
Noname manuscript No.
(will be inserted by the editor)

Improving Swarming Using Genetic Algorithms

Etienne Renault

Abstract The verification of temporal properties aga-

inst a given system may require the exploration of its

full state space. In explicit model-checking this explo-

ration uses a Depth-First-Search (DFS) and can be

achieved with multiple randomized threads to increase

performance.

Nonetheless the topology of the state-space and

the exploration order can cap the speedup up to a

certain number of threads. This paper proposes a new

technique that aims to tackle this limitation by gener-

ating artificial initial states, using genetic algorithms.

Threads are then launched from these states and thus

explore different parts of the state space.

Our prototype implementation is 10% faster than

state-of-the-art algorithms. These results demonstrate

that this novel approach worth to be considered as a

way to overcome existing limitations.

1 Introduction and Related Work

Model checking aims to check whether a system sat-

isfies a property. Given a model of the system and a

property, it explores all the possible configurations of

the system, i.e., the state space, to check the valid-

ity of the property. Typically two kind of properties

are distinguished, safety and liveness properties. This

paper mainly focus on safety properties that are of

special interest since they stipulate that some “bad

thing” does not happen during execution. Nonethe-

less the adaptation of this work for checking liveness

properties is detailed in Section 5.1.4.

The state-space exploration techniques for debug-

ging and proving correctness of concurrent reactive

systems has proven their efficiency during the last

LRDE, EPITA, Kremlin-Bicêtre, France

decades [15, 20, 24, 4]. Nonetheless they suffer from

the well known state space explosion problem, i.e., the

state space can be far too large to be stored and thus

explored in a reasonable time. This problem can be ad-

dressed using symbolic [5] or explicit techniques even

if we only consider the latter one in this paper.

Many improvements have been proposed for ex-

plicit techniques. On-the-fly exploration [6] computes

the successors of a state only when required by the

algorithm. As a consequence, if the property does not

hold, only a subset of the state space is constructed.

Partial Order Reductions (POR) [26, 21, 17] avoid the

systematic exploration of the state space by exploit-

ing the interleaving semantic of concurrent systems.

State Space Caching [11] saves memory by “forget-

ting” states that have already been visited causing the

exploration to possibly revisit a state several times.

Bit-state Hashing [13] is a semi-decision procedure in

which each state is associated to a hash value. When

two states share the same hash value, one of this two

states (and thus its successors) will be ignored.

These techniques focus on reducing the memory

footprint during the state-space exploration. Combin-

ing these techniques with modern computer architec-

tures, i.e., many-core CPUs and large RAM memories,

tends to shift from a memory problem to an execution

time problem which is: How this exploration can be

achieved in a reasonable time?

To address this issue multi-threaded (as well as

distributed) exploration algorithms (that can be com-

bined with previous techniques) have been developed

[14, 3, 9, 20]. Most of these techniques rely on the

swarming technique presented by Holzmann et al. [15].

In this approach, each thread runs an instance of a

verification procedure but explores the state space

with its own transition order.



2 Etienne Renault

Nowadays, best performance is obtained when com-

bining swarming with DFS -based (Depth-First Search)

verification1 procedures [24, 4]. In these combinations,

threads share information about states that have been

fully explored, i.e. states where all successors have been

visited by a thread. Such states are called closed states.

These states are then avoided by other threads explo-

rations since they can not participate in invalidating

the property. These swarmed-DFS algorithms are lin-

ear but their scalability depends on two factors:

Topology problems. If the state space is linear (only

one initial state, one successor per state), using

more than one thread cannot achieve any speedup.

This issue can be generalized to any state space

that is deep but not wide.

Exploration order problems. States are tagged as

closed following the DFS postorder of a thread.

Thus, a state s can only be marked as closed after

visiting at least N states, where N is the minimal

distance between the initial state and s.

Table 1 highlights this scalability problem over the

benchmark2 used in this paper. It presents the cumu-

lated exploration time (in a swarmed DFS fashion)

for 38 models extracted from the literature. It can

be observed that this algorithm achieves reasonable

speedup up to 4 threads but is disappointing for 8

threads and 12 threads (the maximum we can test).

This paper proposes a novel technique that aims to

keep improving the speedup as the number of threads

increases and which is compatible with all memory

reduction methods presented so far.

The basic idea is to use genetic algorithms to gen-

erate artificial initial states (Sections 2 and 3). Threads

are then launched with their own verification proce-

dure from these artificial states (Sections 4 and 5).

We expect that these threads will explore parts of

the state space that are relatively deep regarding to

(many) DFS order(s). Thus, some states are tagged

as closed without processing some path between the

original initial state to these states.

Our prototype implementation (Section 6) has en-

couraging performances: the proposed approach runs

10% faster (with 12 threads) than state-of-the-art al-

gorithms (with 12 threads). These results are encour-

aging and show that this novel approach worth to be

considered as a way to overcome existing limitations.

1 It should be noted that even if DFS-based algorithms
are hard to parallelize [22] they scale better in practice than
parallelized Breadth-First Search (BFS) algorithms.
2 See Section 6 for more details about the benchmark.

This paper is an extension of our work published

at VECOS’18 [23] where we proposed new parallel ex-

ploration algorithms built upon the generation of arti-

ficial initial states using genetic programming. These

artificials states were then used on-the-fly to generate

new seeds for the various threads used during the ex-

ploaration. In this approach half of the threads were

spawned from artificial states while the others used

the classical approach used in model-checking algo-

rithms. To handle the verification of safety properties,

this approach was adapted to avoid (1) early termi-

naison and (2) reporting false positive.

In addition to the above (common with our pre-

vious paper [23]), we investigate one variant: the num-

ber of threads using artificial states may have an im-

pact on the performances of our algorithms (more de-

tails in Section 6). We also detail the full proof for

Algorithm 6 in Section 5.1.3 (while only its sketch

was given in Renault [23]). Section 5.1.2 provides a

detailed example of our algorithm while Section 5.1.4

focuses on reporting counterexample from our algo-

rithms. Finally, Section 5.2 details how our algorithms

can be combined with classical algorithms for check-

ing liveness properties.

Related Work. To our knowledge, the combination

of parallel state space exploration algorithms with the

generation of artificial initial states using genetic al-

gorithms has never been done. The closest work is

probably the one of Godefroid and Khurshid [10] that

suggests to use genetic programming as an heuristic

to help random walks to select the best successor to

explore. The generation of other initial states have

been proposed to maximize the coverage of random

walks [25]: to achieve this, a bounded BFS is per-

formed to obtain a pool of states that can be used

as seed states. This approach does not help the scala-

bility when the average number of successors is quite

low (typically when mixing with POR).

In the literature there are some work that combine

model checking with genetic programming but they

are not related to the work presented here: Katz and

Peled [16] use it to synthesize parametric programs,

while all the other approaches are based on the work of

Ammann et al. [1] and focus on the automatic gener-

ation of mutants that can be seen as particular “tests

cases”.

2 Parallel State Space Exploration

Preliminaries. Concurrent reactive systems can be

represented using Transitions Systems (TS). Such a

system T = 〈Q, ι, δ, V, γ〉 is composed of a finite set of



Improving Swarming Using Genetic Algorithms 3

1 thread 2 threads 4 threads 8 threads 12 threads

Time in milliseconds 2 960 296 1 796 418 118 6344 981 222 978 711

Speedup 1 1.65 2.50 3.016 3.025

Table 1 Problem statement about swarmed DFS like approaches.

states Q, an initial state ι ∈ Q, a transition relation

δ ⊆ Q × Q, a finite set of integer variables V and

γ : Q→ N|V | a function that associates to each state

a unique assignment of all variables in V . For a state

s ∈ Q, we denote by post(s) = {d ∈ Q | (s, d) ∈ δ}
the set of its direct successors. A path of length n ≥ 1

between two states q, q′ ∈ Q is a finite sequence of

transitions ρ = (s1, d1) . . . (sn, dn) with s1 = q, di =

q′, and ∀i ∈ {1, . . . , n − 1}, di = si+1. A state q is

reachable if there exists a path from the initial state ι

to q.

Swarming. Checking temporal properties involves the

exploration of (all or some part of) the state space of

the system. Nowadays, best performance is obtained

by combining on-the-fly exploration with parallel DFS

reachability algorithms. Algorithm 1 presents such an

algorithm.

This algorithm is presented recursively for the sake

of clarity. Lines 4 and 5 represent the main procedure:

ParDFS takes two parameters, the transition system

and the number n of threads to use for the explo-

ration. Line 5 only launches n instances of the proce-

dure DFS. This last procedure takes three parameters,

s the state to process, tid the current thread number

and a color used to tag new visited states. Procedure

DFS represents the core of the exploration. This ex-

ploration relies on a shared hashmap visited (defined

line 2) that stores all states discovered so far by all

threads and associate each state with a color (line 1):

– open indicates that the state (or some of its suc-

cessors) is currently processed by (at least) a thread,

– closed indicates that the states and all its suc-

cessors (direct or not) have been visited by some

thread.

The DFS function starts (lines 7 to 8) by checking

if the parameter s has already been inserted, by this

thread or another one, in the visited map (line 7). If

not, the state is inserted with the color open (line 7).

Otherwise, if s has already been inserted we have to

check whether this state has been tagged closed. In

this case, s and all its successors have been visited:

there is no need to revisit them. Line 10 grabs all the

successors of the state s that are then shuffled to im-

plement the swarming. Finally lines 11 to 15 perform

the recursive DFS: for each successor s′ of the current

state, if s′ has not been tagged closed a recursive call

Algorithm 1: Parallel DFS Exploration.

1 enum color = { open, closed }
2 visited: hashmap of (Q, color) // Shared variable

3 stop← ⊥ // Shared variable

4 Procedure ParDFS(〈Q, ι, δ, V, γ〉 : TS, n : Integer)
5 DFS(ι, 1,open) || . . . || DFS(ι, n,open)

6 Procedure DFS(s ∈ Q, tid : Integer, status : color)
7 if s 6∈ visited then visited.add(s, status)
8 else if visited[s] = closed then return
9 // Shuffle successors using tid as seed

10 todo ← shuffle(post(s), tid)
11 while (¬stop ∧ ¬todo.isempty()) do
12 s′ ← todo.pick()
13 if s′ is in the current recursive DFS stack then

continue

14 if (s′ 6∈ visited) ∨ visited[s′] 6= closed) then
15 DFS(s′, tid, status)

16 visited[s]← closed

17 if (s = ι) then stop← >

is launched. When all successors have been visited, s

can be marked closed.

One can note that a shared Boolean stop is used

in order to stop all threads as soon as a thread closes

the initial state. This Boolean is useless for this algo-

rithm since, when the first threads ends, all reachable

states are tagged closed and every thread is forced

to backtrack. Nonetheless this Boolean will be use-

ful later (see Section 4). Moreover the visited map is

thread safe (and lock-free) so that it does not degrade

performances of the algorithm.

Problem statement. The previous algorithm (or some

adaptations of it [24, 4]) obtains the best performance

for explicit model checking. Nonetheless this swarmed

algorithm suffers from a scalability problem. Figure 1

describes a case where augmenting the threads will

not bring any speedup3. This figure describes a tran-

sition system that is linear. The dotted transitions

represent long paths of transitions. In this example,

state x cannot be tagged closed before state y and all

the states between x and y have been tagged closed.

The problem here is that all threads start from state

s. Since threads have similar throughput they will dis-

cover x and y approximately at the same time. Thus

they cannot benefit from the information computed

3 This particular case will certainly degrade performance
due to contention over the shared hashmap.



4 Etienne Renault

by the other threads. This example is pathological but

can be generalized to any state space that is deep and

narrow.

s

x

y

Fig. 1 Using
more than one
thread for the
exploration is
useless.

Suppose now that there are 2

threads and that the distance be-

tween s and x is the same than

the distance between x and y. The

only way to obtain the maximum

speedup is to launch one thread

with a DFS starting from s and

launch the other thread from x.

In this case, when the first thread

reaches state x, x has just been

tagged closed: the first thread

can backtrack and stop.

A similiar problem arise when

performing on-the-fly model checking since (1) there

is only one initial state and (2) all states are gener-

ated during the exploration. Thus a thread cannot be

launched from a particular state. Moreover, the sys-

tem’s topology is only known after the exploration: we

need a technique that works for any kind of topology.

The idea developed in this paper is the automatic

generation of state x using genetic algorithms. The

generation of the perfect state (the state x in the ex-

ample) is a utopia. Nonetheless if we can generate a

state relatively deep regarding to many DFS orders,

we hope to avoid redundant work between threads,

and thus maximize the information shared between

threads. In practice we may generate states that do

not belong to the state space, but Section 6 shows

that more than 84% of generated states belongs to it.

3 Generation of Artificial Initial State

Genetic algorithms. For many applications the com-

putation of an optimal solution is impossible since

the set of all possible solutions is too large to be

explored. To address this problem, Holland [12] pro-

posed a new kind of algorithms (now called genetic

algorithms) that are inspired by the process of natu-

ral selection. These algorithms are often considered as

optimizer and used to generate high-quality solutions

to search problems. Basically, genetic algorithms start

by a population of candidate solutions and improve it

using bio-inspired operators:

- Crossover : selects multiple elements in the popu-

lation (the parents) and produces a child solution

from them.

- Mutation: selects one element in the population

and alters it slightly.

a b
00101010 00110011

Fig. 2 Chromosome representation.

Process 1
a b

parent1 00000000 00000000
parent2 11111111 11111111

Crossover(S) 00000000 11111111

Fig. 3 Possible Crossover.

Applying and combining these operators produces

a new generation that can be evaluated using a fit-

ness function. This fitness function allows to select

the best elements (w.r.t the considered problem) of

this new population. These best elements constitute

a new population on which mutation and crossover

operations can be re-applied. This process is repeated

until some satisfying solution is found (or until a max-

imal number of generations has been reached).

Genetic algorithms rely on a representation of so-

lutions that is chromosome-like. In the definition of a

transition system we observe that every state can be

seen as a tuple of integer variables using the γ func-

tion. Each variable can be considered as a gene and

the set of variables can be considered as a chromosome

composed of 0 and 1. For instance, if a state is com-

posed of two variables a = 42 and b = 51 the resulting

chromosome (considering 8 bits integers) would be the

one described Figure 2.

Crossover. Concurrent reactive systems are gener-

ally composed of a set of Np processes and a set of

shared variables (or channels). Given a transition sys-

tem T = 〈Q, ι, δ, V, γ〉 we can define E : V → [0, Np],

such that if v is a shared variable, E(v) returns 0 and

otherwise E(v) returns the identifier of the process

where the variable v is defined.

Algorithm 2 defines the crossover operation we

use. This algorithm takes a parameter S which repre-

sents the population to use for generating a new state.

Line 2 instantiates a new state s that will hold the re-

sult of the crossover operation. Lines 3 to 5 set up the

values of the shared variables of s: for each shared vari-

able v, an element of S is randomly selected to be the

parent. Then, at line 5, one can observe that γ(s)[v]

(the value of v in s) is set according to γ(parent)[v]

(the value of v in the parent). Lines 6 to 9 perform a

similar operation on all the remaining variables.

These variables are treated by batch, i.e., all the

variables that belong to a same process are filled using

only one parent (line 7). This choice implies that in

our Crossover algorithm the local variable of a pro-

cess cannot have two different parents: this particular



Improving Swarming Using Genetic Algorithms 5

Process 1
a b

s 00000100 00001000
Mutation(s) 00000101 00001000

Fig. 4 Possible Mutation.

processing helps to exploit the concurrency of underly-

ing system. A possible result of this algorithm is repre-

sented Figure 3 (with 8 bits integer variables, only one

process, no shared variables, S = {parent1, parent2}
and child the state computed by Crossover(S)).

Algorithm 2: Crossover.

1 Procedure Crossover(S ⊆ Q)
2 s← newState()
3 for v ∈ V s.t. E(v) = 0 do
4 parent← pick random one of S

5 γ(s)[v]← γ(parent)[v]
6 for i ∈ [0, Np] do
7 parent← pick random one of S
8 for v ∈ V s.t. E(v) = i do
9 γ(s)[v]← γ(parent)[v]

10 return s

Algorithm 3: Mutation.

1 Procedure Mutation(s ∈ Q)
2 for v ∈ V do
3 r ← random(0..1)
4 if r > threshold then
5 γ(s)[v] = random flip one bit in(γ(s)[v])
6 γ(s)[v] = bound project(γ(s)[v])

Mutations. The other bio-inspired operator simu-

lates alterations that could happen while genes are

combined over multiples generations. In genetic algo-

rithms, these mutations are performed by switching

the value of a bit inside of a gene. Here, all the vari-

ables of the system are considered as genes.

Algorithm 3 describes this mutation. For each vari-

able in the state s (line 2), a random number is gener-

ated. A mutation is then performed only if this num-

ber is above a fixed threshold (line 4): this restriction

limits the number of mutations that can occur in a

chromosome. We can then select randomly a bit in the

current variable v and flip it (line 5). Finally, line 6 ex-

ploits the information we may have about the system

by restricting the mutated variable to its bounds.

Indeed, even if all variables are considered as inte-

ger variables there are many cases where the bounds

are known a priori: for instance Boolean, enumeration

types, characters, and so on are represented as integers

but the set of value they can take is relatively small

regarding the possible values of an integer. A possible

result of this algorithm is represented Figure 4 (with 8

bits integer variables and only two character variables,

i.e., that have values between [0..255]).

Fitness. As mentioned earlier, every new population

must be restricted to the only elements that help to

obtain a better solution. Here we want to generate

states that are (1) reachable and (2) deep with respect

to many DFS orders. These criteria help the swarming

technique by exploring parts of the state space before

another thread (starting from the real initial state)

reaches them.

We face here a problem that is: for a given state

it is hard to decide whether it is a good candidate

without exploring all reachable states. For checking

deadlocks (i.e., states without successors) Godefroid

and Khurshid [10] proposed a fitness function that will

only retains state with few transitions enabled4.

Since we have different objectives a new fitness

function must be defined. In order to maximize the

chances to generate a reachable state, we compute the

average outgoing transitions (Tavg) of all the states

that belong to the initial population. Then the fitness

function uses this value as a threshold to detect good

states. Many fitness function can be considered:

– equality: the number of successors of a good state

is exactly equal to Tavg. The motivation for this

fitness function is that if there are N > 1 indepen-

dent processes that are deterministic then at every

time, any process can progress. In this strategy, we

consider that a good state has exactly N (equal to

Tavg) outgoing transitions.

– lessthan: the number of successors of a good state

is less than Tavg. The motivation for this fitness

function is that if there are N > 1 independent

deterministic processes that communicate then at

any time each process can progress or two pro-

cesses can be synchronized. This latter case will

reduce the number of outgoing transitions

– greaterthan: the number of successors of a good

state is greater than Tavg. The motivation for this

fitness function is that if there are N > 1 indepen-

dent and non-deterministic processes then at any

time each processes can perform the same amount

of actions or more.

4 Godefroid and Khurshid [10] do not generate states but
finite paths and their fitness fonction analyzes the whole
paths to keep only those with few enabled transitions.



6 Etienne Renault

Algorithm 4: The generation of new states.

1 Procedure Generate(S ⊆ Q)
2 for i← 0 to nb generation do

3 S′ ← ∅
4 for j ← 0 to pop size do

5 s← Crossover(S)
6 Mutation(s)
7 if Fitness(s) then S′ ← S′ ∪ {s}
8 S ← S′

9 return S

Generation of artificial state. Algorithm 4 presents

the genetic algorithm used to generate artificial initial

states using the previously defined functions.

The only parameter of this algorithm is the initial

population S we want to mutate: S is obtained by per-

forming a swarmed bounded DFS and keeping trace

of all encountered states. From the initial population

S, a new generation can be generated (lines 4 to 8).

At any time the next generation is stored in S′ (lines 7

and 3). The algorithm stops after nb generation

generations (line 2). Note that this algorithm can re-

port an empty set according to the fitness function

used.

4 State-Space Exploration with Genetic

Algorithm

This section explains how Algorithm 1 can be adapted

to exploit the generation of artificial initial states men-

tioned in the previous section. Algorithm 5 describes

this parallel state-space exploration using genetic al-

gorithm. The basic idea is to have a collaborative port-

follio approach in which threads will share informa-

tion about closed states. In this strategy, half of the

available threads runs a the DFS algorithm presented

Section 2, while the other threads perform genetic ex-

ploration. This exploration is achieved by three steps:

1. Perform swarmed bounded depth-first search ex-

ploration that stores into a set P all encountered

states (line 7). This exploration is swarmed, so that

each thread has a different initial population P.

(Our bounded -DFS differs from the literature since

it refers DFS that stops after visiting N states.).

2. Apply Algorithm 4 on P to obtain a new popula-

tion P ′ of artificial initial states (line 8).

3. Apply the DFS algorithm for each element of P ′

(lines 9 to 11). When the population P ′ is empty,

just restart the thread with the initial state ι (see

line 12).

One can note (line 1) that the color enumeration

has been augmented with open gp. This new status

may seem useless for now but allows to distinguish

states that have been discovered by the genetic al-

gorithm from those discovered by the traditional al-

gorithm. In this algorithm open gp acts and means

exactly the same than open but: (1) this status is

useful for the sketch of termination proof below and,

(2) the next section shows how we can exploit similar

information.

Algorithm 5: Parallel DFS Exploration using Ge-
netic Algorithm.

1 enum color = { open, open gp, closed }
2 visited: hashmap of (Q, color)
3 stop← ⊥
4 Procedure ParDFS GP(〈Q, ι, δ, V, γ〉 : TS, n : Integer)
5 DFS(ι, 1,open) || . . . || DFS(ι, bn

2
c,open) || DFS GP(ι, bn

2
c+

1) || . . . || DFS GP(ι, n)

6 Procedure DFS GP(ι ∈ Q, tid : Integer)
7 P ← Bounded DFS(ι, tid) // Swarmed exploration

using tid as a seed

8 P ′ ← Generate(P) // Described Algorithm 4

9 while P ′ not empty ∧ ¬stop do
10 s← pick one of P ′

11 DFS(s, tid,open gp)
12 if ¬stop then DFS(ι, tid,open)

Termination. Until now we have avoided mentioning

one problem: there is no reason that a generated state

is a reachable state. Nonetheless even if the state is

not reachable, some of its successors (direct or not)

may be reachable. Since the number of unreachable

states is generally much larger than the number of

reachable states, we have to ensure that Algorithm 5

terminates as soon as all reachable states have been

explored.

First of all let us consider only threads running

the DFS algorithm. Since this algorithm has already

been prove (see. [24] for more details), only the in-

tuition is given here. When all the successors of an

open state have been visited, this state is tagged as

closed. Since all closed states are ignored during

the exploration, each thread will restrict parts of the

reachable state space. At some point all the states will

be closed: even if a thread is still performing its DFS

procedure, all the successors of its current state will

be marked closed. Thus the thread will be forced to

backtrack and stop.

The problem we may have with using genetic al-

gorithm is that all the threads performing the genetic

algorithm may be running while all the other ones are

idle since all the reachable states have already been



Improving Swarming Using Genetic Algorithms 7

visited. In this case, a running thread can see only

unreachable states, i.e. open gp, or closed ones. To

handle this problem, a Boolean stop is shared among

all threads (line 2). When this Boolean is set to >
all threads stop regardless the exploration technique

used (line 11, Algorithm 1). We observe line 9 that

the use of other artificial states is also stopped, and

no restart will be performed (line 12). This Boolean is

set to > only when all the successors of the real initial

state have been explored (line 17, Algorithm 1). Thus,

one can note that even if a thread using the genetic

algorithm visits first all reachable states it will stop

all the other threads.

5 Checking Temporal Properties

5.1 Checking Safety Properties

5.1.1 The deadlock detection algorithm

Safety properties cover a wide range of properties:

deadlock freedom (there is no state without succes-

sors), mutual exclusion (two processes execute some

critical section at the same time), partial correction

(the execution terminates in a state that does not

satisfies the postcondition while the precondition of

the run was satisfied), etc. One interesting character-

istic of safety properties is that they can be checked

using a reachability analysis (as described Section 2).

Nonetheless, our genetic reachability algorithm (Algo-

rithm 5) cannot be directly used to check safety prop-

erties. Indeed, if a thread (using genetic programming)

reports an error we do not know if this error actually

belongs to the state space.

Algorithm 6 describes how to adapt Algorithm 5

to check safety properties. To simplify things we focus

on checking deadlock freedom, but our approach can

be generalized to any safety property. This algorithm5

relies on both Algorithms 1 and 5 The basic idea is

still to launch half of the threads from the initial state

ι and the remaining ones from some artificial initial

state (line 10).

– For a thread performing reachability with genetic

algorithm the differences are quite few. When a

deadlock state is detected (line 36) we just tag this

state as deadlock gp rather than closed. This

new status is used to mark all states leading to a

deadlock state. Indeed since we do not know if the

state is a reachable one we cannot report immedi-

ately that a deadlock has been found. Moreover we

5 Main differences have been highlighted to help the
reader.

Algorithm 6: Parallel Deadlock Detection Using
Genetic Algorithm.

1 enum color =
2 { open, open gp, closed , deadlock gp }
3 visited: hashmap of (Q, color)
4 stop← ⊥
5 deadlock ← ⊥
6 Procedure

ParDeadlockGP(〈Q, ι, δ, V, γ〉 : TS, n : Integer)

7 DeadlockDFS(ι, 1,open) || . . . ||
8 DeadlockDFS(ι, bn

2
c,open) ||

9 DeadlockDFS GP(ι, bn
2
c+ 1) || . . . ||

10 DeadlockDFS GP(ι, n)

11 Procedure

DeadlockDFS(s ∈ Q, tid : Integer, status : color)
12 if s 6∈ visited then

13 visited.add(s, status)
14 else if visited[s] = closed then
15 return

16 todo ← shuffle(post(s), tid)

17 while (¬stop ∧ ¬todo.isempty()) do

18 s′ ← todo.pick()
19 if s′ is in the current recursive DFS stack then
20 continue

21 if (s′ 6∈ visited ∨ visited[s′] 6= closed) then

22 b← (s′ ∈ visited ∧ visited[s′] = deadlock gp

23 ∧ status = open)

24 if b then

25 deadlock ← >
26 stop← >
27 break

28 DeadlockDFS(s′, tid, status)

29 if
visited[s′] = deadlock gp ∧ status = open gp

then

30 visited[s]← deadlock gp

31 return

32 if post(s) = ∅ ∧ status = open then

33 deadlock ← >
34 stop← >
35 return

36 if post(s) = ∅ ∧ status = open gp then

37 visited[s]← deadlock gp

38 else
39 v[s]← closed

40 if (s = ι) then

41 stop← >

42 Procedure DeadlockDFS GP(ι ∈ Q, tid : Integer)
43 // Also check deadlock during this DFS

44 P ← Bounded DFS(ι, tid)
45 P ′ ← Generate(P)
46 while P ′ not empty ∧ ¬stop do

47 s← pick one of P ′

48 DeadlockDFS(s, tid,open gp)
49 if ¬stop then
50 DeadlockDFS(ι, tid,open)



8 Etienne Renault

a

b

c d e

f

g

h

(1)

a

b

c d e

f

g

h

(2)

a

b

c d e

f

g

h

(3)

a

b

c d e

f

g

h

(4)

a

b

c d e

f

g

h

(5)

a

b

c d e

f

g

h

(6)

a

b

c d e

f

g

h

i

. . . . . .

(7)

Fig. 5 Plain states represents reachable states while dashed ones represents non reachable ones. Two threads explore this
example, one from a one from g (then from i). Blue states represent open states, and blue cross hatched states represent
open gp ones. Forbidden signed states represent closed states and green ones the deadlock gp ones.

cannot mark this state closed otherwise a coun-

terexample could be lost. This new status helps to

solve the problem: when such a state is detected to

be reachable, a deadlock is immediately reported.

The other modifications are lines 29 and 31: when

backtracking, if a deadlock has been found no more

states will be explored.

– For a thread performing reachability without ge-

netic algorithm the differences are also quite few.

Lines 24 to 27 only check if the next state to pro-

cess has been marked deadlock gp. In this case

this state is a reachable one and it leads to a dead-

lock state. We can then report that a deadlock has

been found and stop all the other threads. A dead-

lock can also be reported directly (line 32), if the

current state is a deadlock.

5.1.2 Detailed example.

Algorithm 6 is depicted step by step in Figure 5. For

this example, we consider that lines 44 and 46 (com-

puting the artificial initial states) have already been

realized. Let us consider two threads: t1 performing

a classical approach and t2 performing a genetic pro-

gramming approach, i.e. n = 2, t1 has been launched

line 7, and t2 line 10. Step (1) represents the state

space (a, b, c, d, e, f) as well as some states that does

not belong to it (g, h).

Step (2) represents t1 starting from the initial state

and exploring states a, b, c, and d. Step (3) represents

t2 starting from the artificial initial g state and explor-

ing state h. In step (4), t2 detects that all its successors

are on its recursive stack. As a consequence, the state

h will be marked closed, line 39 of Algorithm 6. The

thread t2 can then backtrack state h and continue to

explore the next successors of g, i.e. f .

Step (5) represents two concurrent action. First, t2
has explored states f and e. Second, t1 has detected

that all successors of d are on its recursive stack and

then d has been marked as closed. Then t2 discov-

ered that all the successors of c have been explored,

so this state can also be marked closed line 39. The

same operations are then applied to b which is then

marked closed. t1 can then backtacks b and explores

the remaining successors of a.

During step (6), thread t2 discovers that state e is

effectively a deadlock (line 37). State e is then tagged

deadlock gp. When this state is backtracked (af-

ter the recursive call line 28), state f detects that

its only successors can reach a deadlock states. As

a consequence, state f will be immediately marked

deadlock gp (line 30), and backtracked (line 31).

For the same reasons, states g will also be tagged

deadlock gp, and backtracked. Notice that lines 40–

41 prevents stopping all the threads when backtrack-

ing state g.

From now, as soon as t1 will discover state f it

can report a counterexample, i.e. a deadlock has been

detected. Indeed, lines 21–27 of Algorithm 6 detects

such a situation. This situation can be described as

follow: ”a classical thread detects a state that can lead

to a deadlock but discovered by a gp thread”. In this

case, we can claim that there exist a path from the



Improving Swarming Using Genetic Algorithms 9

initial state to a deadlock. One should note that t1
reports a deadlock without seeing f and e. When the

deadlock is detected, all the other threads are stopped.

Finally step (7) depicts lines 46–48 of the algo-

rithm. Thread t2 finished its exploration from state g

and picked another artificial state (here state i).

Discussion. The observer reader may notice three

relevant informations:

1. Here, the gp thread start two explorations, one

from g and one from i. Both of these states have

been generated and both of these states does not

belong to the state space. There is no obligation

for these state to be outside of the state space. If

they belong to the state space, the algorithm works

perfectly the same, without this information.

2. Suppose that in step (3), the algorithm choose

state f rather than state h. In this case, a dead-

lock will be found, and all states are backtracked.

Doing that will prevent the exploration of state h.

We opted for this strategy in order to propagate

as soon as possible the information about dead-

lock detection. Nonetheless, our algorithm is eas-

ily adaptable to force the exploration of remaining

successors.

3. Our algorithm does not exploit the fact that two

gp threads cooperate. Indeed, a first thread can

detect a deadlock and backtracks. When the sec-

ond gp thread discovers a deadlock gp state it

can immediately backtracks while our current al-

gorithm force the exploration until the deadlock is

re-discovered.

5.1.3 Proof of the algorithm

This subsection details the proof that Algorithm 6 will

report a deadlock if and only if there exists a reachable

state that has no successors. To proove this algorithm,

two theorems must be verified:

Theorem 1. For all systems S, the algorithm termi-

nates.

Theorem 2. A thread reports a deadlock iff ∃s ∈ Q,
post(s) = ∅.

To simplify this proof, we denote by classical thread

a thread that does not perform genetic algorithm while

the other threads are called gp threads. The following

invariants hold for all lines of Algorithm 6:

Invariant 1. If stop is > then no new state will be

discovered.

Proof. New states are computed line 16 but only

discovered one-by-one line 18. Let us suppose that

some thread set the stop variable to > (lines 26,

34, or 40): this thread will quit the while loop line

17. Exiting the DeadlockDFS function will also

exit the loop line 45 and exit this thread. For the

other threads two situations may occur. First, the

threads are backtracking from the call line 28: the

next iteration will not be executed, and the threads

will exit without discovering new states. If the threads

are executing lines 18–27, then the call line 28 will

be performed but the check line 17 will avoid new

states to be discovered.

Invariant 2. A deadlock state can only be open,

open gp or deadlock gp.

Proof. From line 7–10, 47 and 49, the only status

that can be used line 12–13 are open and open gp.

If a state has no successor, the condition if the

loop (line 17) will not be satisfied and the thread

jumps line 32. If the thread is using the classical

approach, lines 32–34 are executed and a deadlock

is reported (stopping the other threads). Otherwise,

the state is only marked deadlock gp line 37.

Invariant 3. No direct successor of a closed state

is a deadlock state.

Proof. A state s is marked as closed line 39

when all its successors have been visited lines 17

– 31. Lines 19 and 21 ensure that a recursive call

is performed only on states that are (1) open or

not in the DFS stack. All the other direct succes-

sors are then explored and backtracked, and then

marked closed before s is marked closed.

Invariant 4. A state is marked closed iff all its suc-

cessors that are not on the thread’s recursive stack

are closed.

Proof. From Invariant 4, we know that all the di-

rect successors of a state are either on the DFS

stack or closed. Since states are marked closed

in the DFS postorder line 39, all its successors that

are not on the recursive stack are backtracked and

then marked closed.

Invariant 5. Only gp threads can tag a state dead-

lock gp.

Proof. Trivial. From the algorithm, the only places

where the status is changed to deadlock gp are

lines 30 and 37. For both, the previous line checks

wheter the status is open gp. From line 9,10 and

48 only gp threads can have this status. One should

note that line 50, the gp thread becomes a classical

thread.

Invariant 6. A state is deadlock gp iff it is a dead-

lock state or if one of its successors (direct or not)

is a deadlock state.



10 Etienne Renault

Proof. If a state is trivially a deadlock state, line

37 will mark it deadlock gp and return (line

35). Consequently, all its predecessors will be marked

deadlock gp during the backtrack (line 30). Thus,

a state can only be tagged deadlock gp iff one

of its successors is a real deadlock.

Invariant 7. Only classical thread can report that a

deadlock has been found.

Proof. A deadlock can be reported lines 25–26 or

lines 33–34. Lines 33–34 can only be executed by

a classical thread due to the condition line 32 (and

the note of invariant 5). Lines 25–26 can also re-

port that state s is a deadlock but the condition

(status = open) ensures that only a classical thread

will report it. In this case a gp thread has discov-

ered that some (possibly indirect) successor of s

is a deadlock, without knowing that s is reachable

from the initial state. The lines 25–26 detect that

this state is reachable and can then report the dead-

lock.

Invariant 8. If a state is reachable then all its direct

successors are reachable.

Proof. By construction, ι is the initial state then

reachable. All threads starting from ι lines 7,8 and

50 will then start from a reachable state. Apply-

ing the transition relation line 16 will then only

produce reachable states.

Proof of Theorem 1. From invariant 8, and since

the system has a finite number of states, at least one

thread will perform the exploration from the initial

state ι. If no deadlock is found, the thread will back-

track and finally reach lines 40–41. The stop boolean

will then be set to >. From invariant 1. the algo-

rithm stops. Reaching closed states (line 14) will

only prune the exploration and then have no impact

on the terminaison for classical threads. Gp threads

may only explores states that are not part of the state

space. Nonetheless, invariant 1 ensures the terminai-

son for these threads when some thread will mark stop

as >. If a deadlock is discovered by a classical thread,

invariant 1 and 4 will ensures the terminaison of all

threads. If a gp threads detects it, invariant 7 com-

bined to invariant 8 will force all threads to stop using

lines 26 and 34.

Proof of Theorem 2. From invariant 2 we know that

a deadlock state can never be marked closed because

(1) if discovered by a classical thread a deadlock is

immediately reported, and (2) because otherwise this

information must be propagated. Invariant 3, 5 and

6 ensure that the information is correctly propagated,

while invariant 7 ensure that no gp thread can report

that a deadlock has been found. The other direction of

theorem 2 is quite evident. If a deadlock exist, then

it is a reachable state. Since all reachable states are

explored by classical thread, the report will be done

(see invariant 7)

5.1.4 Reporting counterexample

In Algorithm 6, a classical thread can report the exis-

tence of a deadlock but cannot report the counterex-

ample forming it. Indeed, the path from the initial

state to the deadlock may be composed of several

parts, computed by one classical thread and multiple

gp threads.

Reporting the counterexample can be done as fol-

lowing. First of all the recursive call stack forms the

prefix, starting from the initial state ι to some state

α. Note that we know that this prefix starts from ι

since only classical threads can report deadlocks.

Then, the thread must compute the path from α

to one deadlock state β. To do so, the thread will

compute the successors of α and choose one of them

which is tagged deadlock gp. This operation is then

repeated from the chosen successor. Indeed, after a

gp thread has detected a deadlock, all the states on

its DFS stack are tagged deadlock gp. Following a

path of deadlock gp states will necessarily results

in discovering a deadlock.

Combining the prefix and the path of deadlock gp

states will build the whole counterexample.

5.2 Checking Liveness Properties

Until now, we only focused on the verification of safety

properties. The verification of complex temporal prop-

erties involves the exploration of an automaton which

is the result of the synchronous product between the

state space of the system and the property automaton.

In this settings, a state is composed of two parts:

the system state and the property state. Thanks to

the previous sections, we know how to build artificial

states for the system part.

Generating artificial initial states for the property

may be irrelevant. Indeed, these automata may have

a huge impact (in term of states) on the synchronized

product. Moreover, we know that only states synchro-

nized with some real state of the property automaton

will report a counterexample. The generation of arti-

ficial states for the property automaton may not be

relevant.

Nonetheless, genetic algorithms presented so far

can then be applied by considering that the property



Improving Swarming Using Genetic Algorithms 11

state is a variable just like the other system’s vari-

ables. For a three states property automaton, we can

consider that the actual state in the property automa-

ton depends on a variable that can have three values:

1, 2 and 3 6.

The adaptation of the artificial state generation

is then straightforward: the system part is generated

as previously while the property part is generated as

described earlier.

One should note that the generation of artificial

initial state for the synchronized product is not suf-

ficient for adapting Algorithm 6 for checking liveness

properties. Indeed, checking liveness properties involves

the use of an emptiness check in the automata tho-

eretic approach for explicit LTL model-checking. An

emptiness check is an algorithm looking for accepting

cycles in the synchronized product, i.e. cycles that

contains products states synchronized with some des-

ignated state of the property automaton.

Traditionally, two kind of emptiness checks are

used in explicit model-checking7:

– NDFS-based [8]: two nested dfs are used to detect

accepting cycles. A first one looks for the accepting

state, while the second one looks for a cycle around

it.

– SCC-based [24]: one dfs is used to compute the

Strongly Connected Components (SCC) of the syn-

chronized product. As soon as a an SCC containing

an accepting state is discovered a counterexample

can be reported.

The adaptation of Algorithm 6 into these emptiness

check can be done as following.

– For NDFS-based algorithms, when a gp thread de-

tects an accepting cycle, all the states forming

it are tagged with an accepting cycle status.

When a classical thread detects such a state, a

counterexample is raised.

– For SCC-based algorithms, when a gp thread de-

tects an accepting SCC, all the states forming it

are tagged with an accepting scc status. When

a classical thread detects such an SCC, a coun-

terexample is raised. One should note that tag-

ging all the states of an SCC can be done in quasi-

constant time using a union-find data structure

(see Anderson and Woll [2] for a lock-free imple-

mentation of this structure).

6 Notice that mutation can be done ensuring that this
variable will not be less than 1 and not be greater than 3
7 Here, we only describe our approach on Büchi au-

tomata, but the adaptation for generalized Büchi automata
is straightforward

Notice that in both situations, as soon as a classi-

cal thread detects a counterexample, this latter one

can be immediately reported and all the other threads

stopped.

6 Evaluation

Benchmark Description. To evaluate the perfor-

mance of our algorithms, we selected 38 models from

the BEEM benchmark [18] that cover all types of mod-

els described by the classification of Pelánek [19]. All

the models where selected such that Algorithm 1 with

one thread would take at most 40 minutes on Intel(R)

Xeon(R) @ 2.00GHz with 250GB of RAM. This six-

core machine is also used for the following parallel

experiments8. All the approaches proposed here have

been implemented in Spot [7]. For a given model the

corresponding system is generated on-the-fly using Di-

VinE 2.4 patched by the LTSmin team9.

Reachability. To evaluate the performance of the al-

gorithm presented Section 4 we conducted 9158 ex-

periments, each taking 30 secondes on the average.

Table 2 reports selected results to show the impact of

the fitness function and the threshold over the perfor-

mance of Algorithm 5 with 12 threads (the maximum

we can test). For each variation, we provide nb the

number of models computed within time and mem-

ory constraints, and Time the cumulated walltime for

this configuration (to run the whole benchmark). For a

fair-comparison, we excluded from Time models that

cannot be processed. Table 2 also reports state-of-the-

art and random (used to evaluate the accuracy of ge-

netic algorithms by generating random states as seed

state). This latter technique is irrelevant since it is five

time slower than state-of-the-art and only process 32

models over 38.

If we now focus on genetics algorithms, we observe

that the threshold highly impacts the results regard-

less the fitness function used: the more the threshold

grows, the more models are processed within time and

memory constraints.

The table also reports the best threshold10 for all

fitness function, i.e. 0.999. It appears that greaterthan

8 For a description of our setup, including selected mod-
els, detailed results and code, see http://www.lrde.epita.

fr/~renault/benchs/VECOS-2018/results.html
9 See http://fmt.cs.utwente.nl/tools/ltsmin/#divine for

more details. Also note that we added some patches (avail-
able in the webpage) to manage out-of-bound detection.
10 We evaluate other thresholds like 0.9999 or 0.99999 but
it appears that augmenting the threshold does not increase
performance, see the webpage for more details.

http://www.lrde.epita.fr/~renault/benchs/VECOS-2018/results.html
http://www.lrde.epita.fr/~renault/benchs/VECOS-2018/results.html


12 Etienne Renault

Threshold

0.7 0.8 0.9 0.999
nb Time (ms) nb Time (ms) nb Time (ms) nb Time (ms)

greaterthan 35 1 041 015 35 970 248 35 1 000 184 37 900 468
equality 35 3 217 183 35 965 259 35 934 947 38 907 148
lessthan 35 972 038 35 951 767 35 928 978 38 904 776
lessstrict 35 970 668 35 983 225 35 935 319 38 894 131

No threshold
random (trivial comparator to evaluate genetic algorithms) 32 5 079 869

Algorithm 1 (state-of-the-art with 12 threads) 38 978 711

Table 2 Impact of the threshold and the fitness function on Algorithm 5 with 12 threads (nb generation=3, init=1000,
pop size=50). The time is expressed in millisecond and is the cumulated time taken to compute the whole benchmark (38
models); nb is the number of instances resolved with time and memory limits.

only processed 37 models: this fitness function does

not seem to be a good fitness function since (1) it

tends to explore useless parts of the state-space and

(2) the variations of the threshold highly impacts the

performance of the algorithm. All the other fitness

function provide similar results for a threshold fixed

at 0.999. Nonetheless we do not recommend equality

since a simple variation of the threshold (0.7) could

lead to extremely poor results. Our preference goes to

lessthan and lessstrict since they seem to be less

sensitive to threshold variation while achieving the

benchmark 9% faster than state-of-the-art algorithm.

Thus, while the speedup for 12 threads was 3.02 for

state-of-the-art algorithm, our algorithm achieves a

speedup of 3.31.

Note that the results reported Table 2 include the

computation of the artificial initial states. On the over-

all benchmark, this computation take in average slightly

less than 1 second per model (30 seconds for the whole
benchmark). This computation has a negligible im-

pact on the speedup of our algorithm.

We have also evaluated (not reported here, see

webpage for more details) the impact of the size of

the initial population and the size of each generation

over the performance. It appears that augmenting (or

decreasing) these two parameters deteriorate the per-

formance. It is worth noting that the best value of

all parameters are classical values regarding to state-

of-the-art genetic algorithms. Finally, for each model

(and lessthan as fitness), we compute a set of arti-

ficial initial states and run an exploration algorithm

from each of these states. It appears that 84.6% of the

7 866 005 486 generated states are reachable states.

The chart presented Figure 6 evaluates the per-

centage of reachable states from a population of arti-

ficial initial states (computed with the best parame-

ter inferred from Table 2). The results are presented

model per model. For each model and for a given artifi-

cial initial state we evaluated the percentage of visited

states that are reachable from the real initial state. For

a model, the boxplot displays this percentage from

each artificial state in the population. Models are pre-

sented sorted according to their median value.

First of all, we can observe that all almost all mod-

els have at least one artificial state where all its suc-

cessors are reachable from the initial state. Moreover

one third of the models have more than a half of their

artificial initial states with more than 50 percents of

successors that are reachable. One can observe huge

variations depending on models: for instance, almost

all the states are reachable from any artificial state

in resistance.2 while there are few for blocks.3. A fine

grained study of these model reveals that models with

good results fall into two categories of the classifi-

cation of Pelánek [19]: Mutex and Communication-

Protocol. These models appears to be composed of

large SCCs or long cycles. This chart suggests that
the function used for the generation of artificial ini-

tial state may be crucial for our algorithms but may

also be dependent of the kind of model targeted.

Safety properties. Now that we have detected the

best values for the parameters of the genetic algorithm

we can evaluate the performance of our deadlock de-

tection algorithm. In order to evaluate the perfor-

mance of our algorithm we conduct 418 experiments.

The benchmark contains 21 models with deadlocks

and 17 models without. Table 3 compares the relative

performance of state-of-the-art algorithm and Algo-

rithm 6. For this latter algorithm, we only report the

two fitness functions that give the best performance

for reachability. Indeed, since Algorithm 6 is based on

Algorithm 5 we reuse the best parameters to obtain

the best performance. Results for detecting deadlocks

are quite disappointing since our algorithm is 15% to

30% slower. A closer look to these results show that

deadlocks are detected quickly and Algorithm 6 has



Improving Swarming Using Genetic Algorithms 13

●●●●●●●●●

●●●● ●●●●●●●

●

●

●

●●●● ●●●●●●

●● ●● ●

●●●● ●●●●

● ●

●

●

● ● ●●●● ●●● ●

●●

●●●●●● ●●●●●●

●●

●

●

●●●●●●●

adding.6
at.5

bakery.6
blocks.3

brp.6
brp2.6

elevator_planning.2
elevator.4

extinction.4
firewire_tree.5

frogs.5
hanoi.3

iprotocol.6
lamport_nonatomic.4

lamport.8
lann.6

leader_election.5
lifts.7

mcs.5
phils.5

plc.4
production_cell.6

public_subscribe.4
rether.6

rushhour.4
synapse.7

szymanski.5
telephony.4

sorter.4
cambridge.7
needham.4

schedule_world.2
peterson.5
anderson.3

collision.4
fischer.5

lup.4
resistance.2

0.00 0.25 0.50 0.75 1.00

Percent of states that are reachable

m
od

el
s

Fig. 6 Distributions of reachable states from a population of artificial initial states.

degraded performance due to the computation of ar-

tificial initial states.

On the contrary we observe that our algorithm is

10% faster (regardless whether we use lessthan or

lesstrict) than the classical algorithm when the sys-

tem has no deadlock. One can note that this algorithm

performs better than simple reachability algorithm.

Indeed, even if the system has no deadlock: the algo-

rithm can find non-reachable deadlock. In this case,

the algorithm backtracks and the next generation is

processed. This early backtracking force the use of a

new generation that will helps the exploration of the

reachable states. To achieve this speedup, we observe

an overhead of 13% for the memory consumption. The

use of dedicated memory reduction techniques could

help to reduce this footprint.

Variations of the numbers of gp threads. All

the algorithms presented in this paper suppose that

only half of the threads performs an exploration based



14 Etienne Renault

Algorithm 1 Algorithm 6
(state-of-the-art) lessthan lessstrict

Time (ms) States Time (ms) States Time (ms) States

Deadlocks 2 888 7.01e6 3 713 5.87e6 3 414 5.47e6

No deadlocks 516 152 5.79e8 462 881 6.73e8 468 683 6.82e8

Table 3 Comparison of algorithms for deadlock detection. Each runs with 12 threads, and we report the variation of two
different fitness functions: lessstrict and lessthan. Results presents the cumulated time and states visited for the whole
benchmark.

Fig. 7 Impact of the percentage of thread using genetic programming. Experiments were run with 12 threads. The dfs line
represents state-of-the art while lessthan and lessstrict represents the fitness functions combined to the best parameters observed
Table 2.

on one or more artificial states. This restriction was

chosen based on the experiments Table 1 where half

of the threads seems useless from the speedup point

of view. Figure 7 describes possible variations on this

approach. The main idea is to run Algorithm 5 with a

variation on the percentage of threads using a genetic

programming approach. This Figure displays three

lines: dfs represents the state-of-the art while the other

lines represent the fitness functions combined to the

best parameters observed Table 2. It appears that the

percentage of thread using a genetic approach have a

strong impact on the results. Indeed, even with a few

percentage (20%) of threads using genetic program-

ming, we observe a 11% reduction of the total time to

run the benchmark. Nonetheless we can observe that

these performances are degraded while the percent-

age of gp threads augments. Indeed, gp threads may

explore states that are not in the state space and us-

ing too much of these threads will not help classical

threads to explore concurrently this state space. No-

tice that compared to results presented Table 2, the

variation of the percentage of the gp threads helps to

obtain around 2.5% more reduction of the total time

for this benchmark.

Discussion. Few models in the benchmark have a

linear topology, which can be considered as the per-

fect one for the algorithms presented in this paper.

Nonetheless, we observe a global improvement of state-

of-the-art algorithm. We believe that other fitness func-

tion (based on interpolation or estimation of distribu-

tion) could help to generate better states, i.e. deep

with respect to many DFS orders.

7 Conclusion

We have presented some first and new parallel ex-

ploration algorithms that rely on genetic algorithms.

We suggested to see variables of the model as genes

and states as chromosomes. With this definition we



Improving Swarming Using Genetic Algorithms 15

were able to build an algorithm that generates artifi-

cial initial states. To detect if such a state is relevant

we proposed and evaluate various fitness functions.

It appears that these seed states improve the swarm-

ing technique. This combination between swarming

and genetic algorithms has never been proposed and

the benchmark show encouraging results (10% faster

than state-of-the-art). Since the performance of our

algorithms highly relies on the generation of good ar-

tificial states we would like to see if other strategies

could help to generate better states. We also observed

that a small percentage of threads using genetic pro-

gramming is sufficient to obtain a good speedup.

We also demonstrate the correctness of our algo-

rithms and describe how our they can be adapted to

report counterexamples.

This work mainly focused on checking safety prop-

erties even if we proposed an adaptation for liveness

properties. A future work would be to evaluate the

performance of our algorithm in this latter case. We

also want to investigate the relation between artificial

state generation and POR, since both rely on the anal-

ysis of processes variables. Finally, we strongly believe

that this paper could serve as a basis for combining

parametric model-checking with neural network.

References

1. P. E. Ammann, P. E. Black, and W. Majurski. Using
model checking to generate tests from specifications. In
ICFEM’98, pp. 46–54, december 1998.

2. R. J. Anderson and H. Woll. Wait-free parallel al-
gorithms for the union-find problem. In Proc. 23rd
ACM Symposium on Theory of Computing, pp. 370–
380, 1994.

3. J. Barnat, L. Brim, and P. Ročkai. Scalable shared
memory LTL model checking. STTT, 12(2):139–153,
2010.

4. V. Bloemen and J. van de Pol. Multi-core SCC-Based
LTL Model Checking, pp. 18–33. Lecture Notes in Com-
puter Science. Springer, 2016.

5. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. Hwang. Symbolic model checking: 1020 states
and beyond. In Proc. of the Fifth Annual IEEE Sym-
posium on Logic in Computer Science, pp. 1–33, 1990.
IEEE.

6. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yan-
nakakis. Memory-efficient algorithm for the verification
of temporal properties. In CAV’90, vol. 531 of LNCS,
pp. 233–242. Springer, 1991.

7. A. Duret-Lutz, A. Lewkowicz, A. Fauchille,
T. Michaud, E. Renault, and L. Xu. Spot 2.0 —
a framework for LTL and ω-automata manipulation.
In ATVA’16, vol. 9938 of LNCS, pp. 122–129. Springer,
Oct. 2016.

8. S. Evangelista, A. Laarman, L. Petrucci, and J. van de
Pol. Improved multi-core nested depth-first search. In
ATVA’12, vol. 7561 of LNCS, pp. 269–283. Springer,
2012.

9. H. Garavel, R. Mateescu, and I. Smarandache. Parallel
State Space Construction for Model-Checking. Techni-
cal Report RR-4341, INRIA, 2001.

10. P. Godefroid and S. Khurshid. Exploring Very Large
State Spaces Using Genetic Algorithms, pp. 266–280.
Springer, Berlin, Heidelberg, 2002.

11. P. Godefroid, G. J. Holzmann, and D. Pirottin. State
space caching revisited. In CAV’92, vol. 663 of LNCS,
pp. 178–191. Springer, 1992.

12. J. H. Holland. Genetic algorithms. Scientific American,
1992.

13. G. J. Holzmann. On limits and possibilities of auto-
mated protocol analysis. In PSTV’87, pp. 339–344.
North-Holland, May 1987.

14. G. J. Holzmann and D. Bosnacki. The design of a multi-
core extension of the SPIN model checker. IEEE Trans-
action on Software Engineering, 33(10):659–674, 2007.

15. G. J. Holzmann, R. Joshi, and A. Groce. Swarm veri-
fication techniques. IEEE Transaction on Software En-
gineering, 37(6):845–857, 2011.

16. G. Katz and D. A. Peled. Synthesis of parametric pro-
grams using genetic programming and model checking.
In INFINITY’13, pp. 70–84, 2013.

17. A. Laarman, E. Pater, J. Pol, and H. Hansen. Guard-
based partial-order reduction. STTT, pp. 1–22, 2014.

18. R. Pelánek. BEEM: benchmarks for explicit model
checkers. In SPIN’07, vol. 4595 of LNCS, pp. 263–267.
Springer, 2007.

19. R. Pelánek. Properties of state spaces and their ap-
plications. International Journal on Software Tools for
Technology Transfer (STTT), 10:443–454, 2008.

20. R. Pelánek, T. Hanžl, I. Černá, and L. Brim. Enhancing
random walk state space exploration. In FMICS’05, pp.
98–105. ACM Press, 2005.

21. D. Peled. Combining partial order reductions with on-
the-fly model-checking. In CAV’94, vol. 818 of LNCS,
pp. 377–390. Springer, 1994.

22. J. H. Reif. Depth-first search is inherently sequential.
Information Processing Letters, 20:229–234, 1985.

23. E. Renault. Improving parallel state-space exploration
using genetic algorithms. In VECOS’18, vol. 11181 of
LNCS, pp. 133–149, 2018. Springer.

24. E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitre-
naud. Variations on parallel explicit model checking
for generalized Büchi automata. International Journal
on Software Tools for Technology Transfer (STTT), pp.
1–21, Apr. 2016.

25. H. Sivaraj and G. Gopalakrishnan. Random walk based
heuristic algorithms for distributed memory model
checking. Electronic Notes in Theoretical Computer
Science, 89(1):51 – 67, 2003.

26. A. Valmari. Stubborn sets for reduced state space gen-
eration. In ICATPN’91, vol. 618 of LNCS, pp. 491–515,
1991. Springer.


	Introduction and Related Work
	Parallel State Space Exploration
	Generation of Artificial Initial State
	State-Space Exploration with Genetic Algorithm
	Checking Temporal Properties
	Evaluation
	Conclusion

