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State Space Explosion
Two concurrent processes
β1, β2 independent of α1, α2, and α3

Process 1 Process 2 State Space

α1 α2

α3

β1 β2

α1 α2

α3

α1 α2

α3

β1 β2 β1 β2 β1 β2

Process interleavings are one of the main sources of
state-space explosion for explicit model checkers
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Partial Order Reductions (POR)
Build a reduced state space
For each state only consider a reduced subset of actions

State Space Possible Reduced State Space

α1 α2

α3

α1 α2

α3

β1 β2 β1 β2 β1 β2

α1 α2

α3

α1 α2

α3

β1 β2 β1 β2 β1 β2

POR work if and only if the property to check is stuttering invariant
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The Ignoring Problem for Liveness Properties
If the same actions are consistently ignored along a cycle, they
may never be executed (below β is never executed)

α1 α2

α3

α1 α2
α3

β β β β β β

Requires an extra condition: the proviso
A provisoa ensures that every cycle in the reduced graph contains at
least one expanded state, i.e, a state where all actions are
considered.

aMore simpler provisos can be applied for safety properties Evangelista
and Pajault [5]
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State-Of-The-Art: Emptiness Cheks & POR
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Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)

Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged donePick states randomly and tag them doneThe SCC has been explored, backtrack!
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Problematic

Problem’s description
How to ensure that each cycle contains

(at least) one expanded cycle?

Rewording
Given a set of states (that belong to the same SCC), how can you

decide wether an expansion is required only by considering the done
status of its successors?
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Sequential Solution: A Pessimistic Approach
Idea: expand states with one successor done

Pick randomly one state and mark it done

State has one done successor: expand it!
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Parallelisation: Problem Statement
This idea does not work in parallel

s1 and s2 are known to be in the same SCC
Thread 1 process s1
Thread 2 process s2
Thread 1 checks s2: not expanded
Thread 2 checks s1: not expanded
Both s1 and s2 are tagged done

s1 s2
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Parallelisation: Pessimistic Solution

A state currently processed is tagged wip. If a state s has a
successor tagged wip, s is expanded.

s1 is tagged wip
s2 is tagged wip
Thread 1 check successors: s2 is wip, state will be expanded
Thread 2 check successors: s1 is wip, state will be expanded

s1 s2
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Others Results and Remarks
The ws-pr19-live presented above is a pessimistic approach:

Sequential: N/2 expansions in average, for an SCC of size N
Parallel: ?

The paper also suggests:
An adaptation of Bloemen’s algorithm for safety ws-pr19-safe
An adaptation of other parallel emptiness check with provisos for
safety and liveness: dfs-pr19-safe, dfs-pr19-live, and
scc-pr19-safe

All the approaches presented in this paper are:
Compatible with Persistent sets, Stubborn set and Ample set
Compatible with on-the-fly exploration technique
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Evaluation

21 models from the BEEM benchmark divided into two
categories:

I M1: models with short cycles and many small SCCs
I M2: models with long cycles and a small number of large SCCs

Reductions are implemented by the way of the stubborn-set
method from Valmari

Maximum running time 40 minutes (in sequential)

Up to 12 threads (the maximum we can test)

Compare the 5 algorithms we propose against state of the art
algorithm (lw14)
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Reduction
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Speedup
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Conclusion & Perspective

Combine POR with SOTAs emptiness check for both liveness
and safety properites
Intensive evaluation
Independant of the reduction technique: ample set, sttuborn set,
etc. (see Laarman et al. [7] for survey)

Perspectives
Can we build an non-pessimistic algorithm for the combination

between Bloemen’s emptiness check and POR?
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