
Contributions to Emptiness Checks for
Explicit Model Checking

Ph.D. Defense

Laure Petrucci Reviewer
Francois Vernadat Reviewer
Emmanuelle Encrenaz Examiner
Jean-Michel Couvreur Examiner
Jaco van de Pol Examiner
Alexandre Duret-Lutz Advisor
Denis Poitrenaud Advisor
Fabrice Kordon Supervisor

E. Renault Ph.D. Defense Friday, December 5th 1 / 31

Motivations
Objective: "Check whether a system behaves as expected"

?

System Property The property is verified

|=
The rocket
will reach
the moon

=⇒

E. Renault Context Friday, December 5th 2 / 31

Motivations
Objective: "Check whether a system behaves as expected"

System Property The property is verified

|=
The rocket
will reach
the moon

=⇒

E. Renault Context Friday, December 5th 2 / 31

Motivations
Objective: "Check whether a system behaves as expected"

System Property The property is violated

|=
The rocket
will reach
the moon

=⇒

E. Renault Context Friday, December 5th 2 / 31

Motivations
Objective: "Check whether a system behaves as expected"

System Property Counterexample!

|=
The rocket
will reach
the moon

=⇒

E. Renault Context Friday, December 5th 2 / 31

Automata-Theoretic Approach to Model Checking
[Vardi, 1986]

Property ϕ

Automaton A¬ϕ

System Sys

Automaton ASys

Product
A¬ϕ ⊗ ASys

Emptiness
check
L (A¬ϕ

⊗ASys)
?
= ∅

Verified

Violated

Fight
combinatorial
explosion

Consider
fairness

How to improve emptiness checks with these constraints?

E. Renault Context Friday, December 5th 3 / 31

Challenges to explore

[Vardi, 1986]

Property ϕ

Automaton A¬ϕ

System Sys

Automaton ASys

Product
A¬ϕ ⊗ ASys

Emptiness
check
L (A¬ϕ

⊗ASys)
?
= ∅

Verified

Violated

Fight
combinatorial
explosion

Consider
fairness

How to improve emptiness checks with these constraints?

E. Renault Context Friday, December 5th 3 / 31

Challenges to explore

[Vardi, 1986]

Property ϕ

Automaton A¬ϕ

System Sys

Automaton ASys

Product
A¬ϕ ⊗ ASys

Emptiness
check
L (A¬ϕ

⊗ASys)
?
= ∅

Verified

Violated

Fight
combinatorial
explosion

Consider
fairness

How to improve emptiness checks with these constraints?

E. Renault Context Friday, December 5th 3 / 31

Challenges to explore

[Vardi, 1986]

Property ϕ

Automaton A¬ϕ

System Sys

Automaton ASys

Product
A¬ϕ ⊗ ASys

Emptiness
check
L (A¬ϕ

⊗ASys)
?
= ∅

Verified

Violated

Fight
combinatorial
explosion

Consider
fairness

How to improve emptiness checks with these constraints?
E. Renault Context Friday, December 5th 3 / 31

Fight Combinatorial Explosion

Büchi Automata (BA) Transition-based Generalized
Büchi Automata (TGBA)

F={ } F={ , }

s0

s1

s2 ¬b

¬a

¬a b

a b

¬ba b

¬a b

a s0a b ¬a b

a ¬b

¬a ¬b

Any TGBA can be converted into a BA using a degeneralisation.
This operation can produce a BA with NBStates−TGBA ×|F| states.

Two equivalent and minimal automata for the LTL formula GF a ∧ GF b
E. Renault Context Friday, December 5th 4 / 31

Support Fairness
Weak fairness can be expressed using the LTL property:∧

i∈Processes

GF progressi

Min. det. BA Min. det. TGBA
Nb. Processes states transitions states transitions

1 2 4 1 2
2 3 12 1 4
4 5 80 1 16
8 9 2 304 1 256
n (n + 1) (n + 1).2n 1 2n

TGBA are never worst than BA!
E. Renault Context Friday, December 5th 5 / 31

Plan & contributions

[Vardi, 1986]

Property ϕ

Automaton A¬ϕ

System Sys

Automaton ASys

Product
A¬ϕ ⊗ ASys

Emptiness
check
L (A¬ϕ

⊗ASys)
?
= ∅

Verified

Violated

Fight
combinatorial
explosion

Consider
fairness

1 Improve empti-
ness checks using what
we know about A¬ϕ

2 Improve sequential
emptiness checks for
purely strong TGBA

3 Parallelize
SCC-based empti-
ness checks for
strong automata

How to improve emptiness checks with these constraints?

E. Renault Plan Friday, December 5th 6 / 31

First contribution: decomposition [TACAS’13]

[Vardi, 1986]

Property ϕ

Automaton A¬ϕ

System Sys

Automaton ASys

Product
A¬ϕ ⊗ ASys

Emptiness
check
L (A¬ϕ

⊗ASys)
?
= ∅

Verified

Violated

Fight
combinatorial
explosion

Consider
fairness

1 Improve empti-
ness checks using what
we know about A¬ϕ

How to improve emptiness checks with these constraints?

E. Renault First Contribution: decomposition Friday, December 5th 7 / 31

Strength of A¬ϕ & Emptiness Check of A¬ϕ⊗ASys

Terminal Weak Strong
Automaton Automaton Automaton

Accepting SCC
are complete

and contain only
accepting cycles

>

a
b

b̄

c

b̄

d

Accepting SCC
contain only

accepting cycles

a

a >
b

b̄

c

b̄

d

Accepting
SCC can mix

accepting
cycles and non
accepting cycles

ab

ab̄

āb

āb̄

Reachability Simple NDFS-based or
Assumption on ASys : cycle search SCC-based

no deadlock.

< <

⊂ ⊂

[Bloem al., 1999]

E. Renault First Contribution: decomposition Friday, December 5th 8 / 31

Strength of A¬ϕ & Emptiness Check of A¬ϕ⊗ASys

Terminal Weak Strong
Automaton Automaton Automaton

Accepting SCC
are complete

and contain only
accepting cycles

>

a
b

b̄

c

b̄

d

Accepting SCC
contain only

accepting cycles

a

a >
b

b̄

c

b̄

d

Accepting
SCC can mix

accepting
cycles and non
accepting cycles

ab

ab̄

āb

āb̄

Reachability Simple NDFS-based or
Assumption on ASys : cycle search SCC-based

no deadlock.

< <

⊂ ⊂

[Bloem al., 1999]

E. Renault First Contribution: decomposition Friday, December 5th 8 / 31

Strength of A¬ϕ & Emptiness Check of A¬ϕ⊗ASys

Terminal Weak Strong
Automaton Automaton Automaton

Accepting SCC
are complete

and contain only
accepting cycles

>

a
b

b̄

c

b̄

d

Accepting SCC
contain only

accepting cycles

a

a >
b

b̄

c

b̄

d

Accepting
SCC can mix

accepting
cycles and non
accepting cycles

ab

ab̄

āb

āb̄

Reachability Simple NDFS-based or
Assumption on ASys : cycle search SCC-based

no deadlock.

< <

⊂ ⊂

[Bloem al., 1999]

E. Renault First Contribution: decomposition Friday, December 5th 8 / 31

Strength of A¬ϕ & Emptiness Check of A¬ϕ⊗ASys

Terminal Weak Strong
Automaton Automaton Automaton

Accepting SCC
are complete

and contain only
accepting cycles

>

a
b

b̄

c

b̄

d

Accepting SCC
contain only

accepting cycles

a

a >
b

b̄

c

b̄

d

Accepting
SCC can mix

accepting
cycles and non
accepting cycles

ab

ab̄

āb

āb̄

Reachability Simple NDFS-based or
Assumption on ASys : cycle search SCC-based

no deadlock.

< <

⊂ ⊂

[Bloem al., 1999]

E. Renault First Contribution: decomposition Friday, December 5th 8 / 31

Strength of A¬ϕ & Emptiness Check of A¬ϕ⊗ASys

Terminal Weak Strong
Automaton Automaton Automaton

Accepting SCC
are complete

and contain only
accepting cycles

>

a
b

b̄

c

b̄

d

Accepting SCC
contain only

accepting cycles

a

a >
b

b̄

c

b̄

d

Accepting
SCC can mix

accepting
cycles and non
accepting cycles

ab

ab̄

āb

āb̄

Reachability Simple NDFS-based or
Assumption on ASys : cycle search SCC-based

no deadlock.

< <

⊂ ⊂
[Bloem al., 1999]

E. Renault First Contribution: decomposition Friday, December 5th 8 / 31

Strong Automaton with Multiple SCC Strengths

s0 s1

s2 s3

s4

Strong SCC

Weak SCC Non accepting
SCC

Terminal SCC

āc̄

ac̄

abc̄

b

ac̄āc̄

ac

a

ā

āc

c

>

[Edelkamp et al., 2004]

A¬ϕ for ¬ϕ = (G a→ G b)W c
E. Renault First Contribution: decomposition Friday, December 5th 9 / 31

Decomposing the Property Automaton

s0 s1

s2 s3

s4

L (A) = L (AT) ∪L (AW) ∪L (AS).

AT : captures the terminal behaviors of A
AW : captures the weak behaviors of A
AS : captures the strong behaviors of A

AT :

AW :

AS :

A:

E. Renault First Contribution: decomposition Friday, December 5th 10 / 31

Construction of AW

s0

s2

s1

s3

s4

a

>

ā

āc

c

ac

āc̄ āc̄

ac̄

abc̄

b

ac̄

All acceptance sets are removed and
a single acceptance set labels all transitions of weak SCC.

E. Renault First Contribution: decomposition Friday, December 5th 11 / 31

Construction of AW

s0

s2

s1

a

ac

āc̄ āc̄

ac̄

abc̄

b

ac̄

All acceptance sets are removed and
a single acceptance set labels all transitions of weak SCC.

E. Renault First Contribution: decomposition Friday, December 5th 11 / 31

Decomposition Canevas
LTL

formula TGBA Decompo-
sition

AS ⊗ ASysAW ⊗ ASysAT ⊗ ASys

Terminal
emptiness
check

Weak
emptiness
check

Strong
emptiness
check

Verified / Violated

Automata simplifications

Launched in parallel

Note: emptiness-check agnostic.
E. Renault First Contribution: decomposition Friday, December 5th 12 / 31

Benchmark Description

All algorithms have been implemented into Spot
I the implemented ndfs combines all major optimisations

[Edelkamp et al., 2004] [Schwoon et al., 2005] [Gaiser et al.,
2009]

10 models from the BEEM benchmark 1

3 268 random formula such that:
I ndfs take between 15 seconds and 30 minutes per formula
I there is at least 2h of computation for verified formula and 2h

for violated formula
I the property automaton is strong and multi SCC-strengths

1 http://anna.fi.muni.cz/models
E. Renault First Contribution: decomposition Friday, December 5th 13 / 31

http://anna.fi.muni.cz/models

Results
No simpl. With simpl.

AT AW AS AT AW AS

States Reduction (%) 20 27 54 47 40 60
Transitions Reduction (%) 25 35 67 50 42 67

After simplifications
Reduction of 86% of states for Asys ⊗ AT

Reduction of 39% of states for Asys ⊗ AW

Reduction of 42% of states for Asys ⊗ AS

Average Speedup
15% for empty products,
70% for non-empty products.

E. Renault First Contribution: decomposition Friday, December 5th 14 / 31

Second contribution [LPAR’13]

[Vardi, 1986]

Property ϕ

Automaton A¬ϕ

System Sys

Automaton ASys

Product
A¬ϕ ⊗ ASys

Emptiness
check
L (A¬ϕ

⊗ASys)
?
= ∅

Verified

Violated

Fight
combinatorial
explosion

Consider
fairness

2 Improve sequential
emptiness checks for
purely strong TGBA

How to improve emptiness checks with these constraints?

E. Renault Second Contribution: improve EC Friday, December 5th 15 / 31

Sequential Emptiness Checks
NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS

SCC-based: compute SCC of the automaton and look for
accepting SCC using only one DFS

NDFS-based SCC-based

Memory requirements 2 extra bits per state 1 or 2 int per state

Closing edge detect. easy only on DFS stack easy

On-the-fly X X

Bit state hashing X X

State space caching X X

Generalization Proportionnal to | F | Independant to | F |

E. Renault Second Contribution: improve EC Friday, December 5th 16 / 31

Impact of the degeneralisation

● ● ● ● ●

60

70

80

90

100

1 2 3 4 5
Number of acceptance marks

T
im

e
re

la
tiv

e
to

 n
df

s

type ● ndfs−based scc−based

Relative time of SCC-based emptiness checks compared to NDFS-based
over the previous benchmark.

E. Renault Second Contribution: improve EC Friday, December 5th 17 / 31

SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root

s1

s2

s3

s4

s5 s6

s5 s6

[Tarjan, 1971] maintains lowlinks to detect roots

s1

s2

s3

s4

s5 s6

`` = s1 `` = s3

`` = s3

`` = s5`` = s3

s5

`` = s6

s6

`` = s3

s6

E. Renault Second Contribution: improve EC Friday, December 5th 18 / 31

SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root

s1

s2

s3

s4

s5 s6

s5 s6

[Tarjan, 1971] maintains lowlinks to detect roots

s1

s2

s3

s4

s5 s6

`` = s1 `` = s3

`` = s3

`` = s5`` = s3

s5

`` = s6

s6

`` = s3

s6

E. Renault Second Contribution: improve EC Friday, December 5th 18 / 31

SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root

s1

s2

s3

s4

s5 s6

s5 s6

[Tarjan, 1971] maintains lowlinks to detect roots

s1

s2

s3

s4

s5 s6

`` = s1 `` = s3

`` = s3

`` = s5

`` = s3

s5

`` = s6

s6

`` = s3

s6

E. Renault Second Contribution: improve EC Friday, December 5th 18 / 31

SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root

s1

s2

s3

s4

s5 s6

s5 s6

[Tarjan, 1971] maintains lowlinks to detect roots

s1

s2

s3

s4

s5

s6

`` = s1 `` = s3

`` = s3

`` = s5

`` = s3

s5

`` = s6

s6

`` = s3

s6

E. Renault Second Contribution: improve EC Friday, December 5th 18 / 31

SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root

s1

s2

s3

s4

s5 s6

s5 s6

[Tarjan, 1971] maintains lowlinks to detect roots

s1

s2

s3

s4

s5 s6

`` = s1 `` = s3

`` = s3

`` = s5

`` = s3

s5

`` = s6

s6

`` = s3

s6

E. Renault Second Contribution: improve EC Friday, December 5th 18 / 31

Results

New emptiness check!
First generalized emptiness check based on Tarjan algorithm

Worst case for Tarjan-based Worst case for Dijkstra-based

0 1 .. 0 m n

Compressed Stack
Time overhead of only 1% to save a lot of memory:

96% of the stack for Dijkstra based emptiness checks
75% of the stack for Tarjan based emptiness checks

E. Renault Second Contribution: improve EC Friday, December 5th 19 / 31

Union-Find Data Structure for Emptiness Checks

Problem
All the states of an SCC have to be marked as dead one by one.

s1

s2

s3

s4

s5 s6

s3

s4

s5 s6

Solution: the union-find data structure
Appropriate data structure:

With many existing optimisations
Can create and unite partitions
Average complexity of each unite operation: Ack−1(n)

E. Renault Second Contribution: improve EC Friday, December 5th 20 / 31

Union-Find Data Structure for Emptiness Checks

Problem
All the states of an SCC have to be marked as dead one by one.

s1

s2

s3

s4

s5 s6

s3

s4

s5 s6

Solution: the union-find data structure
Appropriate data structure:

With many existing optimisations
Can create and unite partitions
Average complexity of each unite operation: Ack−1(n)

E. Renault Second Contribution: improve EC Friday, December 5th 20 / 31

Example & Results

s1

s2

s3

s4

s5 s6

s3

s4

s5 s6

dead s1 s2 s3 s4 s5 s6

dead s1 s2 s3 s4 s5 s6

Time reduction of 4% compared to traditional emptiness
Dijkstra-based and Tarjan-based emptiness check have similar
perfomances
Compatible with Bit State Hashing, State Space Caching and
compressed stack

E. Renault Second Contribution: improve EC Friday, December 5th 21 / 31

Example & Results

s1

s2

s3

s4

s5 s6

s3

s4

s5 s6

dead s1 s2 s3 s4 s5 s6dead s1 s2 s3 s4 s5 s6

Time reduction of 4% compared to traditional emptiness
Dijkstra-based and Tarjan-based emptiness check have similar
perfomances
Compatible with Bit State Hashing, State Space Caching and
compressed stack

E. Renault Second Contribution: improve EC Friday, December 5th 21 / 31

Example & Results

s1

s2

s3

s4

s5 s6

s3

s4

s5 s6

dead s1 s2 s3 s4 s5 s6dead s1 s2 s3 s4 s5 s6

Time reduction of 4% compared to traditional emptiness
Dijkstra-based and Tarjan-based emptiness check have similar
perfomances
Compatible with Bit State Hashing, State Space Caching and
compressed stack

E. Renault Second Contribution: improve EC Friday, December 5th 21 / 31

Third contribution [submitted TACAS’15]

[Vardi, 1986]

Property ϕ

Automaton A¬ϕ

System Sys

Automaton ASys

Product
A¬ϕ ⊗ ASys

Emptiness
check
L (A¬ϕ

⊗ASys)
?
= ∅

Verified

Violated

Fight
combinatorial
explosion

Consider
fairness

3 Parallelize
SCC-based empti-
ness checks for
strong automata

How to improve emptiness checks with these constraints?

E. Renault Third Contribution: parallel EC Friday, December 5th 22 / 31

Overview of parallel emptiness checks
Non DFS-based

[Barnat et al., since 2003]

+ Theoretically scales better than DFS-based emptiness checks

− Successors are re-computed many times

− Late counterexample detection

NDFS-based

[Laarman et al., since 2011][Evangelista et al., since 2011]

+ Scales better in practice than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

− No support for generalized acceptance

− Require synchronization points or repair procedures

SCC-based

?

E. Renault Third Contribution: parallel EC Friday, December 5th 23 / 31

Overview of parallel emptiness checks
Non DFS-based [Barnat et al., since 2003]

+ Theoretically scales better than DFS-based emptiness checks

− Successors are re-computed many times

− Late counterexample detection

NDFS-based

[Laarman et al., since 2011][Evangelista et al., since 2011]

+ Scales better in practice than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

− No support for generalized acceptance

− Require synchronization points or repair procedures

SCC-based

?

E. Renault Third Contribution: parallel EC Friday, December 5th 23 / 31

Overview of parallel emptiness checks
Non DFS-based [Barnat et al., since 2003]

+ Theoretically scales better than DFS-based emptiness checks

− Successors are re-computed many times

− Late counterexample detection

NDFS-based [Laarman et al., since 2011][Evangelista et al., since 2011]

+ Scales better in practice than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

− No support for generalized acceptance

− Require synchronization points or repair procedures

SCC-based

?

E. Renault Third Contribution: parallel EC Friday, December 5th 23 / 31

Overview of parallel emptiness checks
Non DFS-based [Barnat et al., since 2003]

+ Theoretically scales better than DFS-based emptiness checks

− Successors are re-computed many times

− Late counterexample detection

NDFS-based [Laarman et al., since 2011][Evangelista et al., since 2011]

+ Scales better in practice than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

− No support for generalized acceptance

− Require synchronization points or repair procedures

SCC-based?

E. Renault Third Contribution: parallel EC Friday, December 5th 23 / 31

Generalized parallel emptiness check

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures?

and that supports
generalized Büchi automata?

Suggestion
Sharing structural information between threads allows to build such
parallel emptiness checks.

E. Renault Third Contribution: parallel EC Friday, December 5th 24 / 31

Generalized parallel emptiness check

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures

?

and that supports
generalized Büchi automata?

Suggestion
Sharing structural information between threads allows to build such
parallel emptiness checks.

E. Renault Third Contribution: parallel EC Friday, December 5th 24 / 31

Generalized parallel emptiness check

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures

?

and that supports
generalized Büchi automata?

Suggestion
Sharing structural information between threads allows to build such
parallel emptiness checks.

E. Renault Third Contribution: parallel EC Friday, December 5th 24 / 31

Structural information
Structural information do not depend of the thread traversal order:

Two states are in the same SCC
An acceptance set is present in an SCC
A state cannot be part of an accepting cycle

The union-find data structure:

can be extended to store acceptance sets

is shared between threads

is lock-free since it relies on hash-tables and linked lists

We can mix SCC-based algorithms since the information is structural.

E. Renault Third Contribution: parallel EC Friday, December 5th 25 / 31

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1

s1s1

s3

s3s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅

s0, ∅s0,s0, s1, ∅s1, ∅ s3, ∅ s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1

s1s1

s3

s3s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅s1, ∅ s3, ∅ s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0
s1

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1

s1

s1

s3

s3s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0,

s1, ∅

s1, ∅ s3, ∅ s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1 s3

s3s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0

s3
s5

s0

s0

s1s1

s1 s3

s3s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0
s3

s5

s0

s0

s1s1

s1

s3

s3

s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅ s3, ∅

s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3

s3

s3

s5

s5

s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0
s2

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3

s3

s3

s5

s5

s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅

s2, ∅

s4, ∅s4, ∅s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0
s2
s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3

s3

s3

s5

s5

s5

s2

s2

s4

s4

s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅

s2, ∅ s4, ∅

s4, ∅s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0
s2
s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3

s3

s3

s5

s5

s5

s2

s2

s4s4

s4

dead, ∅

s0, ∅

s0,

s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅

s2, ∅

s4, ∅

s4, ∅

s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0
s2
s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3

s3

s3

s5s5

s5

s2

s2

s4s4

s4

dead, ∅

s0, ∅

s0,

s0, s1, ∅

s1, ∅ s3, ∅

s5, ∅

s5, ∅ s2, ∅

s4, ∅

s4, ∅

s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Main Idea

Thread 1
(Tarjan-based)

s0
s2
s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3s3

s3

s5s5

s5

s2

s2

s4s4

s4

dead, ∅

s0, ∅s0,

s0,

s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅ s2, ∅

s4, ∅

s4, ∅s3, ∅

E. Renault Third Contribution: parallel EC Friday, December 5th 26 / 31

Benchmark Setups

Different strategies have been implemented in spot:

tarjan: all threads perform a Tarjan-based algorithm

dijkstra: all threads perform a Dijkstra-based algorithm

mixed: a combination of the two previous strategies

These new emptiness checks have been compared with
state-of-the-art algorithms:

cndfs (ltsmin): the best NDFS-based parallel emptiness
check [Evangelista, 2012]

owcty (divine): the best non DFS-based parallel emptiness
check [Barnat, 2009]

E. Renault Third Contribution: parallel EC Friday, December 5th 27 / 31

Benchmark Statistics

All synchronous products are close in terms of states or transitions.

Model St. (avg.) Trans (avg.)

cyclic-scheduler.3 106 108


Few

large

SCC

elevator2.3 106 107

elevator.4 3× 106 7× 107

production-cell.3 3× 106 8× 106

adding.4 5× 106 1.2× 107


Many

small

SCC

bridge.3 106 6× 106

leader-election.3 106 4× 106

exit.3 7× 106 2× 107

E. Renault Third Contribution: parallel EC Friday, December 5th 28 / 31

Results – Empty Products: few large SCC

●

●

●
● ●

●

●
● ● ●

●
●

● ●
●

●

●

●
● ●

cyclic_scheduler.3.dve elevator2.3.dve

elevator.4.dve production−cell.3.dve

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

em
pt

y
pr

od
uc

ts

Algorithms
● dijkstra (spot) tarjan (spot) mixed (spot) owcty (divine) cndfs (ltsmin)

E. Renault Third Contribution: parallel EC Friday, December 5th 29 / 31

Results – Non-Empty Products: few large SCC

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

cyclic_scheduler.3.dve elevator2.3.dve

elevator.4.dve production−cell.3.dve

2.5

5.0

7.5

10.0

1

2

3

4

1

2

3

4

5

2

4

6

8

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

no
n−

em
pt

y
pr

od
uc

ts

Algorithms
● dijkstra (spot) tarjan (spot) mixed (spot) owcty (divine) cndfs (ltsmin)

E. Renault Third Contribution: parallel EC Friday, December 5th 29 / 31

Results – Empty Products: many small SCC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

adding.4.dve bridge.3.dve

leader−election.3.dve exit.3.dve

2

4

6

2.5

5.0

7.5

2.5

5.0

7.5

10.0

2.5

5.0

7.5

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

em
pt

y
pr

od
uc

ts

Algorithms
● dijkstra (spot) tarjan (spot) mixed (spot) owcty (divine) cndfs (ltsmin)

E. Renault Third Contribution: parallel EC Friday, December 5th 29 / 31

Results – Non-Empty Products: many small SCC

● ●
●

●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●

●

adding.4.dve bridge.3.dve

leader−election.3.dve exit.3.dve

0

25

50

75

0

30

60

90

120

0

10

20

30

40

0

25

50

75

100

125

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

no
n−

em
pt

y
pr

od
uc

ts

Algorithms
● dijkstra (spot) tarjan (spot) mixed (spot) owcty (divine) cndfs (ltsmin)

E. Renault Third Contribution: parallel EC Friday, December 5th 29 / 31

Conclusion
Decomposition of the property automaton [TACAS’13]

Tackle multi SCC-strength automata
Emptiness check agnostic (supports symbolic model checking)
Easy parallelisation (but limited to 3 threads)

Comparison of Sequential Emptiness Checks [LPAR’13]

New generalized emptiness checks (Tarjan-based, union-find)
Compressed stack

New Parallel Emptiness Checks [submitted TACAS’15]

First generalized parallel emptiness checks
No synchronizations, no repair procedures
Union-find to share structural information

E. Renault Conclusion Friday, December 5th 30 / 31

Conclusion
Decomposition of the property automaton [TACAS’13]

Tackle multi SCC-strength automata
Emptiness check agnostic (supports symbolic model checking)
Easy parallelisation (but limited to 3 threads)

Comparison of Sequential Emptiness Checks [LPAR’13]

New generalized emptiness checks (Tarjan-based, union-find)
Compressed stack

New Parallel Emptiness Checks [submitted TACAS’15]

First generalized parallel emptiness checks
No synchronizations, no repair procedures
Union-find to share structural information

E. Renault Conclusion Friday, December 5th 30 / 31

Conclusion
Decomposition of the property automaton [TACAS’13]

Tackle multi SCC-strength automata
Emptiness check agnostic (supports symbolic model checking)
Easy parallelisation (but limited to 3 threads)

Comparison of Sequential Emptiness Checks [LPAR’13]

New generalized emptiness checks (Tarjan-based, union-find)
Compressed stack

New Parallel Emptiness Checks [submitted TACAS’15]

First generalized parallel emptiness checks
No synchronizations, no repair procedures
Union-find to share structural information

E. Renault Conclusion Friday, December 5th 30 / 31

Perspectives

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Decomposition and parallel emptiness checks for other kind of
automata: Streett, Rabin, Testing Automata, . . .

Combine all these approches with partial-order reductions

Questions?

E. Renault Perspectives Friday, December 5th 31 / 31

Perspectives

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Decomposition and parallel emptiness checks for other kind of
automata: Streett, Rabin, Testing Automata, . . .

Combine all these approches with partial-order reductions

Questions?

E. Renault Perspectives Friday, December 5th 31 / 31

Perspectives

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Decomposition and parallel emptiness checks for other kind of
automata: Streett, Rabin, Testing Automata, . . .

Combine all these approches with partial-order reductions

Questions?

E. Renault Perspectives Friday, December 5th 31 / 31

Perspectives

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Decomposition and parallel emptiness checks for other kind of
automata: Streett, Rabin, Testing Automata, . . .

Combine all these approches with partial-order reductions

Questions?

E. Renault Perspectives Friday, December 5th 31 / 31

Perspectives

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Decomposition and parallel emptiness checks for other kind of
automata: Streett, Rabin, Testing Automata, . . .

Combine all these approches with partial-order reductions

Questions?

E. Renault Perspectives Friday, December 5th 31 / 31

