
Combining Parallel Emptiness Checks with
Partial Order Reductions

D. Poitrenaud, E. Renault

Friday November 8th

E. Renault ICFEM’19 Friday November 8th 1 / 18



Automata-Theoretic Approach to Model Checking

LTL formula ϕ

LTL\X formula ϕ

Automaton A¬ϕ

Model
Specification M

Automaton AM

A¬ϕ ⊗ AM

Emptiness
check

L (A¬ϕ ⊗ AM)
?= ∅

Emptiness
check

L (A¬ϕ ⊗ AM)
?= ∅

Emptiness
check

L (A¬ϕ ⊗ AM)
?= ∅

Verified

Violated

Parallel Emptiness Checks
to speedup computation

Fight Combinatorial
Explosion (POR)

E. Renault ICFEM’19 Friday November 8th 2 / 18



Automata-Theoretic Approach to Model Checking

LTL formula ϕ

LTL\X formula ϕ

Automaton A¬ϕ

Model
Specification M

Automaton AM

A¬ϕ ⊗ AM

Emptiness
check

L (A¬ϕ ⊗ AM)
?= ∅

Emptiness
check

L (A¬ϕ ⊗ AM)
?= ∅

Emptiness
check

L (A¬ϕ ⊗ AM)
?= ∅

Verified

Violated

Parallel Emptiness Checks
to speedup computation

Fight Combinatorial
Explosion (POR)

E. Renault ICFEM’19 Friday November 8th 2 / 18



Automata-Theoretic Approach to Model Checking

LTL formula ϕ

LTL\X formula ϕ

Automaton A¬ϕ

Model
Specification M

Automaton AM

A¬ϕ ⊗ AM

Emptiness
check

L (A¬ϕ ⊗ AM)
?= ∅

Emptiness
check

L (A¬ϕ ⊗ AM)
?= ∅

Emptiness
check

L (A¬ϕ ⊗ AM)
?= ∅

Verified

Violated

Parallel Emptiness Checks
to speedup computation

Fight Combinatorial
Explosion (POR)

E. Renault ICFEM’19 Friday November 8th 2 / 18



State Space Explosion
Two concurrent processes
β1, β2 independent of α1, α2, and α3

Process 1 Process 2 State Space

α1 α2

α3

β1 β2

α1 α2

α3

α1 α2

α3

β1 β2 β1 β2 β1 β2

Process interleavings are one of the main sources of
state-space explosion for explicit model checkers

E. Renault ICFEM’19 Friday November 8th 3 / 18



State Space Explosion
Two concurrent processes
β1, β2 independent of α1, α2, and α3

Process 1 Process 2 State Space

α1 α2

α3

β1 β2

α1 α2

α3

α1 α2

α3

β1 β2 β1 β2 β1 β2

Process interleavings are one of the main sources of
state-space explosion for explicit model checkers

E. Renault ICFEM’19 Friday November 8th 3 / 18



Partial Order Reductions (POR)
Build a reduced state space
For each state only consider a reduced subset of actions

State Space Possible Reduced State Space

α1 α2

α3

α1 α2

α3

β1 β2 β1 β2 β1 β2

α1 α2

α3

α1 α2

α3

β1 β2 β1 β2 β1 β2

POR work if and only if the property to check is stuttering invariant
E. Renault ICFEM’19 Friday November 8th 4 / 18



The Ignoring Problem for Liveness Properties
If the same actions are consistently ignored along a cycle, they
may never be executed (below β is never executed)

α1 α2

α3

α1 α2
α3

β β β β β β

Requires an extra condition: the proviso
A provisoa ensures that every cycle in the reduced graph contains at
least one expanded state, i.e, a state where all actions are
considered.

aMore simpler provisos can be applied for safety properties Evangelista
and Pajault [5]

E. Renault ICFEM’19 Friday November 8th 5 / 18



The Ignoring Problem for Liveness Properties
If the same actions are consistently ignored along a cycle, they
may never be executed (below β is never executed)

α1 α2

α3

α1 α2
α3

β β β β β β

Requires an extra condition: the proviso
A provisoa ensures that every cycle in the reduced graph contains at
least one expanded state, i.e, a state where all actions are
considered.

aMore simpler provisos can be applied for safety properties Evangelista
and Pajault [5]

E. Renault ICFEM’19 Friday November 8th 5 / 18



State-Of-The-Art: Emptiness Cheks & POR

lw14

Laarman and Wijs [8]

dfs-pr19-safe

dfs-pr19-live scc-pr19-safe

elpp12

Evangelista

et al. [4]

rdkp16

Renault

et al. [9]

ep10

Evangelista and Pajault [5]

dkpr16-live

Duret-Lutz et al. [3]

hpy96

Holzmann

et al. [6]

c99

Couvreur [2]

Sequential

state-based DFS

Parallel

SCC-based DFS

Parallel state-based DFS

ws-pr19-safe

ws-pr19-live

bp16

Bloemen and

van de Pol [1]

sl

l
sl

sl s
sl

This paperThis talk

E. Renault ICFEM’19 Friday November 8th 6 / 18



State-Of-The-Art: Emptiness Cheks & POR

lw14

Laarman and Wijs [8]

dfs-pr19-safe

dfs-pr19-live scc-pr19-safe

elpp12

Evangelista

et al. [4]

rdkp16

Renault

et al. [9]

ep10

Evangelista and Pajault [5]

dkpr16-live

Duret-Lutz et al. [3]

hpy96

Holzmann

et al. [6]

c99

Couvreur [2]

Sequential

state-based DFS

Parallel

SCC-based DFS

Parallel state-based DFS

ws-pr19-safe

ws-pr19-live

bp16

Bloemen and

van de Pol [1]

sl

l
sl

sl s
sl

This paperThis talk

E. Renault ICFEM’19 Friday November 8th 6 / 18



State-Of-The-Art: Emptiness Cheks & POR

lw14

Laarman and Wijs [8]

dfs-pr19-safe

dfs-pr19-live scc-pr19-safe

elpp12

Evangelista

et al. [4]

rdkp16

Renault

et al. [9]

ep10

Evangelista and Pajault [5]

dkpr16-live

Duret-Lutz et al. [3]

hpy96

Holzmann

et al. [6]

c99

Couvreur [2]

Sequential

state-based DFS

Parallel

SCC-based DFS

Parallel state-based DFS

ws-pr19-safe

ws-pr19-live

bp16

Bloemen and

van de Pol [1]

sl

l
sl

sl s
sl

This paper

This talk

E. Renault ICFEM’19 Friday November 8th 6 / 18



State-Of-The-Art: Emptiness Cheks & POR

lw14

Laarman and Wijs [8]

dfs-pr19-safe

dfs-pr19-live scc-pr19-safe

elpp12

Evangelista

et al. [4]

rdkp16

Renault

et al. [9]

ep10

Evangelista and Pajault [5]

dkpr16-live

Duret-Lutz et al. [3]

hpy96

Holzmann

et al. [6]

c99

Couvreur [2]

Sequential

state-based DFS

Parallel

SCC-based DFS

Parallel state-based DFS

ws-pr19-safe

ws-pr19-live

bp16

Bloemen and

van de Pol [1]

sl

l
sl

sl s
sl

This paper

This talk

E. Renault ICFEM’19 Friday November 8th 6 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)

Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged donePick states randomly and tag them doneThe SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)

Clouds represent the actual knwoledge of SCCs

Red edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged donePick states randomly and tag them doneThe SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCs

Red edges represent the DFS stack

All (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged donePick states randomly and tag them doneThe SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCs

Red edges represent the DFS stack

All (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged donePick states randomly and tag them doneThe SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCs

Red edges represent the DFS stack

All (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged donePick states randomly and tag them doneThe SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCs

Red edges represent the DFS stack

All (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged donePick states randomly and tag them doneThe SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stack

All (except one) states are discovered to belong to the same SCC

Continue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged donePick states randomly and tag them doneThe SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCC

Continue DFS towards new successors

The state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged donePick states randomly and tag them doneThe SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successors

The state is detected to belong to the (only) SCC

Its successors already belong to this SCC, the state is tagged donePick states randomly and tag them doneThe SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCC

Its successors already belong to this SCC, the state is tagged done

Pick states randomly and tag them doneThe SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged done

Pick states randomly and tag them done

The SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged done

Pick states randomly and tag them done

The SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged done

Pick states randomly and tag them done

The SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged done

Pick states randomly and tag them done

The SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged done

Pick states randomly and tag them done

The SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Bloemen’s Emptiness Check explained

Start by the initial state (on-the-fly compatibility)Clouds represent the actual knwoledge of SCCsRed edges represent the DFS stackAll (except one) states are discovered to belong to the same SCCContinue DFS towards new successorsThe state is detected to belong to the (only) SCCIts successors already belong to this SCC, the state is tagged donePick states randomly and tag them done

The SCC has been explored, backtrack!

E. Renault ICFEM’19 Friday November 8th 7 / 18



Problematic

Problem’s description
How to ensure that each cycle contains

(at least) one expanded cycle?

Rewording
Given a set of states (that belong to the same SCC), how can you

decide wether an expansion is required only by considering the done
status of its successors?

E. Renault ICFEM’19 Friday November 8th 8 / 18



Sequential Solution: A Pessimistic Approach
Idea: expand states with one successor done

Pick randomly one state and mark it done

State has one done successor: expand it!

E. Renault ICFEM’19 Friday November 8th 9 / 18



Sequential Solution: A Pessimistic Approach
Idea: expand states with one successor done

Pick randomly one state and mark it done

State has one done successor: expand it!

E. Renault ICFEM’19 Friday November 8th 9 / 18



Sequential Solution: A Pessimistic Approach
Idea: expand states with one successor done

Pick randomly one state and mark it done

State has one done successor: expand it!

E. Renault ICFEM’19 Friday November 8th 9 / 18



Sequential Solution: A Pessimistic Approach
Idea: expand states with one successor done

Pick randomly one state and mark it done

State has one done successor: expand it!

E. Renault ICFEM’19 Friday November 8th 9 / 18



Sequential Solution: A Pessimistic Approach
Idea: expand states with one successor done

Pick randomly one state and mark it done

State has one done successor: expand it!

E. Renault ICFEM’19 Friday November 8th 9 / 18



Sequential Solution: A Pessimistic Approach
Idea: expand states with one successor done

Pick randomly one state and mark it done

State has one done successor: expand it!
E. Renault ICFEM’19 Friday November 8th 9 / 18



Sequential Solution: A Pessimistic Approach
Idea: expand states with one successor done

Pick randomly one state and mark it done

State has one done successor: expand it!
E. Renault ICFEM’19 Friday November 8th 9 / 18



Sequential Solution: A Pessimistic Approach
Idea: expand states with one successor done

Pick randomly one state and mark it done

State has one done successor: expand it!
E. Renault ICFEM’19 Friday November 8th 9 / 18



Parallelisation: Problem Statement
This idea does not work in parallel

s1 and s2 are known to be in the same SCC
Thread 1 process s1
Thread 2 process s2
Thread 1 checks s2: not expanded
Thread 2 checks s1: not expanded
Both s1 and s2 are tagged done

s1 s2

E. Renault ICFEM’19 Friday November 8th 10 / 18



Parallelisation: Pessimistic Solution

A state currently processed is tagged wip. If a state s has a
successor tagged wip, s is expanded.

s1 is tagged wip
s2 is tagged wip
Thread 1 check successors: s2 is wip, state will be expanded
Thread 2 check successors: s1 is wip, state will be expanded

s1 s2

E. Renault ICFEM’19 Friday November 8th 11 / 18



Others Results and Remarks
The ws-pr19-live presented above is a pessimistic approach:

Sequential: N/2 expansions in average, for an SCC of size N
Parallel: ?

The paper also suggests:
An adaptation of Bloemen’s algorithm for safety ws-pr19-safe
An adaptation of other parallel emptiness check with provisos for
safety and liveness: dfs-pr19-safe, dfs-pr19-live, and
scc-pr19-safe

All the approaches presented in this paper are:
Compatible with Persistent sets, Stubborn set and Ample set
Compatible with on-the-fly exploration technique

E. Renault ICFEM’19 Friday November 8th 12 / 18



Evaluation

21 models from the BEEM benchmark divided into two
categories:

I M1: models with short cycles and many small SCCs
I M2: models with long cycles and a small number of large SCCs

Reductions are implemented by the way of the stubborn-set
method from Valmari

Maximum running time 40 minutes (in sequential)

Up to 12 threads (the maximum we can test)

Compare the 5 algorithms we propose against state of the art
algorithm (lw14)

E. Renault ICFEM’19 Friday November 8th 13 / 18



Reduction

2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

WS−PR19−LIVE
DFS−PR19−LIVE
LW14−LIVE Liveness − Models M1

2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

WS−PR19−LIVE
DFS−PR19−LIVE
LW14−LIVE Liveness − Models M2

2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

WS−PR19−SAFE
DFS−PR19−SAFE
LW14−SAFE
SCC−PR19−SAFE Safety − Models M1

2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

WS−PR19−SAFE
DFS−PR19−SAFE
LW14−SAFE
SCC−PR19−SAFE Safety − Models M2

E. Renault ICFEM’19 Friday November 8th 14 / 18



Speedup

2 4 6 8 10 12

1
2

3
4

5

lin
ea

r s
pe

ed
up

WS−PR19−LIVE
DFS−PR19−LIVE
LW14−LIVE

Liveness − Models M2

359

166

187

2 4 6 8 10 12

1
2

3
4

5

lin
ea

r s
pe

ed
up

WS−PR19−SAFE
DFS−PR19−SAFE
LW14−SAFE
SCC−PR19−SAFE

Safety − Models M2

297

166

187
205

E. Renault ICFEM’19 Friday November 8th 15 / 18



Conclusion & Perspective

Combine POR with SOTAs emptiness check for both liveness
and safety properites
Intensive evaluation
Independant of the reduction technique: ample set, sttuborn set,
etc. (see Laarman et al. [7] for survey)

Perspectives
Can we build an non-pessimistic algorithm for the combination

between Bloemen’s emptiness check and POR?

E. Renault ICFEM’19 Friday November 8th 16 / 18



Bibliography I

[1] Bloemen, V. and van de Pol, J. (2016). Multi-core scc-based ltl model checking. In Bloem,
R. and Arbel, E., editors, Proceedings of the 12th International Haifa Verification Conference
(HVC’16), Lecture Notes in Computer Science, pages 18–33. Springer International
Publishing.

[2] Couvreur, J.-M. (1999). On-the-fly verification of temporal logic. In Wing, J. M.,
Woodcock, J., and Davies, J., editors, Proceedings of the World Congress on Formal
Methods in the Development of Computing Systems (FM’99), volume 1708 of Lecture Notes
in Computer Science, pages 253–271, Toulouse, France. Springer-Verlag.

[3] Duret-Lutz, A., Kordon, F., Poitrenaud, D., and Renault, E. (2016). Heuristics for checking
liveness properties with partial order reductions. In Proceedings of the 14th International
Symposium on Automated Technology for Verification and Analysis (ATVA’16), volume
9938 of Lecture Notes in Computer Science, pages 340–356. Springer.

[4] Evangelista, S., Laarman, A., Petrucci, L., and van de Pol, J. (2012). Improved multi-core
nested depth-first search. In Proceedings of the 10th international conference on Automated
technology for verification and analysis (ATVA’12), volume 7561 of Lecture Notes in
Computer Science, pages 269–283. Springer-Verlag.

[5] Evangelista, S. and Pajault, C. (2010). Solving the ignoring problem for partial order
reduction. International Journal on Software Tools for Technology Transfer, 12(2):155–170.

E. Renault ICFEM’19 Friday November 8th 17 / 18



Bibliography II

[6] Holzmann, G. J., Peled, D. A., and Yannakakis, M. (1996). On nested depth first search.
In Grégoire, J.-C., Holzmann, G. J., and Peled, D. A., editors, Proceedings of the 2nd Spin
Workshop (SPIN’96), volume 32 of DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society.

[7] Laarman, A., Pater, E., Pol, J., and Hansen, H. (2014). Guard-based partial-order
reduction. STTT, pages 1–22.

[8] Laarman, A. W. and Wijs, A. J. (2014). Partial-order reduction for multi-core ltl model
checking. In Yahav, E., editor, HVC 2014, volume 8855 of LNCS, pages 267–283. Springer.

[9] Renault, E., Duret-Lutz, A., Kordon, F., and Poitrenaud, D. (2016). Variations on parallel
explicit model checking for generalized Büchi automata. International Journal on Software
Tools for Technology Transfer (STTT), pages 1–21.

E. Renault ICFEM’19 Friday November 8th 18 / 18


