Heuristics for Checking Liveness Properties with Partial Order Reductions

A. Duret-Lutz, F. Kordon, D. Poitrenaud, E. Renault

Tuesday, October 18th

State Space Explosion

- Two concurrent processes
- β independent of α_{1}, α_{2}, and α_{3}

Process $1 \quad$ Process 2

State Space Explosion

- Two concurrent processes
- β independent of α_{1}, α_{2}, and α_{3}
Process 1
Process 2
State Space

Process interleavings are one of the main sources of state-space explosion for explicit model checkers

Partial Order Reductions (POR)

- Build a reduced state space
- For each state only consider a reduced subset of actions

State Space

Possible Reduced State Space

POR work only iff the property to check belongs to LTL $\backslash X$

The Ignoring Problem for Liveness Properties

- If the same actions are consistently ignored along a cycle, they may never be executed (below β is never executed)

The Ignoring Problem for Liveness Properties

- If the same actions are consistently ignored along a cycle, they may never be executed (below β is never executed)

Requires an extra condition: the proviso

A proviso ${ }^{a}$ ensures that every cycle in the reduced graph contains at least one expanded state, i.e, a state where all actions are considered.

[^0]
Model Checking LTL\X with POR

Use classical DFS-based emptiness checks
During DFS:

- how to detect cycles without expanded states?
- which state to expand in a cycle?

Objectives:

- Choose states to expand states in order to have the smallest reduced state space

Variations on SPIN's proviso

Source [Peled, 1994]

Expanded state $\widehat{O} \quad$ Not expanded state $\bullet \quad$ Already visited edge \rightarrow

Variations on SPIN's proviso

Source [Peled, 1994]

Systematically expands the source of a backedge

Variations on SPIN's proviso

Source [Peled, 1994]
CondSource

Systematically expands the source of a backedge

Variations on SPIN's proviso

Source [Peled, 1994]
CondSource

Systematically expands the source of a backedge

Expands the source of backedge iff destination is not expanded

Expanded state $\widehat{\natural}$ Not expanded state $\bullet \quad$ Already visited edge \rightarrow

Evaluation

- 38 models from the BEEM benchmark
- reduced implements the stubborn-set method from Valmari
- Each model is run 100 times with different transition order

	states $\left(10^{6}\right)$		transitions $\left(10^{6}\right)$		st/ms
Full	784.45	100.00%	$2,677.73$	100.00%	17.90
SoURCE [Peled, 1994]	303.21	38.65%	679.16	25.36%	12.33
CondSource	252.83	32.23%	518.80	19.37%	11.85
None	57.58	7.34%	97.65	3.65%	22.65

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded
Weighted Scan Known

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded
$\frac{\text { WEIGHTED }}{\circ \text { weight: } 0} \xlongequal{\text { SCAN }} \xrightarrow{\text { KNOWN }}$

Keep track of exp-
-anded states on DFS

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded

Keep track of exp-
-anded states on DFS

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded

Keep track of exp--anded states on DFS

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded

Keep track of exp--anded states on DFS

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded

> Keep track of exp-
> -anded states on DFS "safe" states

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded

> Keep track of exp-
> -anded states on DFS "safe" states

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded

Deconstructing Evangelista and Pajault [2010] proviso

- Based on CondSource
- Try to reduce useless expansions:
- Must consider all closing-edges:

- Colors: safe, dangerous, on-dfs \& not expanded

| WEIGHTED | SCAN | KNOWN |
| :---: | :---: | :---: | :---: | :---: |
| c | | |

Evaluation of each optimization

	states $\left(10^{6}\right)$			transitions $\left(10^{6}\right)$	
st/ms					
Full	784.45	100.00%	$2,677.73$	100.00%	17.90
Source [Peled, 1994]	303.21	38.65%	679.16	25.36%	12.33
WeightedSource	263.43	33.58%	537.56	20.08%	11.68
WeightedSourceKnown					
CondSource	262.63	33.48%	534.35	19.96%	11.77
CondSourceKnown	252.83	32.23%	518.80	19.37%	11.85
WeightedSourceScan	251.05	32.00%	510.91	19.08%	11.89
WeightedSourceKnownScan	10	250.49	31.93%	505.98	18.90%
11.67					
None	248.11	31.63%	498.68	18.62%	11.70
	57.58	7.34%	97.65	3.65%	22.65

- Source have the best throughput
- Most of the improvement comes from Cond
- Evangelista's provisos outperforms Source
${ }^{1}$ [Evangelista and Pajault, 2010]

Provisos Based on Destination Expansion

- Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower context
Source Dest

Systematically expands the source of a backegde

Provisos Based on Destination Expansion

- Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower context

Source
 Dest

Systematically expands the source of a backegde

Provisos Based on Destination Expansion

- Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower context

Source
 Dest

Systematically expands the source of a backegde

Provisos Based on Destination Expansion

- Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower context

Source
 Dest

Systematically expands the source of a backegde

Provisos Based on Destination Expansion

- Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower context

Source
 Dest

Systematically expands the source of a backegde

Systematically expands the destination of a backedge

Provisos Based on Destination Expansion

- Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower context

Source
 Dest

Systematically expands the source of a backegde

Systematically expands the destination of a backedge

Provisos Based on Destination Expansion

- Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower context

Source
 Dest

Systematically expands the source of a backegde

Systematically expands the destination of a backedge

Provisos Based on Destination Expansion

- Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower context

Source
 Dest

Systematically expands the source of a backegde

Systematically expands the destination of a backedge

Optimizations for these new provisos

- Compatible with: Cond, Weighted, Known

Optimizations for these new provisos

- Compatible with: Cond, Weighted, Known

$$
\begin{array}{lll}
\text { Colored } & \text { Unknown } & \text { DeEPEST }
\end{array}
$$

Mark for expansion \square

Optimizations for these new provisos

- Compatible with: Cond, Weighted, Known

Colored Unknown Deepest

Reuse colors
Mark for expansion
Expand iff necessary

Mark for expansion \square
Already visited edge \rightarrow
Not yet visited edge \rightarrow

Optimizations for these new provisos

- Compatible with: Cond, Weighted, Known

Colored Unknown Deepest

Reuse colors
Mark for expansion
Expand iff necessary

Mark for expansion \square
Already visited edge \rightarrow
Not yet visited edge \rightarrow

Optimizations for these new provisos

- Compatible with: Cond, Weighted, Known
Colored Unknown Deepest

Reuse colors
Mark for expansion
Expand iff necessary

Prioritizing unknown
successsors

Mark for expansion \square

Optimizations for these new provisos

- Compatible with: Cond, Weighted, Known
COLORED $\xlongequal{\text { UNKNOWN }}$

Mark for expansion $\square \quad$ Already visited edge $\rightarrow \quad$ Not yet visited edge \rightarrow

Optimizations for these new provisos

- Compatible with: Cond, Weighted, Known
Colored Unknown Deepest

Reuse colors
Mark for expansion
Expand iff necessary

Prioritizing unknown
successsors

DEEPEST

Only mark the deepest dest. for expansion

Mark for expansion $\square \quad$ Already visited edge $\rightarrow \quad$ Not yet visited edge \rightarrow

Evaluation

| | states $\left(10^{6}\right)$ | | | transitions $\left(10^{6}\right)$ | |
| :--- | :---: | :---: | :---: | :---: | :---: | st/ms | | | | | |
| :--- | :---: | :---: | :---: | :---: |
| DeepestDestUnknown | 276.51 | 35.25% | 570.52 | 21.31% |
| 11.81 | | | | |
| DeepestDest | 275.31 | 35.10% | 566.63 | 21.16% |
| WeightedDestUnknown | 273.94 | 34.92% | 563.61 | 21.05% |
| 11.87 | | | | |
| Dest | 272.79 | 34.77% | 508.17 | 18.98% |
| WeightedDest | 272.68 | 34.76% | 559.73 | 20.90% |
| 11.48 | | | | |
| WeightedSourceKnownScan | 248.11 | 31.63% | 498.68 | 18.62% |
| 11.70 | | | | |
| CondDest | 213.98 | 27.28% | 413.15 | 15.43% |
| 12.57 | | | | |
| CondDestUnknown | 213.92 | 27.27% | 412.75 | 15.41% |
| ColoredDest | 213.92 | 27.27% | 412.93 | 15.42% |
| ColoredDestUnknown | 213.83 | 27.26% | 412.27 | 15.40% |

- CondDest outperforms state-of-the-art provisos
- Weighted and Deepest variants are disappointing

Improving Provisos With SCCs information

- When destination is red, an expansion is required:
- Until now, the source was expanded

Improving Provisos With SCCs information

- When destination is red, an expansion is required:
- Until now, the source was expanded

DEAD
Highlinks

Improving Provisos With SCCs information

- When destination is red, an expansion is required:
- Until now, the source was expanded

DEAD
Highlinks

Avoid expansions when dest. is dead, i.e. in a fully visited SCC

Improving Provisos With SCCs information

- When destination is red, an expansion is required:
- Until now, the source was expanded

DEAD

Avoid expansions when dest. is dead, i.e. in a fully visited SCC

HigHLinks

Adaptation of Deepest when dest. is not on the DFS and not dead

Improving Provisos With SCCs information

- When destination is red, an expansion is required:
- Until now, the source was expanded

> DEAD

Avoid expansions when dest. is dead, i.e. in a fully visited SCC

Highlinks

Adaptation of Deepest when dest. is not on the DFS and not dead

Dead and Highlinks are compatibles with both source and destination expansion-based provisos.

Evaluation 1/2

	states $\left(10^{6}\right)$		transitions $\left(10^{6}\right)$	
DeepestDest	275.31	35.10%	566.63	21.16%
DeadDeepestDest	269.10	34.30%	543.64	20.30%
WeightedDest	272.68	34.76%	559.73	20.90%
DeadWeightedDest	270.62	34.50%	554.91	20.72%
DeadWeightedSourceKnownScan	247.68	31.57%	497.79	18.59%
ColoredDest	213.92	27.27%	412.93	15.42%
DeadColoredDest	213.87	27.26%	412.80	15.42%
HighlinkWeightedDest	207.41	26.44%	393.22	14.68%
HighlinkWeightedDestScan	206.23	26.29%	391.05	14.60%
HighlinkWeightedSourceKnown	203.20	25.90%	386.84	14.45%
HighlinkWeightedSourceKnownScan	203.08	25.89%	386.60	14.44%
HighlinkDeepestDest	192.84	24.58%	349.89	13.07%
HighlinkDeepestDestScan	191.78	24.45%	347.95	12.99%

Evaluation 2/2

- Standard score for selected provisos
- take the set of 1600 runs generated
- compute a mean number μ_{M} for each model M
- compute a standard deviation σ_{M} for each model M
- standard score for a run r is then $\frac{\operatorname{states}(r)-\mu_{M}}{\sigma_{M}}$
- Boxplot standard score

Conclusion

- Overview of state-of-the-art provisos for checking liveness properties
- New heuristics: Colored, Deepest, Dead, Highlink
- Combination with existing heuristics
- Intensive evaluation
- Independant of the reduction technique: ample set, sttuborn set, etc. (see [Laarman et al., 2014] for survey)

Our recommended provisos:

- CondDest in NDFS-based emptiness-checks
- HighlinkWeightedSourceKnown in SCC-based emptiness checks (no scan required)

Bibliography I

Evangelista, S. and Pajault, C. (2010). Solving the ignoring problem for partial order reduction. STTT, 12(2):155-170.
Laarman, A., Pater, E., Pol, J., and Hansen, H. (2014). Guard-based partial-order reduction. STTT, pages 1-22.

Nalumasu, R. and Gopalakrishnan, G. (2002). An efficient partial order reduction algorithm with an alternative proviso implementation. FMSD, 20(1):231-247.

Peled, D. (1994). Combining partial order reductions with on-the-fly model-checking. In Proceedings of the 6th International Conference on Computer Aided Verification (CAV'94), volume 818 of Lecture Notes in Computer Science, pages 377-390. Springer-Verlag.

[^0]: ${ }^{a}$ More simpler provisos can be applied for safety properties Evangelista and Pajault [2010]

