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1. Reasoning with Infinite Sequences

1.1. Finite and Infinite Sequences

Let N = {0,1,2,...} denote the set of natural numbers and w ¢ IN the first transfinite ordinal. We
extend the < relation from IN to IN U {w} with Vi € N, n < w. Similarly let us extend the addition
and subtraction withVne N, w+n=w—-—n=w +w = w.

For any set A, and any number n € IN U {w}, a sequence of length n is a function o : {0,1,...,n -1} —
A that associates each index i < n to an element ¢(i) € A. The sequence of length 0 is a particular
sequence called the empty word and denoted e. We denote A" the set of all sequences of length n on A
(in particular A“ is the set of infinite sequences on A), and A* = | J,cy A" denotes the set of all finite
sequences. The length of any sequence ¢ is noted ||, with || € N U {w}.

For any sequence ¢, we denote ¢/ the finite subsequence built using letters from o (i) to o(j). If o
is infinite, we denote o' the suffix of o starting at letter o (i).

1.2. Usage in Model Checking

The temporal formulas described in this document, should be interpreted on behaviors (or executions,
or scenarios) of the system to verify. In model checking we want to ensure that a formula (the property
to verify) holds on all possible behaviors of the system.

If we model the system as some sort of giant automaton (e.g., a Kripke structure) where each
state represent a configuration of the system, a behavior of the system can be represented by an
infinite sequence of configurations. Each configuration can be described by an affectation of some
proposition variables that we will call atomic propositions. For instance r = 1, = 0,¢ = 0 describes the
configuration of a traffic light with only the red light turned on.

Let AP be a set of atomic propositions, for instance AP = {r,y, g}. A configuration of the model is a
function p : AP — B (or p € BAP) that associates a truth value (B = {0, 1}) to each atomic proposition.

A behavior of the model is an infinite sequence ¢ of such configurations. In other words: ¢ € (BAP)«.

When a formula ¢ holds on an infinite sequence o, we write o = ¢ (read as ¢ is a model of ).

When a formula ¢ holds on an finite sequence o, we write o |- ¢.



2. Temporal Syntax & Semantics

2.1. Boolean Constants

The two Boolean constants are ‘1" and ‘0’. They can also be input as ‘true’ or ‘false’ (case insensitive)
for compatibility with the output of other tools, but Spot will always use ‘1" and ‘0 in its output.

2.1.1. Semantics

o0
cE1

2.2. Atomic Propositions

Atomic propositions in Spot are strings of characters. There are no restrictions on the characters that
appear in the strings, however because some of the characters may also be used to denote operators
you may have to represent the strings differently if they include these characters.

1. Any string of characters represented between double quotes is an atomic proposition.

2. Any sequence of alphanumeric characters (including ‘_") that is not a reserved keyword and that
starts with a characters that is not an uppercase ‘F’, ‘G’, or ‘X’, is also an atomic proposition. In
this case the double quotes are not necessary.

3. Any sequence of alphanumeric character that starts with ‘F’, ‘G, or ‘X’, has a digit in second
position, and anything afterwards, is also an atomic propositions, and the double quotes are not
necessary.

Here is the list of reserved keywords:
e ‘true’, ‘false’ (both are case insensitive)
° /F/, IGII /MI, /RI, IU,, /VI’ /w/, IX,, /Xor/

The only way to use an atomic proposition that has the name of a reserved keyword, or one that
starts with a digit, is to use double quotes.

The reason we deal with leading ‘F’, ‘G, and ‘X’ specifically in rule [2|is that these are unary LTL
operators and we want to be able to write compact formulas like ‘GFa’ instead of the equivalent
‘G(F(a))’ or ‘G F a’. If you want to name an atomic proposition ‘GFa’, you will have to quote it as
‘"GFa"’.

The exception done by rule 3| when these letters are followed by a digit is meant to allow ‘X0,
‘X1’, ’X2’, ... to be used as atomic propositions. With only rule |2} “X0” would be interpreted as ‘X(0)’,
that is, the LTL operator X applied to the constant false, but there is really little reason to use such
a construction in a formula (the same is true for ‘F’ and ‘G’, and also when applied to ‘1’). On the
other hand, having numbered versions of a variable is pretty common, so it makes sense to favor this
interpretation.



If you are typing in formulas by hand, we suggest you name all your atomic propositions in lower
case, to avoid clashes with the uppercase operators.

If you are writing a tool that produces formula that will be feed to Spot and if you cannot control
the atomic propositions that will be used, we suggest that you always output atomic propositions
between double quotes to avoid any unintended misinterpretation.

2.2.1. Examples

e “"a<=b+c" is an atomic proposition. Double quotes can therefore be used to embed constructs
specific to the underlying formalism, and still regard the resulting construction as an atomic
proposition.

e ‘light_on’ is an atomic proposition.

e ‘Fab’ is not an atomic proposition, this is actually equivalent to the formula ‘F(ab)” where the
temporal operator F is applied to the atomic proposition ‘ab’.

e ‘FINISHED’ is not an atomic proposition for the same reason; it actually stands for ‘F(INISHED)’
e ‘F100ZX’ is an atomic proposition by rule

e ‘FX100’ is not an atomic proposition, it is equivalent to the formula ‘F(X100)’, where ‘X100’ is
an atomic proposition by rule

2.2.2. Semantics
For any atomic proposition a, we have
cEa < 0(0)a) =1

In other words a holds if and only if it is true in the first configuration of o.

2.3. Boolean Operators (for Temporal Formulas)

Two temporal formulas f and g can be combined using the following Boolean operators:

preferred  other supported UTF8 characters supported
operation syntax syntaxes preferred others
negation L f “f — U+00AC

disjunction flg fllg f\/g f+g v U+2228 U U+222A
conjunction f&g feeg  f/\Ng  frdl Auvs2227 A Ur2229

implication f->g f=>g f-->g — U+2192 — U+27F6, = U+21D2 U+27F9
exclusion fxorg f g @ U+2295
equivalence  f<->g f<=>g f<-->g¢ — U+2194 < U+21D4

Additionally, an atomic proposition a can be negated using the syntax ‘a=0’, which is equivalent
to ‘1 a’. Also ‘a=1" is equivalent to just ‘a’. These two syntaxes help us read formulas written using
Wring’s syntax.

When using UTF-8 input, a ‘=0 that follow a single-letter atomic proposition may be replaced by a
combining overline U+0305 or a combining overbar U+0304. When instructed to emit UTF-8, Spot will
output ‘a” using a combining overline instead of ‘—a’ for any single-letter atomic proposition.

When a formula is built using only Boolean constants (section 2.T)), atomic proposition (section [2.2),
and the above operators, we say that the formula is a Boolean formula.

IThe *-form of the conjunction operator (allowing better compatibility with Wring and VIS) may only used in temporal
formulas. Boolean expressions that occur inside SERE (see Section 2.5) may not use this form because the * symbol is used
as the Kleen star.



2.3.1. Semantics

cE!f —
CEfag —
cEflg =
rEf->7 =
UE fxorg <

o f)

cEf)A(0Eg)
cEf)v(cEY)
cHEf)v(oEg)
CAR RN CAZE IR A(CA IR CAEY)

(
(
(
(
(
((c=f)rlcEg) v ((@# f)alorg)

CE f<>9 —

2.3.2. Trivial Identities (Occur Automatically)

Trivial identities are applied every time an expression is constructed. This means for instance that
there is not way to construct the expression ‘! ! a” in Spot, such an attempt will always yield the
expression ‘a’.

10=1 1—>f5f f—>151
11=0 0->f=1 f>0=1f
1 f=f f>f=1

The next set of rules apply to operators that are commutative, so these identities are also valid with
the two arguments swapped.

0&f=0 olf=f Oxorf=f 0<>f=1f
1&f=f 11f=1 lxorf=1f 1<>f=f
faf=f flf=f fxorf=0 f<>f=1

The ‘&’ and ‘|’ operators are associative, so they are actually implemented as n-ary operators
(i.e., not binary): this allows us to reorder all arguments in a unique way (e.g. alphabetically). For
instance the two expressions ‘a&c&b&!d’ and ‘c&!d&b&a’ are actually represented as the operator
‘%" applied to the arguments {a,b,c, !d}. Because these two expressions have the same internal
representation, they are actually considered equal for the purpose of the above identities. For instance
‘(a&clbk!d)->(c&!d&b&a)’ will be rewritten to ‘1" automatically.

2.4. Temporal Operators

Given two temporal formulas f, and g, the following temporal operators can be used to construct
another temporal formula.

preferred other supported UTEFS characters supported

operator syntax syntaxes preferred others
Next Xf Of O U+25CB O U+25EF
Eventually Ff <> f O U+25C7 O U+22C4 U+2662
Always Gf af 0 U+25A1 [ U+2B1C U+25FB
(Strong) Until fug
Weak Until fwg
(Weak) Release fRY fvg

Strong Release fMg



2.4.1. Semantics

CEXf —= o f

CEFf < JieN, o f

CEGf « VieN, o f
CEfUg < JjeN, {Cvr;j:j;;l“':f
cEfug (cEfUg) v(cEGS)
Vi<j, o Eg
o Ef
cEfRg < (cE=fMg) v (rEGY)

—
cEfMg — Hje]N,{

Appendix|[A]explains how to rewrite the above LTL operators using only X and one operator chosen
among U, W, Mand R. This could be useful to understand the operators R, M, and W if you are only
familiar with X and U.

2.4.2. Trivial Identities (Occur Automatically)

=0 FO=0 G0O=0

X1=1 Fi=1 Gi=1

FFf=Ff GGf=Gf
fui=1 fui=1 fM0O=0 fR1=1
ouf=f owf=f OMf=0 fRO=0
fuo=o0 1Wwf=1 1Mf=f i1Rf=f
fuf=f fuf=f fuf=f frf=f

2.5. SERE Operators

The “SERE” acronym will be translated to different word depending on the source. It can mean
either “Sequential Extended Regular Expression” [10} [Il, “Sugar Extended Regular Expression” [3], or
“Semi-Extended Regular Expression” [11]]. In any case, the intent is the same: regular expressions with
traditional operations (union ‘|”, concatenation “;’, Kleen star ‘[*]") are extended with operators such
as intersection ‘&&’, and fusion “:’.

Any Boolean formula (section is a SERE. SERE can be further combined with the following
operators, where f and g denote arbitrary SERE.



preferred

other supported

UTEF8 characters supported

operation syntax syntaxes preferred others
empty word [*0]
union flg fllg f\/g f+g v U+2228 U U+2224
intersection fa&g f/\g N U+2229 A U+2227
NLM intersectiorﬂ f&
concatenation g
fusion f:g
bounded ;-iter. fxiojl flxi:j1 fIxi to j1 fIxi,j]
unbounded ;-iter. flxi..] fxi:] f ¥ to] f*i,]
bounded :-iter. flexio 1 fLexizjl  flixi to j1 fLixi,f]
unbounded :-iter. flexio .1 flexiz]l  flixi to]  flixi,]

The character ‘$’ or the string “inf’ can also be used as value for j in the above operators to denote
an unbounded rangeﬂ For instance ‘a[*i,$]’, ‘a[*i:inf]” and ‘a[*i..]" all represent the same SERE.

2.5.1. Semantics

The following semantics assume that f and g are two SEREs, while a is an atomic proposition.

ol 2N0)
ClEl < Jo|=1
0 lF [*0] < |o|=0
OlFa <
ClEflg <= (ClEf)v
ClEfékg < (CIEf) A
ClEfg — er]N,{
cEf;g <
cEf:g <
either
Ul}:f[*l'..j] — or
or
either
ol fl*i..] < [or
or
either
ol fl:*i..j] < {or
or
either
ol fli*xi..] < <{or
or

or

c(0)(a)=1Alo| =1
(clEY)
(clEY)
either (0 Ik f) A (0%* 1 g)
(@1 A A(cIES)
Jk e N, (U_O..k—l = f) A (Uk" = g)
FkeN, ("F = YA (@ kg
i=0A0c=c¢
i=0nj>0nFkeN, ("1 f)a (o5 |k fIx0..j—1]))
i>0Aj>0nGkeNN, (" 1 f)a(ch Ik flxi—1..j—11))
i=0A0=c¢
i=0nGkeN, (@1 f) A (c" I fI*0..7))
i>0n(GkeN, (@1 f)a(c™ | flxi—1..1))
i=0Anj=0A0cIF1
i=0Aj>0nFkeN, (%F ik f) A (0% Ik fL:x0..j—11))
i>0nj>0nGkeN, (%Ki f)a(ch |k flixi—1..j—11))
i=0AC0IE1
i=0n ke, (@F i f) A (" Ik fL:x0..]))
i>0AGkeN, (@* i f)a(c™ Ik fl:xi—1..1))

2Non-Length-Matching interesction.
3SVA uses ‘$’ while PSL uses “inf’.



Notes:

e The semantics of && and & coincide if both operands are Boolean formulas.

e The SERE f : g will never hold on [*0], regardless of the value of f and g. For instance
a[*x] : b[*] is actually equivalent to a[*] ; {a&& b} ; b[*].

e The [:#i..] and [:*i..j] operators are iterations of the : operator just like The [*i..] and
[*i..j] are iterations of the ; operator. More graphically:

f¥i..j1 = fsfsoosf flexioj] = fofooiof
— —
between i and j copies of f between i and j copies of f

with the convention that
f*x0..0] = [*0] fl:*0..0] =1

e The [:*i..] and [:*i..j] operators are not defined in PSL. While the bounded iteration can be
seen as syntactic sugar on :, the unbounded version really is a new operator.

[:%1..], for which we define the [:+] syntactic sugar below, actually corresponds to the ©
operator introduced by Dax et al. [8]. With this simple addition, it is possible to define a subset
of PSL that expresses exactly the stutter-invariant w-regular languages.

2.5.2. Syntactic Sugar

The syntax on the left is equivalent to the syntax on the right. These rewritings are performed from
left to right when parsing a formula, and some are performed from right to left when writing it for
output. b must be a Boolean formula.

bl->i..j1={{!b}[*0..];b}[xi..j1 bl=i..j]1={{'b}[*0..]1;b}[*i..j1;{!b}[x0..]
b[->i..1 ={{'b}[*0..] ;b}[*i..] bl=i..1={{'b}[*0..1;b}[*..];{'b}[*0..1ifi>0
b[=0..] =1[*0..]

f*x=fIx0..]
fI¥l = f[*0..] fL:x] = f[:%0..] fI=1 = f[=0..] fI=>1 = fl->1..1]
fl*x..1=f[*0..] fl:x..1=f[:%0..] fl=..1=f[=0..] fl->..1=f[->1..]
flx..jl=fI[*0..j1  fl:*..j1=f[:%0..j1 fl=..j1=f[=0..71 f[->..j1=f[->1..]]
fUk] = flxk. . k] fLixk] = fL:xk. k1 fl=k] = f[=k..k]  f[->k] = f[->k. .K]
fI+] = f*1..] fl:4] = fl:i*1..]
[xk] = 1[*k. .k] [*] = 1[*0..] [+] = 1[*1..]

2.5.3. Trivial Identities (Occur Automatically)

The following identities also hold if j or | are missing (assuming they are then equal to o). f can be
any SERE, while b, by, by are assumed to be Boolean formulas.



0[*0..j] = [*0] Of*i..jl=0ifi >0

[x0] [*<..j] = [*0] [*i..7] [xk..1] = f[xik. .jl1 ifi(k+1) <jk+1
) ) ] ]
f[x0] = [*0] flx1l=f
bl:%0..j1=1 bl:*i..jl=0bifi>0
[*0][:%0..j]1 =1 [x0][:*i..j1=0ifi>0
flexio gl Lexk. 01 = flexik. gl ifi(k+1) < jk+1
fl:x0] =1 flexil =fifelr f

The following rules are all valid with the two arguments swapped.

0&f=0 0&& f=0 olf=f 0:f=0 0;f=0
lifelr f .
1&f = 1 = 1 =1 1:f=fif
f {fifewéf &&b=>b | b f=fifelf
Kl&f=f [x] | f=1[%] (x]; f=[«x]lifelf
[x0] if e = f
Ol&f = 0l&& f = f =  f =
[(x0]& f=f [x0] && f {o e f [x0] : f=0 x0] 5 f=f
faf=rf fouf=rf FIf=f  fif=fLxal  fif=fle
by &by = by && by by :by =Dy && by
flxio .l f=flxi+1..j+1] fOxio gl flxk. .01 = flxi+k..j+1]
flexiojl: f=fli*xi+1..j+1] flexio ] : flexk. 1 = flexi+ k.. j+1]

2.6. SERE-LTL Binding Operators
The following operators combine a SERE r with a PSL formula f to form another PSL formula.

preferred  other supported
operation syntax syntaxes

(universal) suffix implication {r}[1->f {r}|->f {r}(f)
existential suffix implication ~ {r}<>->f
weak closure {r}
negated weak closure 1{r}

For technical reasons, the negated weak closure is actually implemented as an operator, even if it is
syntactically and semantically equal to the combination of ! and {r}.

UTEF-8 input may combine one box or diamond character from section 2.4 with one arrow character
from section [2.3| to replace the operators [1->, <>->, as well as the operators [1=> and <>=> that will
be defined in Additionally, |-> may be replaced by — U+2146, and |=> by = U+2907.

2.6.1. Semantics

The following semantics assume that r is a SERE, while f is a PSL formula.

10



) A (0% f)
cE{r}0->f < Vk=0, (00..k ) — (ak“ - f)
cE{ry e (Fk=00" 1)V (vk>03ne (B, (0% <70) A (I 7))
o {r} = (Vk=0,0%% 1) A (Fk >0, ¥ e (BADY, (0%F < 1) > (I 7))

o {r}o>f «— k=0,

The < symbol should be read as “is a prefix of”. So the semantic for ‘c = {r}’ is that either there
is a (non-empty) finite prefix of ¢ that is a model of r, or any prefix of ¢ can be extended into a
finite sequence 7t that is a model of r. An infinite sequence a;a;a;a;a; ... is therefore a model
of the formula ‘{a[+] ; ! a}’ even though it never sees ‘! a’. The same sequence is not a model of
dal+l ;va; (al*x] && (al*] ; 'a; alx]1))} because this SERE does not accept any word.

2.6.2. Syntactic Sugar
The syntax on the left is equivalent to the syntax on the right. These rewritings are performed from

left to right when parsing a formula. Except the one marked with é, the opposite rewritings are also
preformed on output to ease reading.

{r}oo=>f={r; 1}<>->f {r}Q=>f={r; 1}0->f
{r}1 = (o1 (H=fL (s 1y0-f

[1=>and |=> are synonyms in the same way as [1-> and |-> are.
The {r}! operator is a strong closure operator.

2.6.3. Trivial Identities (Occur Automatically)

For any PSL formula f, any SERE 7, and any Boolean formula b, the following rewritings are system-
atically performed (from left to right).

{0}j1—>f=1 {0}<>>f=0 {o} =0 t{o}=1
{1}0->f =f {1}o->f=f {1}=1 {1} =0

{x01}[->f =1 {[x0]1}<>->f =0 {[x0]} =0 H{[x01} =1
{by->f=0b) | f {b}<>->f=b&f {b}=0b {b}=1b
{r}tll—>1=1 {r}<x>>0=0

11



3. Grammar

For simplicity, this grammar gives only one rule for each operator, even if the operator has multiple

synonyms (like ‘|7, “I |, and “\/’).

constant ::=0 | 1 tformula ::= bformula

atomic_prop ::= see section [2.7]
bformula := constant
| atomic_prop
| atomic_prop=0
| atomic_prop=1
| (bformula)
| ! bformula
| bformula & bformula
| bformula | bformula
| bformula -> bformula
| bformula xor bformula
| bformula <-> bformula
sere ::= bformula
| {sere}
| sere | sere
| sere & sere
| sere && sere
| sere ; sere
| sere : sere
| sere[xi. .j]
| sere[+]
| sere[:%i. .j]
| sere[:+]
| sere[=i. .j]
| sere[->i. .j]

3.1. Operator precedence

The following operator precedence describes the current parser of Spot. It has not always been this
way. Especially, all operators were left associative until version 0.9, when we changed the associativity

of ->, <->, U, R, W, and M to get closer to the PSL standard [1] [10].

12

| Ctformula)

| ! tformula

| tformula & tformula

| tformula | tformula

| tformula => tformula
| tformula xor tformula
| tformula <-> tformula
| X tformula

| F tformula

| G tformula

| tformula U tformula

| tformula W tformula

| tformula R tformula

| tformula M tformula

| {sere} [1->tformula

| {sere} [1=>tformula

| {sere} <>=> tformula

| {sere} <>=> tformula

| {sere}

| {sere} !



assocC.

operators

priority

right
left
left
right
left
left
left

right

[1->, [1=>, <>->, <>=>

lowest

highest

Beware that not all tools agree on the associativity of these operators. For instance Spin, 1t12ba (same
parser as spin), Wring, psl2ba, Modella, and NuSMYV all have U and R as left-associative, while Goal
(hence Biichi store), LTL2AUT, and LTL2Biichi (from JavaPathFinder) have U and R as right-associative.
Vis and LBTT have these two operators as non-associative (parentheses required). Similarly the tools
do not aggree on the associativity of -> and <->: some tools handle both operators as left-associative,
or both right-associative, other have only -> as right-associative.

13



4. Properties

When Spot builds a formula (represented by an AST with shared subtrees) it computes a set of
properties for each node. These properties can be queried from any spot: :formula instance using
the following methods:

is_boolean() Whether the formula uses only Boolean operators.

is_sugar_free_boolean() Whether the formula uses only &, |, and ! operators. (Especially, no
-> or <-> are allowed.)

is_in nenoform() Whether the formula is in negative normal form. See section

is X_free() Whether the formula avoids the X operator.

is_1tl_formula() Whether the formula uses only LTL operators. (Boolean operators
are also allowed.)

is_psl_formula() Whether the formula uses only PSL operators. (Boolean and LTL
operators are also allowed.)

is_sere_formula() Whether the formula uses only SERE operators. (Boolean operators
are also allowed, provided no SERE operator is negated.)

is_finite() Whether a SERE describes a finite language (no unbounded stars),
or an LTL formula uses no temporal operator but X.

is_eventual () Whether the formula is a pure eventuality.

is_universal() Whether the formula is purely universal.

is_syntactic_safety() Whether the formula is a syntactic safety property.

is_syntactic_guarantee() Whether the formula is a syntactic guarantee property.

is_syntactic_obligation() = Whether the formula is a syntactic obligation property.
is_syntactic_recurrence()  Whether the formula is a syntactic recurrence property.
is_syntactic_persistence() Whether the formula is a syntactic persistence property.

is_marked() Whether the formula contains a special “marked” version of the
<>-> or !{r} operators.’

accepts_eword() Whether the formula accepts [*0]. (This can only be true for a SERE
formula.)

has_1bt_atomic_props() Whether the atomic propositions of the formula are all of the form

“pnn” where nn is a string of digits. This is required when converting
formula into LBT’s format.*

4.1. Pure Eventualities and Purely Universal Formulas

These two syntactic classes of formulas were introduced by Etessami and Holzmann [12] to simplify
LTL formulas. We shall present the associated simplification rules in Section for now we only
define these two classes.

Pure eventual formulas describe properties that are left-append closed, i.e., any accepted (infinite)
sequence can be prefixed by a finite sequence and remain accepted. From an LTL standpoint, if ¢ is a
left-append closed formula, then F ¢ = ¢.

Purely universal formulas describe properties that are suffix-closed, i.e., if you remove any finite
prefix of an accepted (infinite) sequence, it remains accepted. From an LTL standpoint if ¢ is a
suffix-closed formula, then G ¢ = ¢.

3These “marked” operators are used when translating recurring <>-> or ! {r} operators. They are rendered as <>+> and !+{r}
and obey the same simplification rules and properties as their unmarked counterpart (except for the is_marked () property).
4http://www.tcs.hut.fi/Software/maria/tools/1bt/
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— General Biichi Automata

Deterministic Reac&ivity Weak Biichi

Biichi /\ GFp; vFGg; Automata Figure 4.1.: The temporal
Automata / hierarchy of Manna and
\\ . Weak Pnueli [13] with their associ-
Recurrence Persistence .. ated classes of automata [5].
GFp FGp L D?teljmmlstlc The formulas associated to
Biichi each class are more than
Automata canonical examples: they
Terminal Obligation show the normal forms un-
co-Biichi AG P% v Fg; Terminal der which any LTL formula
Automata L Blichi of the class can be rewritten,
N / Automata assuming that p, p;, q,q; de-
N\ note subformulas involving
Safety Guarantee only Boolean operators, X,
Gp Fp and past temporal operators
(Spot does not support the

latter).

Let ¢ denote any arbitrary formula and ¢ (resp. ¢y;) denote any instance of a pure eventuality
(resp. a purely universal) formula. We have the following grammar rules:

¢p=0|1|X¢e |Fo|Goe | pe& @e | (9e | 9E) | ' ou
| ¢U@E |1U@ | e RQE | QEW@E | EM@E | 9 M1

pu==0[1[Xou |Foul|Ge|ou&eou|(pul eu)|! ¢e
louU@u | pRou |OR@ | ouWeu | WO | puMey

4.2. Syntactic Hierarchy Classes

The hierarchy of linear temporal properties was introduced by Manna and Pnueli [13] and is illustrated
on Fig. In the case of the LTL subset of the hierarchy, a first syntactic characterization of the classes
was presented by Chang et al. [6], but other presentations have been done including negation [5] and
weak until [14].

The following grammar rules extend the aforementioned work slightly by dealing with PSL opera-
tors. These are the rules used by Spot to decide upon construction to which class a formula belongs
(see the methods is_syntactic_safety(), is_syntactic_guarantee(), is_syntactic_obligation(),
is_syntactic_recurrence(), and is_syntactic_persistence() listed on page .

The symbols ¢g, ¢s, ¢o, ¢p, ¢r denote any formula belonging respectively to the Guarantee,
Safety, Obligation, Persistence, or Recurrence classes. Additionally ¢p denotes a finite LTL formula
(the unnamed class at the intersection of Safety and Guarantee formulas, at the bottom of Fig. 4.1). v
denotes any variable, r any SERE, rr any bounded SERE (no loops), and r; any unbounded SERE.
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pp=01[v| ' op | @p&op | (95 | B) | 5 <> ¢p | ppxor ¢p | 95 -> @5 | X ¢p
| {re} | H{rr}
¢ =95 | ' ¢s | pc&ec | (¢c | 9c) | ¢s—>¢c | X9c [Fec | ocUpc | ocMec
| H{r} [ {r}<>=>9c | {rr} 1->9¢
¢s =9 | ' 9c | ps&@s | (s | @s) | 96 —> ¢s [X@s |Gos | sR@s | psW @s
| {r} [ {re}<>=>0s [ {r} [1->9s
9o =9 | ¢s| 9o | 9o&po | (9o | ¢0) | o <> o | 9o xor 90 | 90 > ¢o
| X9o [ 90U | oR9s | psW o | 9cMgo
| {r} [ H{r} [ {rey<>=—>90 [ {ri}<>=>@c | {re} >0 | {r1} [1->¢s
pp=9o | ' ¢r | pp&@p | (pp | @p) | 9p <> @p | pp x0T @p | p —> @p
| Xop [Fop | 9pUep | 9pR@s | 9sWop | gpMep
| {r}<>=>¢p [ {re} 1->¢p | {ri}[1->¢s
pr:=¢0 | ' ¢p | pr&E PR | (PR | PR) | PR <> @R | PR XOT PR | PR —> PR
| X¢r | GPr | RU PG | QRR @R | PR W PR | 9 M @R
| {r}=>¢r | {rr}<>=>@r | {r1}<>->¢¢

It should be noted that a formula can belong to a class of the temporal hierarchy even if it does
not syntactically appears so. For instance the formula (G(q | FGp)&G(r | FG!p)) | Gg | Gr is not
syntactically safe, yet it is a safety formula equivalent to Ggq | Gr. Such a formula is usually said
pathologically safe.
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5. Rewritings

5.1. Unabbreviations

The ‘unabbreviate ()’ function can apply the following rewriting rules when passed a string denoting
the list of rules to apply. For instance passing the string "~ei" will rewrite all occurrences of xor, <->

and ->.

/w7

1

“_
e

a1y
e

e

g
“G” without “R”
“GR” without “W”
“GRW”

oy

“R” without “W”
R

“W” without “R”
R

“_
e

without

Gf=O0Rf

GfEfWO

Gf=1F!'f
fMg=gU(g&f)

fRg=gW(f&Q)
fRE=gU((f&g)IGg)
fug=gR(gIf)
fug=fu(glGf)

Among all the possible rewritings (see Appendix |A) the default rules for R, W and M, those were
chosen because they are easier to translate in a tableau construction [9} Fig. 11].

Besides the ‘unabbreviate ()’ function, there is also a class ‘unabbreviator() that implements the
same functionality, but maintains a cache of abbreviated subformulas. This is preferable if you plan
to abbreviate many formulas sharing identical subformulas.

5.2. LTL simplifier

7

The LTL rewritings described in the next three sections are all implemented in the “t1_simplifier
class defined in spot/tl/simplify.hh. This class implements several caches in order to quickly
rewrite formulas that have already been rewritten previously. For this reason, it is suggested that
you reuse your instance of ‘t1_simplifier’ as much as possible. If you write an algorithm that will
simplify LTL formulas, we suggest you accept an optional ‘t1_simplifier’ argument, so that you can
benefit from an existing instance.

The ‘t1_simplifier’ takes an optional ‘t1_simplifier_options’ argument, making it possible to
tune the various rewritings that can be performed by this class. These options cannot be changed
afterwards (because changing these options would invalidate the results stored in the caches).

5.3. Negative normal form

This is implemented by the ‘t1_simplifier: :negative_normal_form’ method.

A formula in negative normal form can only have negation operators (!) in front of atomic proper-
ties, and does not use any of the xor, -> and <-> operators. The following rewriting arrange any PSL
formula into negative normal form.
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'Xf=x'f H(fug)=("/Hr(g) "feg)=(0f1(rg)
'Ff=G!f HfR =(1)U('g) Hfrg)=0fe(ts)
tef=F'f Hfwg)=(f)mM(g) '({rit->f) ={r}o->1f
({r}) = {r} Hfug) = fHu(g) t{rio=>f) ={r}0->'f

Recall the that negated weak closure !{r} is actually implemented as a specific operator, so it not
actually prefixed by the ! operator.

frorg=((tflag)l(fartg)  Mfxorg)=((1f)a(tg)) I (feg) '(feg)=(f
feg=((tNHe(tg) 1 (feg) Mf<>g)=(Cflag)l(fary)  (flg)=(1f)
f>g=0f)eg Wf>g)=fe'g

Note that the above rules include the “unabbreviation” of operators “<->”, “~>”, and “xor”, corre-
spondings to the rules "ei™ of function ‘unabbreviate() as described in Section Therefore it is
never necessary to apply these abbreviations before or after ‘t1_simplifier: :negative_normal_form’.

If the option ‘nenoform_stop_on_boolean’ is set, the above recursive rewritings are not applied to
Boolean subformulas. For instance calling ‘t1_simplifier: :negative_normal_form’on ! FG(axor b)
will produce GF(((! a) & (! b)) | (a&b)) if ‘nenoform_stop_on_boolean’ is unset, while it will produce
GF(!(axorb)) if nenoform_stop_on_boolean’ is set.

5.4. Simplifications

The “t1_simplifier::simplify’ method performs several kinds of simplifications, depending on
which “t1_simplifier_options’ was set.
The goals in most of these simplification are to:

e remove useless terms and operator.

e move the X operators to the front of the formula (e.g., XG f is better than the equivalent GX f).
This is because LTL translators will usually want to rewrite LTL formulas in a kind of disjunctive

form: \/ (Bi A X¢;) where ;s are Boolean formulas and ;s are LTL formulas. Moving X to the
i
front therefore simplifies the translation.

e move the F operators to the front of the formula (e.g., F(f | g) is better than the equivalent
(Ff) | (Fg)), but not before X (XF f is better than FX f). Because F f incurs some indeterminism,
it is best to factorize these terms to limit the sources of indeterminism.

Rewritings defined with = are applied only when t1_simplifier_options::favor_event_univ’
is true: they try to lift subformulas that are both eventual and universal higher in the syntax tree.

Conversely, rules defined with = are applied only when favor_event_univ’ is false: they try to
lower subformulas that are both eventual and universal.

5.4.1. Basic Simplifications

These simplifications are enabled with t1_simplifier_options::reduce_basics’. A couple of them

may enlarge the size of the formula: they are denoted using Z instead of =, and they can be disabled
by setting the t1_simplifier_options::reduce_size_strictly’ option to true.
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Basic Simplifications for Temporal Operators

The following are simplification rules for unary operators (applied from left to right, as usual):

XFGf=FGf FXf=XFf
XGFf=GFf F(fug)=Fg
F(fug) =F(f&g)
=FG(f&g)
FG(f&Gg) =FG(f&g)

FG(f&Xg

GXf=XGf
G(fRg) =Gg
G(fwg)=G(f1g)

GF(f 1Xg)=GF(flg)
GF(fIFg)=GF(f1g)

GUfi | ool fu | GF(g1) | oo | GF(gm)) =G(fi | ... | fu) | GF(g1 | ... | gm)

Here are the basic rewriting rules for binary operators (excluding | and & which are considered in

Spot as n-ary operators). b denotes any Boolean formula.

LUf=Ff
fM1=Ff
(Xf)U(xg)=X(fUg)
(Xf)M(Xg) =X(fMg)
(XA)Ub=bIX(buf)
(Xf)MbZb&X(bU f)
fuGf)=af
fUFEf)=Ff
fu(gla(f))=fug
fM(g&F(f)) = fMg
fugef)=gnf
fu@glf)=guf

fWO=Gf
ORf=Gf
Xf)w(xg) =X(fwg)
(Xf)R(Xg) =X(fRQ)
(Xf)Wb=b | X(fRD)
(Xf)RbZ b&aX(fwb)
fw@f)=af
fR(Ff)=Ff
fW(gIG(f) =fug
fR($EF(f)) = fMg
fu(gsf)=gRf
fREGIf)=gWf
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Here are the basic rewriting rules for n-ary operators (& and |):

(FGf)&(FGg) =FG(f&g) (GFf) 1 (GFg) =GF(f |g)
(Xfle(xg) =X(f&g) X1 (Xg=X(f1g)
(Xf)&(FGE) = X(f&FGg) (Xf) | (GFE) = X(f | GFg)
Gfle(Gg) =G(f&g) (FfII(Fg) =F(f1g)
(AUR)&(fsUf) =(fr&f3)Ufa (AUR) I (AUf3)=ATU(f2] f3)
(AUR)&(fsWf)=(fikfs)Uf (AUL) I (AWf3) =fiv(fal f3)
(iWf)&(f3Wfh)=(fikfz)Wf (i)l (AWf3)=fW(f2l f3)
(fiRf2)&(fiRf3) = fiR(f2&f3) (firf2) | (AR 2)=(f1l B)RS2
(ARA)&(fiMfs) = fiM(f2& f3) (ARA) I (fsMf)=(fil f5)Rf3
(AMf)&(fiMfz) = AM(f2& f3) (AMf) I (Mf)=(fil f3)Mf3
(Fg&(fug)=fug G (fug)=fwg
(Fge(fug)=fug G (fug)=fwg
(Ffl&(frRg) = fMg (Gg) I (fRg) =fRgQ
(Ffl&(fug) =fMg (Gg) I (fMg)=fRg
fe(Xf)wg)=gRf fI(Xf)Rg) =gWf
fe(Xf)ug) =gMf fI{Xf)Mg)=gUf
f&(g1X(QRSf)) =gRf fl(g&X(gwWf)) =gWf
fe(glIX(gMf)) =gMf f1(g&X(gUuf)) =gUf

The above rules are applied even if more terms are presents in the operator’s arguments. For instance
FG(a) &G(b) & FG(c) & X(d) will be rewritten as X(d &FG(a&c)) & G(D).
The following more complicated rules are generalizations of f&XGf=Gfand f | XFf =F f:

fex@(feg...)uh...)

G(f) &X(G(g...)&h...)
fIXE(f) I h...)=F

(f)1X(h...)

The latter rule for f | X(F(f) | h...) is only applied if all F-formulas can be removed from the argument
of X with the rewriting. For instancea | b | ¢ | X(F(a | b) | F(c) | Gd) will be rewrittento F(a | b | ¢) | XGd
butb | c|X(F(alb)|F(c) | Gd) will only become b | ¢ | X(F(a | b | ¢c) | Gd).

Finally the following rule is applied only when no other terms are present in the OR arguments:

F(fi) | ... |F(fu) IGF(Q) =F(f1 | ... | fu | GE(g))

Basic Simplifications for SERE Operators

The following rules, mostly taken from Cimatti et al. [7] are not complete yet. We only show those that are imple-

mented.

The following simplification rules are used for the n-ary operators &&, &, and |. The patterns are of
course commutative. b or b; denote any Boolean formula while # or r; denote any SERE.
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ifi <1< * pry i
by, ] = beer ifi<1l<j bar® bl{b:r} %fgllzrl
0 else b:r if e e
b&&{ry:...:r} =b&&r && ... && 1y
b&&r; if 31, e | r;
b&&{r1;...;ru=<b&&(ri|...1ry) ifVielr
0 else
{bl ; 7‘1}&& {bz ; 7’2} = {b1 && bz} ; {7‘1 && 1’2} {1’1 ; bl} && {}’2 ; bz} = {}’1 && 7‘2} ; {b1 && bz}
{bl : 1’1}&& {bz : }’2} = {bl && bz} : {1’1 && 1’2} {1’1 : bl}&& {7"2 : bz} = {}’1 && 7’2} : {bl && bz}
{bl ; 1’1}& {b2 ; 7’2} = {b] && 52} ; {1’1 &7’2}
{by:r1}&{by i} ={b1 &&bo} : {r1&r} ifelfrinelfer
Starred subformulas are rewritten in Star Normal Form [4] with:
r[x1 =r°[*]
where r° is recursively defined as follows:
ro=rifelfr
[x01° =0 (r1;m)°=r{lriifel=rand elEr
rixi..j1° =r°ifi=0orel=r (r1&r)° =r{ Iryifel=ry and € I 1p
(rilr)°=r{lr (r1&&12)° =11 && 1

Note: the original SNF definition [4] does not include ‘4" and ‘&&" operators, and it guarantees
that Vr, € £ r° because r° is stripping all the stars and empty words that occur in r. For instance
{al*1 ; b[x] ; {[*0] | ¢}}°[*] = {a | b | ¢} [¥]. Our extended definition still respects this property in
presence of ‘&’ operators, but unfortunately not when the ‘&&” operator is used.

We extend the above definition to bounded repetitions with:

rl*i..jl =r"[x0..j1 if el=rl*i..j]1 and e £ r”
rixi..jl =r°[*1..j1 if elrl*i..jl andel=r’

where r° is recursively defined as follows:

ro=rifelfr

[x0]" =0 (r15m)"=r;n
rl*i..j17 = ¢" [*max(1,i)..jlifi=0orelr (r&r)" =rirnifelrrpandelEr
(rilr)*=r{lr (r&&r)” =r1&&ro

The differences between  and ° are in the handling of 7 [i. .j] and in the handling of r1 ; r7.

Basic Simplifications SERE-LTL Binding Operators

The following rewritings are applied to the operators [1-> and <>->. They assume that b, denote a
Boolean formula.

As noted at the beginning for section rewritings denoted with £ can be disabled by setting
the t1_simplifier_options::reduce_size_strictly’ option to true.
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{1} 00->f =af
(bIx1}1->f=fwW!b
(b[+1}0->f=fwW!b
{ri*0. .1} 01->f = {r[*1. .1} [1->f
{rixi. .1} 0->f = {r}0->x({r} 1->X(.
{r; K1}Y0->f={r}0->Gf

L O->X(r*1..j—i+11)))ifi>1and e £ r

{r; b¥ 1} O->f = {r}O->(F&X(fW b)) ife | r

{15 r}O->f = 6({r} [1->f)
{(bI¥1 ;1 }0O->F = (1B R({r}O->f) if e

I r

{r1;r}0->f = {r}0->X{r}0->f) if e |t ry and € |£ 17

{r s} ->f = {1} 0->({r2} 0->f)

{r1 112} 0->f = ({1} 0->f) & ({r2} [1->f)

{[¥1}<>—>f=Ff
{blx1}<>=>f = fMb
{b+1}<>=>f = fMb

{rix0..j1}<>=>f = {rl*1..jl1}<>->f
{rlxi. .j1}<>=>f = {r}<>->X({r}<>->X(.
{r; K1}<>—>f={r}<>->Ff

LO>X(r[*l. . j—i+1])))ifi > 1land e e r

{r; bIx1}<o>=>f = {r}<>=>(f | X(fuDb)) if ¢ J r

{04 5 rjo->f = F({r}o->f)
(b[x] s ryo->f ZbU({rio->f)ife e r

{r1 5 r}>=>f = {r}<>->X({ra}<>->f) if e £ ry and € | 1

{r1: mp}<>->f = {r1}<>=->{r}<>->f)

{r1 1 p}<>=>f = ({r1}<>=>f) | ({ra}<>->f)

Here are the basic rewritings for the weak closure and its negation:

{rix1} = {r}
{ri; 1} ={r} ifeltrineler
{runt={r}{n} ifekrraclkn
{b; 7} %b&x{r}
(bl*i..j1;r} Zb&aX(b...&X{b[*0..j—il ; r})
—
i occurences of b
{bl*i..1} Zb&X(b&X(...b))
i occurences of b

{r 1 n}={n} 1 {r}

22

H{rix1} = {r}
Hry;m} = {1} ifelerinelen
Hrnt={rtern}t ifelkrarclkn
Hb;r} = (1) I X Hr}
HbDxi. .17} = (1B) 1 X((1b)... | X 1 {b[*0. .j— i1 ; r})
H{b*i. 1} = (1 b) 1 X((1b) | X(... (1 b))

i occurences of !'b

Hr L rd = 1 {1} & {r}




5.4.2. Simplifications for Eventual and Universal Formulas

The class of pure eventuality and purely universal formulas are described in section
In the following rewritings, we use the following notation to distinguish the class of subformulas:

f, fi, 8, & any PSL formula
e, e; a pure eventuality
u, u; apurely universal formula
9, q; a pure eventuality that is also purely universal

*
Fe= fUe=e eMg=e&g urMup = (Fuq) & up

Fu) Il g=F(ulq) fU(gle)=(fug)le fM(g&u)=(fug)&u

>

fUEq) =(fURkq (feqMg=(fMg) &g
Gu=u uwg=ulg fRu=u 61We2%(Gel)Ie2
Ge)&q=Glekq) fUW(gle)=(fug)le fR(g&u)=(fRQ &u
Xq=gq qexXf=x(q&f) gIXf=x@q1lf)
X(qaf) =qaxf X@lf)=qlxf

fl&...&fn)&ql&...&qp

fl&...&fn)&ql&...&qp
F(fid...&fu)&qi&...&qp)

fi&...& fn)&Gle1&...&ep)

Al falql...1gp (
(
(
(
(
(L& . &fnl&g1&...&9m)
(
(
(
(

(

F(fl&--~&fn&ql&-~-&qp
Ghd. . .&fu&q&...&qp
GF(A&.. . &frlqi ... &q,y

F(fi |l fu lun Lo Dtk | F(tgin) | oo I F(up)
F(fi || fu I F(21) | ... | G(gm)

G(f1)&...&G(fu) &G(e1) & ... &G(ep
F(fi)l... 1F(fu) 1 F(ur) ... | F(up

Al fu) TFr .ol uy)
il fulglo 1 gm)
A& &f)EGler&.. &ey)

fil oo Lf) 1 F(ua | ool uy)

>l
@

Finally the following rule is applied only when no other terms are present in the OR arguments:

F(f) I IF(f) lqil o lqp=F(fil ...l fulgil...qp)

5.4.3. Simplifications Based on Implications

The following rewriting rules are performed only when we can prove that some subformula f implies
another subformula g. Showing such implication can be done in two ways:

Syntactic Implication Checks were initially proposed by Somenzi and Bloem [15]. This detection is
enabled by the “t1_simplifier_options::synt_impl” option. This is a cheap way to detect
implications, but it may miss some. The rules we implement are described in Appendix
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Language Containment Checks were initially proposed by Tauriainen [16]. This detection is enabled
by the “t1_simplifier_options::containment_checks” option.

In the following rewritings rules, f = ¢ means that ¢ was proved to be implied by f using ei-

ther of the above two methods. Additionally, implications denoted by f 5 g are only checked if
the “t1_simplifier_options::containment_checks_stronger” option is set (otherwise the rewrit-
ing rule is not applied). As in the previous section, formulas e and u represent respectively pure
eventualities and purely universal formulas.
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if f=g
if f=g
it f=1tg
if f=1!g
if f=g
if (fUg) =g
if (Vf)=g¢g
if g=e
if f=g
if f=g
if g=f
if f=h
if f=h
if f=h
if f=h
if f=h
if f=h
if g=
if f=g
it (fug) g
it (1f)=
if f=g
if g=f
if g=f
if f=h
if f=h
if g=h
if g=h
if g=f
if g=1!f
if u=gqg
if g=f
if g=f
if f=g
if h=f
if h=f
if g=h
if g=h
if g=f
if g=1'f
if g=f
if f=g
if f=g
if h=f
if h=f
if g=h

then
then
then
then
then

then
then
then
then
then
then
then
then
then
then
then
then
then
then

then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then

UQ)Uh=gqUh
WQ)Uh=gUh
U

fRg=g
fRg=Gg
URg=Gg

fug=g

fMgEO
fM(th)Eth
fM(gMh)= fMh
fM(gRh)= fMh
(fMg)Mh=gMh
(fRg)Mh=gMh

(Fug)mh=(fag)mh

)

)
Uk))=gR(hUk

)=

)

EgM(hUk
)EgM(hWk

)
)
)
)

JRh=(f&g)Rh
$)Rh=(fug)Rh

Many of the above rules were collected from the literature [15) [16] 2] and sometimes generalized to

support operators such as M and W.
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A. Defining LTL with only one of U, W, R, or M

//////////

/////

to understand the semantics of section if you are only familiar with some of the operators.

Equivalences using U:

Ff=1Uf
Gf=!'F!f=1(1U!f)
fug=(fug)lGf=(fug) I t(1U!f)
=fu(glGf)=fu(gl!(1U!f))
fMg=gu(f&g)
fRE=gW(f&g)=(gU(f&g)) | (1U!Q)
=gU((f&g)l!(1uty))

Equivalences using W:

Ff=16!'f=1("f)wo)

Gf=0Rf=fWoO
fug=(fug&(Fg)=(fwg)&!((*g)Wo)
fMg=(gW(f&g))&F(fag)=(gW(f&g))&!((!(f&g))WO)
fRg=gW(f&Q)

Equivalences using R:

FfE !G!fz !(OR!f)
Gf=O0Rf
fug=(((xg)Rf)&FQ) 1 g=((Xg)Rf)&(1(0OR!Q))) g
fwg=gR(f1g)
=(Xg)Rf) g
fMg=(fRg&Ff=(fRg&!(OR!)
=fR(g&FQ) = fR(g& ' (OR! f))

Equivalences using M:

Ff=/fM1
Gf=!F!f=1(('f)M1)
fug=gM(f1g)
=(xgMf)lg
fug=(fug)lGf=(XgMf)Igl((tfHM1)
fRg=(fMg)I1Gg=(fMg)l1((tg)M1)
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These equivalences make it possible to build artificially complex formulas. For instance by applying
the above rules to successively rewrite U - M — R — U we get

fug=(xguf)lg
(xg)Rf)&1(OR!Xg)) g
(fuxgeaf) 1r(autrf)a((1Xg)U(0& ! Xg)) (LU 1Xg))) I g

trivially false

(fuxg&f)) 111U f))&(1UXQ)) I g

Spot is able to simplify most of the above equivalences, but it starts to have trouble when the X
operator is involved. For instance (fWg) & F g = f U g is one of the rewriting rules from But the
formula (f WXg) & FXg, which looks like it should be reduced similarly to f UXg, will be rewritten
instead to (f WXg) &XF g, because XFg = FXg is another rule that gets applied first during the
bottom-up rewriting.
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B. Syntactic Implications

Syntactic implications are used for the rewriting of Section The rules presented bellow extend
those first presented by Somenzi and Bloem [15].

A few words about implication first. For two PSL formulas f and g, we say that f — g if
Vo, (0 = f) = (0 = g). For two SERE f and g, we say that f = QifVr, (ml= f) = (7 IE Q).

The recursive rules for syntactic implication are rules are described in table in which = denotes
the syntactic implication, f, f1, f2, §, g1 and g» denote any PSL formula in negative normal form, and
fu and gg denote a purely universal formula and a pure eventuality.

The form on the left of the table syntactically implies the form on the top of the table if the condition
in the corresponding cell holds.

Note that a given formula may match several forms, and require multiple recursive tests. To limit
the number of recursive calls, some rules have been removed when they are already implied by other
rules.

For instance it one would legitimately expect the rule “F f = Fg if f = ¢” to appear in the table.
However in that case F g is pure eventuality, so we can reach the same conclusion by chaining two
rules: “Ff= Fg if f= Fg "andthen”f=Fgif f=g".

R

8E
The rules from table should be completed by the following cases, where f, and g, denote
Boolean formulas:

we have if

f=1 always
0=g always
fo =8 BDD(fy) A BDD(g;) = BDD(fp)
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