Generic Petri Net Verification Framework
	1 Introduction
	2 StrataGEM Transition Systems
	2.1 Term Rewrite Systems
	2.2 Term Rewriting Strategies

	3 Architecture
	3.1 Architecture and Implementation
	3.2 Standalone Tool

	4 Benchmarks
	5 Conclusion
	References

