Self-Reconfigurable Modular Robots
and their Symbolic Configuration Space

S. Baarit, L.M. Hillahl, F. Kordor?, and E. Renauit

1 LIP6, CNRS UMR 7606 and Université Paris Ouest Nanterre La Défens
200, avenue de la République, F-92001 Nanterre CEDEX, FRANCE
Lom Messan. Hi |l ah@i p6. fr, Souhei b. Baarir@i p6. fr
2 |IP6, CNRS UMR 7606, Université P. & M. Curie - Paris 6
4, place Jussieu, F-75252 Paris CEDEX 05, FRANCE
Fabri ce. Kordon@i p6. fr, Eti enne. Renaul t @nai | . com

Abstract. Modular and self-reconfigurable robots are a powerful way to design
versatile systems that can adapt themselves to different physicalement con-
ditions. Self-reconfiguration is not an easy task since there are numpossi-
bilities of module organization. Moreover, some module organizationscuris-
alent one to another.

In this paper, we applgymbolicrepresentation techniques from model check-
ing to provide an optimized representation of all configurations for a taodu
robot. The proposed approach captures symmetries of the systeam@ids stor-

ing all the equivalences generated by permuting modules, for a gowgigara-
tion. From this representation, we can generate a consgaubolic configuration
spaceand use it to efficiently compute the moves required for self-recorafigur

(i.e. going from one configuration to another). A prototype implementation is
used to provide some benchmarks showing promising results.

Keywords: Modular robotics, Self-reconfiguration, Symbolic configuration spac
Symmetries, CKBot

1 Introduction

Context Modular robotics is an active research field where robotassembled using
numerous identical or different types of small modulessThia powerful way to design
versatile systems that can adapt themselves to differgsiqai environment conditions
or according to the purpose of their mission [9]. Moreovelf-eeconfiguration allows
to adjust the robot to a given task on the fly. Modular robots thus perceived as
a means to reach a balanced compromise between realizasbraicd multitasking
capabilities. They are particularly well-suited to expliion (.g. spatial) and search
and rescue missions in hostile environments. Finally, #reyrobust and cheaper to
produce.

Problem If auto-reconfiguration is a way to change the shape of a nolaate of mod-
ules, itis also a way to create complex movements by meangoéssive configuration
changes. The robot follows a path of configurations thatalih to move, to grab and
drop objects, etc.

This is a key feature whose implementation faces numersugs$s[12]:

memory limitation, computation power and energy consuompti

limited degrees of freedom, sometimes more constrainedusecsome types of
modules are more constrained than the others,

coordinated communication between modules and inter-teodommunication
schemes,

structural symmetries in modules, generating equivaledutes configurations.

The last issue raises a problem for the computation oftimdiguration spacéor a
robot composed dfl modules. The size of the configuration space increases erpon
tially with N (whereN;,i € [1..T] when the robot is composed ®ftypes of modules).
Both the generation of the full configuration space and tlemtification of a given
configuration in it are known problems [8].

Contribution The objective of this paper is to tackle the combinatoriglegion prob-
lem in the configuration space of modular robots. Our satuéilso helps to identify a
given configuration among the ones that are equivalent-r8etinfigurable modular
robots are usually classified in two categories.

First, lattice-based self-reconfigurable robots can fasi organize themselves in
2D or 3D grid structures. They are rigidly interconnected dme able to connect/dis-
connect and move relative to one another in a 2D or 3D spachidkind of configu-
ration, modules can only connect to their adjacent neightfoonnection is assumed to
be performed without alignment, because modules are asstoriee always aligned.
This may not be true in practice for large configurations. AM&ON [3] is a typical
example of a 3D lattice-based self-reconfigurable robot.

Second, chain-based robots can assemble in serial chamsriglinear loops con-
nections/disconnections) aligning themselves for cotimgcThey can form flexible
configurations and are efficient for locomotion, since thary bend themselves in arbi-
trary angles to move. For instance, a snake-shaped robotoaa like a snake because
its modules bend in coordination to perform this kind of moeat. The PolyBot [13]
is a typical example of a chain-based robot.

This study focuses on CKBot [10]: a hybrid robot whose moslaléow both chain and
lattice reconfiguration capabilities [12].

The CKBot has two types of module: the UBar and the L7. Ourysfoduses on
the UBar, whose picture you can find online at [10]. We onlysider robots made of
one type of module but this work can easily be extended todke where several types
of modules are involved.

Symmetries are a serious issue in the original explicit epghes to generate the
CKBot configurations, when the number of modules grows. Rstaince, the methods
presented in [8] take a lot of time for disambiguation beeanisthe symmetries be-
tween numerous similar configurations. Our purpose is tpgse a new approach for
modeling the system, using symbolic representation tectes where symmetries are
handled efficiently .

Our contribution lies in the following points. First, we pase an efficient symbolic
representation of the modular robot configurations. Iteepnts, by means of a single

matrix, both connections and orientations of modules. & ggnificant improvement
of the proposal made in [8] where two matrices are involved.

Then, we optimize the symbolic representation, where aingibnnection schemes
of some inter-dependent connectors are only representedioa symbolic way. From
this symbolic representation, explicit configurations niy generated. Similarly to
model checking, we produce the configuration space of thesyas an oriented graph
where nodes represent a set of equivalent configurationgi@sdrepresent an action
of any module in the system. This reduced graph replacegad@ional plain graph
approach.

Therefore, we can exploit this configuration space to comlug moves that lead
from a configuratiort to any configuratiort’ € C, the set of target equivalent configu-
rations. This is a classical path search in an oriented graph

Content Section 2 presents the CKBot UBar module and the two-matset rep-
resentation technique of the robot configuration origingilesented in [8]. We also
describe the core principles of the symmetry technique$ieapm this paper. Then,
sections 3 proposes an alternative to the robot descripfif8] and section 4 explains
how we turn this new explicit representation into a symbofhie. Section 5 deals with
the reconfiguration computation issue, where the tramsiigstem of the robot suc-
cessive configurations is built and used to find paths betweafigurations. Finally,
section 6 presents performance evaluation provided bytatype implementation be-
fore a conclusion in section 7.

2 Problem Statement and Related Works

Controlling the configuration of modular and self-reconfagle robots is computa-
tionally complex. This complexity depends on how the systerarganized, both at
the hardware and software levels. We consider the CKBotyevheth a global bus
and neighbor-to-neighbor communication schemes enablsytstem to determine its
configuration.

In the CKBot, connections between modules are representgdaphs, translated
into adjacency matrices and ports adjacency matrices. Mednterconnect via con-
nectors and are identified by values from INpwhereN is the number of modulés
Adjacency matrices arl x N matrices in which 1s denote interconnections between
modules and Os the absence of connection. In port adjaceatrices (which also are
N x N matrices), non-zero numbers identify the IDs of the pomtsugh which modules
interconnect. Fig. 3 shows a CKBot assembly and its adjgceradrices.

We first present the CKbot module, then an explicit way to decits configura-
tion and the symmetry-based methods used in model cheakitagkle combinatorial
explosion. Section 3 applies this technique to efficientigoele the configuration space.

3 Here, we only consider a system with one type of module. For a systemTwitipes of
module, we can consider the identities being, N1, N3 +1,..,No, .., Ny _1, .., Nt whereN; is
associated to th& type of modulej € [1,T]

2.1 Presentation of the CKBot

Fig. 1(a) presents a picture of a CKBot UBar moduded Fig. 1(b) shows its cor-
responding 2D schema representation. The CKBot UBar mduhde7 ports (pair of

infrared transmitters/receivers) and 20-pin headers oh ehits 4 faces. Ports, repre-
sented by a square, are used for inter-module communic&ipin headers, repre-
sented by a rectangle, are used for electrical connectidrc@ammunication on a CAN

(Controller Area Network) bus. In the latter part of this pgpwe may simply refer

to couples(port, 20-pin headéras connectors(e.g. the Bottom face holds only one

connector).

|7
Bottom
==

2 4
m Lof I I Top m IRight.
— 10 o3

(a) A CKBot UBar module (b) Its corresponding 2D structure

Fig. 1. Overview of the CKbot

Top andRight faces share the same disposition for their connectors,eaehe
one ofLeft is reversed (port 5). Thus, a module can attach to anothefféareht ways.
According to [12], each module can lbmiquely connected to another module in 10
ways (3 rotations for each of the 3 top faces and 1 orientdioithe bottom) The only
impossible connection is when two same faces are in fronnefanother in reverse
positions. Fig. 2 presents an example of modular robot fyoith four CKBot modules.

4 This picture is extracted from [8].
5 This picture is extracted from [1].

Fig. 2. A 5-module T shape robot and its corresponding adjacency matrices

2.2 Explicit Encoding of CKBot Configurations (from [8])

The technique used to describe the robot configuration iscbais twoN x N matrices,

N being the number of modul&sThe first matrix is a simple adjacency matrix, where
1-entries denote a connection between two modules andri@éenb connection. The
second matrix is a port adjacency matrix, where non-zergesntlenote the type of
connection from a module to another (referencing the pomber). Fig. 3 shows a
5-module T shape and its corresponding adjacency matricéseaight.

1 2 3 Adjacency matrix Port adjacency matrix
01 000 04 000

. 1 01 10 6 0 4 7 0

01 000 06 0 0 0

01 001 01007

5 000 10 00 0 1 0

Fig. 3. A 5-module T shape robot and its corresponding adjacency matrices

This representation is suitable for configuration recagnibn small configurations.
However, it does not scale well. In particular, when recanfigion is the problem under
consideration, searching the configuration spaceNfanodules which can move in
parallel, quickly leads to combinatorial explosion of trenfiguration space for large
values ofN.

In [8], the author deals with automatic configuration redtign based on three
principles:

— graph-based isomorphism identification: this method ssiffieom the exponential
size of the automorphism group in the number of modules (ease), as the size
of the library of predefined configurations grows;

— port adjacency matrix spectral decomposition: it is vesst far small numbers of
modules but suffers from numerical issues when numerousitesdre involved.
Explicit disambiguation due to symmetries in the configiorsg can be very long;

— heuristic-based linked list (called 3DLL) representatminthe physical proper-
ties of configurations: it exploits the ports adjacency imaif the modules. This
method appears to be the most scalable, but suffers frometbe to run exhaus-
tively through every configuration in the library.

In order to tackle the combinatorial explosion in the confégion space, we propose
to get inspiration from formal analysis methods [11] whéTis problem is common.
Different and complementary techniques are used to redhgcsize of the state space:
decomposition, bounding, partial order, symmetry detectind the use of very efficient
data structures (Decision Diagrams).

6 In the remainder of this pape¥, will always denote the number of modules that compose the
complete robot.

It appears that the configurations of the CKBot can be orgahiato consistent
sets of similar configurations where they only vary by mochdemutations. Hence, a
more compact representation for the model can be designesitove redundant and
explicit information which can be inferred otherwise. listetting, symmetry-based
techniques are suitable to build their representation.

2.3 Compact Representation of Large State Spaces

This section presents through an example the principleeeoymmetry-based tech-
niques underlying compact representation of large stateespin model checking. For-
mal definitions of the underlying theory can be found in [4].

Symmetry-based methodasploit the presence of similarly behaving components
to aggregate states (or, in our case, configurations) ateltsaasitions (or, in our case,
configurations changes) into equivalence classes. Hemeggenerate a more abstract
and compact state space: tipgtient graph

To present the quotient graph in the general framework deomsider the classical
example of a client/server system, with two identical di&y andC; and a serve8.
Clients build a messaga € {my,my}, send it toSwith their identity, and wait for an
acknowledgment messadg&processes incoming messages and then sends the acknowl-
edgment to the client having issued the request.

C1(1):C(1):8(1)

S Sz S3 s,
C4(2):C5(1) Ci(1):C5(2) C,(1);,C4(2) C,(2);,C,(1)
— s - s st sty —
R(<Cy,m;>) R(<C,,m;>) R(<C,,m,>) R(<C,,m,>)

==
C1(2):C5(2) C1(2):C4(2) C1(2);:Cx(2) C1(2):C,(2)

S(1) S(1) S(1) S(1)
R(<C;,m;> R(<Cy,m;> R(<Cy,m,> R(<C,,m,>
+<C2,m1>) +<C2,m2>) +<C2,m1>) +<C2,m2>)

S5
Ci(1C2) . |
S(2,C,)
C1(2):Cx(1)
S(2,C,)
S10

Fig. 4. First 11 states (among 24) of the reachability graph of the client/seraenge

We consider two local states for a client: (1) the messagstoaction state and,
(2) the receiving state. For the server, we consider: (1yekeiving state and (2) the
sending of the acknowledgment. We also consider the netatateR: R((C1,my))
means that messagg of clientC; is passing through the netwoR Thus, the global
state of our system will be the synthesis of all local states.

The behavior of the system can then be representedrbgichability graphwhere
nodes are global states, and arcs represent changes betaten Figure 4 represents

S‘Oz{so}

§'4={81,57 53,54}

S'y={sq S} 8'3={85,510} 8'4=(s7,54}

Fig. 5. First 5 states (among 10) of the quotient graph of the client/server deampt equiva-
lence relatiom?

the beginning of the reachability graph of our toy exampthe (vhole graph contains
24 states).

As shown in Fig. 4 the state space grows quickly with the nunalbelients and
the type of messages. Exploitation of symmetries in theegydtelps to tackle this
combinatorial explosion. We observe ti@tandC, behave identically, hence they are
symmetrical. Similarly, messages values are not distsigd by the server.é. they
are processed identically), introducing another symmetry

Let us formally identify these symmetries by an equivaleredation9? = {C =
{C1,C2},M = {m,mp}}, whereC andM are equivalent classe®. can then be used to
build a quotient graph that preserves reachability and gemeoral logic properties of
the original reachability graph.

According tofR, states of the reachability graph are partitioned in fiveivadence
classess) = {s0}, 8| = {s1, %2, %3, 4}, S, = {S6,57}, S5 = {5,510} ands, = {s7,ss}.
The quotient graph corresponding to the 11 states of théadlity graph presented in
Fig. 4 is represented in Fig. 5. Let us note that, in this ciéssjze neither depends on
the number of clients nor the number of values for messages.

In the next section, we apply this technique to build all thefigurations of a robot
made with CKBot modules. To do so, there are three issuesaloadieh:

— identifying symmetries in the configurations in terms ofrpatations,

— elaborating an efficient symbolic representation for théedent classes generated
by these permutations,

— building the symbolic transition relation.

3 Representing CKBot States

The first technique to fight against combinatorial explosiothe configuration space
is to design a compact and efficient representation to mdaetdbot. An important
requirement for this compact representation is that it npusserve all the important
information that cannot be computed from existing ones.

3.1 Matrix Representation

Our new model is also stored in a matrix, where 7 columns entioel ports connec-
tivity of a modul€’ and an §' column encodes its angle. Figure 6 shows the definition
of this representation. The configuration of a module is thsoded in a vector of
size Number of Ports + Degrees of Freedoifhe size of a configuration involviny
modules is themN x (Number of Ports + Degrees of Freedam) CKBot module has 1
degree of freedom, hence a single column is sufficient todado

Top

p1, p2
Left Right topl top2 rightl right2 leftl left2 bottom angle
p5, p6 p3, p4 pl p2 p3 p4 pd p6 7 «

Bottom
p7

Fig. 6. Ports-connectivity matrix of an UBar module.

In the ports-connectivity matrix, non-zero entries derat®nnection of the corre-
sponding port (column) to a module whose identity is the @alfithe entry. As for the
explicit representation (section 2.2), identities of mieduange from 1 tdN, so that no
ambiguity is raised between an absence of connection andialenmentity.

The angle scale ranges from 0 to 180° with a graduatidd®iincrements. To de-
termine the physical position of a module from its repreagom as described in Fig. 6,
angle is set to zero when the faBettomis positioned such that ports 4, 6 and 7 are
aligned. ltis illustrated in Fig. 7, witBottomoriented to the right. Angle 180 is deter-
mined when the module has made a rotation suchBb#tbmis oriented to the left.

Right 0° 180° Right
Bottom

Left Left

Fig. 7. Angles representation for a UBar module.

Example Let us determine the ports-connectivity matrix for the Selme T shape

example shown in Fig 3. The matrix encoding this configurat®shown in Fig. 8.

It has the fixed 8 columns for the UBar and 5 lines for the nundfenodules. We

can expect this type of representation to be much more cantpae the adjacency
matrices, where the number of modules will be in most caseatgr than the sum of
the numbers of ports and degrees of freedom.

7 Numerotation of portse.g. tofl, top2, etc.) refers to the 2D flat representation of a CKBot
module as presented in Fig. 1(b).

%‘J:r
=
%
3
(3]
S
S
/d
=
=~
3
ot
e
h@ +
(=2}
= %o,
oSG o ST M,
)

> modulel | 0
> module2 | 0
> module3 | 0
> moduled | 2
=> moduleb | 4

o o
(==l e)

|
coco
cocococo
coc o ww
coco
coww~Oo

Fig. 8. Ports-connectivity matrix of the 5-module T shape of Fig. 3.

3.2 Matrix Encoding

An alphabet can be set up to encode all possible configusatiba module. Since a
port can be connected or not, we need two values per port (farts). Thus, a 7-bit
alphabet can encode this.

We set up an alphabet to encode all possibles configuratisres ihodule. A port
being either connected or not and since we have seven pats|aiorate a compact
alphabet to encode connectivity. Therefore, each lettidrdmlphabet is a concatenation

of two parts:

— a first part contains 7 bits describing the connectivity af ttescribed module,
encoded aspl x 27+ p2x 26+ p3x 25+ p4 x 24+ p3x 224+ p2 x 21 4 p1 x 20,
Therefore, each configuration is represented in a unique way

— asecond part specifies the angle of the described modulee @hex configurations
per connectivity, where is deduced fronD (x = 3 whenD = 90°, x = 4 when
D = 45°, etc).

Fig. 9. Alphabet encoding the connectivity of a 3-port modwleepresents the angle.

Example Let us consider a simple case with a module having only thoets prigure 9
illustrates this encoding. There ar%%(%hr 1) values in the alphabet. There is a total
order sincevi € [0,23], Xia < X g iff a <. For the CKBot, we thus use the following
formula to compute the number of letters in the alphabet:

180

27x(3+1) (1)

4 Symbolic Representation of the CKBot Configuration Space

This section applies the symmetry technique describedatiose2.3 to the representa-
tion presented in section 3. First, we identify equivalemfgurations obtained from
module rotation, then we discuss isomorphic configuratidntained by module permu-
tation. We show how the two matrices can be combined andyipadisent a canonical
way to express equivalence classes considering these pes tf symmetries. This
leads to the notion adymbolic configuration space

4.1 Identification of Structural Symmetries

Module Rotation In the UBar CKBot module, there exists a symmetry betweeedac
RightandLeft When this module is rotated with 180° in the orientatRight-Left(or

in the reverse way), we obtain a mirror configuration. Poréhd 6 are symmetric, as
well as ports 3 and 5. Therefore, a connection on p4 (or p3) anglea is symmetric
to a connection on p6 (or p5) with angl&80—a) mod 180.

00 0000 2 9 00 0000 2 9
1 0000 3 0 9 100 3 00 0 9
00 0 2000 9 00 000 2 0 9

H I

Fig. 10. Symmetry between two L-shape configurations

Figure 10 shows an example of symmetry in a 3-UBar CKBot comndiion. On the
left, the initial configuration. On the right, the symmetoice. We can observe that all
modules have rotated. This corresponds to column perroatatihe ports-connectivity
matrices that are aside these configurations.

Module Permutation Two configurations are considered isomorphic when they form
the same functional shape but where modules are permutgureFil shows an ex-
ample of two T-shape isomorphic configurations with theit@onnectivity matrices.
Modules have the same connectivity in the two configuratimisnodules 1, 2 and 3 are
not in the same position. This corresponds to line pernanati the ports-connectivity
matrix together with a value change to refer to the new madidéthe corresponding

1 2 4 0020000 9 2 3 4 300 00 00 9
004010 3 9 300 0 0 9

200000 0 9 0040201 9

3 0000200 9 1 003 00 9

Fig. 11. Two T-shape isomorphic configurations.

lines are emphasized in the two matrices). On the first corgtgn, module 1 is on top
left and is represented by the first line of the left matrix. @@ second configuration,
the top left module is 2 and is described by the second linkerright matrix. These
two lines are identical in structure (third column is nomedébut refer to different lines
due to different neighbors.

Module Rotation and Permutation There is an issue to detect isomorphic configura-
tions when they are also symmetric due to module rotatiomewis in Fig. 12.

Fig. 12. Two H-shape isomorphic configurations.

Therefore, our symbolic encoding of our ports-connegtivitatrix must integrate
both types of equivalences together and distinguish alivatgnce classes unambigu-
ously.

4.2 Symbolic Encoding and Canonization

Encoding To encode the ports-connectivity matrix, we replace eawh by its corre-
sponding letter in the alphabet. Figure 13 shows, for moduie 5, (.e. top to bot-
tom) the encoding of a 5-UBar CKBot cross configuration Ylgfto an explicit ports-
connectivity matrix (center) and then its correspondingisglic representation (right).
As mentioned in section 3.2, the number of letters in our abeh is computed from
formula (1).

00 0000 3 9 0 0 0 0 0 0 X590 90
0003000 90 0 0 0 Xmge 0 O 0 90
2 3 4 1 0 04 0 2 5 90 leg)() 0 0 X27g() 0 ngg() X64'90 90
00 0O0O0 3 0 9 0 00 0 0 X7s,90 0 90
300 0 0 0 0 9 X7500 0 0 0 0 0 0 90

Fig. 13.Encoding of a 5-module cross shape configuration

In this figure, module 1 is connected to module 3 via port 7. $dule 3 configu-
ration is the value of the entry at line 1, column 7. Module 8adasnected to module 1
via port 1, so module 1 configuration is the value of the enttina 3, column 1.

Canonization To compute the configuration space as a fixed point, we muspamn
symbolic states to detect if a new state has been alreadywtechpr not. However, the
symbolic representation is not unique since it depends emibdule order. We there-
fore need to canonize this symbolic representation for @iepn purposes. Moreover,
all representations of a given class of equivalent configpma must be computed from
this canonical representation thanks to columns and lieesytations.

Since the alphabet we defined to encode the port-conngatintrix is ordered, we
can arrange the matrix by sorting lines as if there was artmbding of integer values
where 0 means 0 and non-zero values mean 1. We use the quictgaithm whose
average complexity is inx Log(n).

Computed symbolic matrix Canonized symbolic matrix
0 0 0 0 0 0 X590 90 0 0 0 0 0 0 X590 90
0 0 0 X590 O 0 0 90 0 00 0 0 Xvs.90 0 90
X1,90 0 0 X279() 0 nggo X64'90 90 0 0 0 X75790 0 0 0 90
0 0 0 0 0 X75.90 0 90 X7590 0 0 0 0 0 0 90
X7590 0 0 0 0 0 0 90 X190 0 0 Xo90 0 Xgogo Xea00 90

Fig. 14.Canonization of the ports-connectivity symbolic matrix shown in Fig. 13

Figure 14 shows the canonization of the symbolic matrix ioleth in the exam-
ple illustrated by Fig. 13. This operation only changes th#ep of lines. Then, any
arrangement of modules can be considered by numberingwitegdifferent module
identities.

As an illustration, we can deduce from the canonical matiie,cross configuration
shown in Fig. 13 by labeling lines with module identities lre tfollowing order: 1, 4,
2, 5, 3. Similarly, all equivalent configurations due to miedpermutations can be re-
constituted by setting new modules identities affectedhtesl €.g.configuration where
lines in the canonical matrix are 5, 4, 3, 2, 1 correspond titheer configuration of the
equivalence class).

Symbolic Configuration Space The symbolic encoding of the configuration space
allows us to compute th&/mbolic configuration spacEach node of this reduced graph
is a symbolic configuration. The symbolic configuration spia¢hus much smaller than
the configuration space: the node ratio is exponential €ach equivalence class grows
with the number of modules (and only one symbolic configorais required to store
all the configurations that belong to this class).

In the next section, we focus on the way to compute the symlwolnfiguration
space, as well as on the way to use it for defining the movesat nobde from CKBots
must perform to change its configuration.

5 Reconfiguration

Reconfiguration of a modular robot is a key feature sinceusid for both movement
and adaptation. It faces both scalability and computaiioe issues, especially when

reconfiguration is to be performed on the fly. It is thus nemgsto define an efficient
transition system and operations. To do so, we take advamfthe symbolic repre-
sentation elaborated in section 4.

5.1 Transition Relation Between Symbolic Configurations

A transition occurs when the robot changes from one symhmaidiguration to an-
other. More specifically, a transition occurs when a modhbnges its configuration in
terms of connectivity and/or rotation. Several modulesmanfiorm a transition during
a reconfiguration of the robot. We distinguish two types ahsitions:

— Functional Transitions: they lead to rotations on the different modules degrees of
freedom. They enable motion and do not alter the moduleseativity.

— Structural Transitions: they involve changes in modules connectivity and consist
of a connection/disconnection of ports.

Functional Reconfiguration Functional reconfiguration does not alter the connectiv-
ity. It enables motion and involves the rotation of moduleghis setting, the functional
successors of a module configuration are such that only tje aries.

If D is the increment used on the angle scale such tkafD0< 180, let a module
i which has a configuratiokX; . The possible successors of the current staté éoe
configurationsX; y wherey = ((a+nx D) mod 180, n € N (n being the number dd
steps of the angle change).

All rotations cannot be performed in a functional reconfaion. In particular,
when all modules are interconnected as in Fig. 15, a rotditamn 90 to 180 degrees
cannot take place. Since all modules are connected, modulestfirst disconnect from
module 1 before performing a rotation. Therefore, a setratfiral transitions may be
necessary before a functional reconfiguration can acthalbpen.

4 3

AL/I

Fig. 15.Impossible rotation from 90 to 180 degrees for the bottom-left module

Structural Reconfiguration We consider in this paper that a functional reconfiguration
only involves functional transitions, while a structurakonfiguration involves both
kinds of transitions.

Since our study focuses on the CKBot, which is a hybrid rokadti¢e or chain
configurations), three assumptions must be made on thedewaditransitions:

Assumption 1: the successor of a symbolic configuration is reached thratighost
an atomic action for each module: connection/disconngtto rotation.

Assumption 2: when a module is connected through one face only, it canisobdi
nect, to avoid breaking the lattice or chain shape of the troblas restriction is
sometimes considered in similar work like [3].

Assumption 3: We consider that only one action is performed at a time foiNtmeod-
ules involved in the symbolic configuratiin

Building Successors of a Symbolic ConfigurationTo illustrate structural reconfigu-
ration, let us consider again the simplified 3-port modulesse alphabet is presented
in Fig. 9. Configuratiorj01Q (letter X, o) has the following set of successo{$010y]
(letterXoy), [011a] (letterXzq), [110a] (letterXeq)}-

5.2 Generating and Exploiting the Symbolic Configuration Space

Computation of the symbolic configuration space is simitatite generation of the
state space in model checking. It corresponds to a fixed poirthe exploration of
all possibles moves. As for tools like greatSPN [7] that ngegnsgymmetries, each new
symbolic state must be discovered by performing a symbatituéion (e.g, symbolic
firing in model checking) of the system as described in [2].

Input: Initial, the initial configuration of the robot (encoded in a symbolic way)
Output: returns a symbolic configuration Space
SymbConfSpage= 0;
SymbConfSpage= Initial ;
while SymbConfSpage SymbConfSpagelo
SymbConfSpage= SymbConfSpagg
foreach configuration c= SymbConf Spagealo
foreach configuration s= Successdc) do

s = Canonizés);

if & ¢ SymbConfSpagahen

\ SymbConfSpage— SymbConfSpages’;

end

Add Link betweerc ands’;
end

end

end

return ConfSpacg

Algorithm 1: Generation of the symbolic configuration space

8 A module may connect or disconnect at most one face per recoatiigo.

9 Similarly to model checking, we set an execution semantics at a low gréyula single
operation in the whole system. Interleaving between these single actionssiysteen ensures
that we are compatible with a semantics where there are several parallesras for Petri
Nets [6].

Algorithm 1 describes the computation of the symbolic canfigion space. Suc-
cessors ot are computed by applying possible connections/discoiorecand angle
rotation of each module af.

Since the symbolic configuration space is an oriented gisgdrching a move that
leads from a concrete configuratiomo any (the closest) concrete configurat C,
the class of the target form the robot must reach is very #asyrresponds to a shortest
path search in an oriented graph like the Dijkstra algorifahfin this case, all arcs in
the symbolic configuration space are valued by 1).

configurations main list—[Co[C1][C2]C3]e+*

(o] cont. [51[S2]--
Matrix

(1] cont. k
[T Gont. Pz [Mat 2] Cont. [F152)

Matrix

N

-

’ Matrix | § |

v
to successors to successors

Fig. 16.Data structure to store the symbolic configuration space

So far, the data structure elaborated in the prototype isritesl in Fig. 16, which
shows how 4 configurationg,c1,Cp, Cs. . . (out of more) are representedonfigura-
tions main listrepresent the head pointer to this list of configurationshis example,

Co points to the initial configuration, which is shown in greg tlistance to the initial
configuration is 0 and it has two successorandcy, which S andS, of ¢y point to.
The distance of; andc; to the initial configuration is 1. We also show one successor
of ¢, (c3) whose distance to the initial configuration is 2.

Such data structure is suitable to search paths from oneycwafion to another one
in the symbolic configuration space. Memory required toestbe symbolic configura-
tion space can be computed with formula (2) for the CKBot (itgpand one degree of
freedom):

all configurations all successors main list
Memorybyteg = [(Snt x N x 8) +1] xNBsconf + Spt X NBarcs + Spt X NBsconf+1 @)
N————
one symbolic
configuration

whereN is the number of modules in the configuratic; is the number of bytes
to store an integeiSy the number of bytes to store a pointBiBscont the number of
symbolic configurations in the state space ai},.s the number of arcs.

6 Performance Evaluation

To assess our modeling approach, we implemented a prottiygaluate its benefits.
The idea is to get an estimation of the gain provided by outmfio representation. To
do so, we consider two experiments:

— the construction of the symbolic configuration space touatal if it can be com-
puted off-line and then embedded into a reasonable amoumewnfory,

— the on-the-fly computation of a path between a concrete guo@nfiguration of
the system and the "close¥t'concrete configuration in a class of configurations
the system must reach.

For the experiments, we selected three types of initial gorditions. First, théne
configuration corresponds to a linefmodules. Second, thegjuareconfiguration cor-
responds to a square bf modules. Finally, therawler configuration is the repetition
of a 4-CKBot pattern shown on the left side of Fig. 17.

1 [[

Fig. 17.Crawler configuration for 4 and 8 modules

All experiments to compute the symbolic configuration spaeee run on a 2.80GHz
Intel Hyperthreaded Xeon computer with 14Gbytes of memasywe show later, this
does not mean that such a configuration is required to exgpleiproduced symbolic
configuration space.

6.1 Experiment 1: Generating the Symbolic Configuration Spae

For the first experiment, we computed the full symbolic camfigion space from the
three selected initial configurations with several valuiell d~or rotation, we consider
D =90° (thus, three positions for the angle and an alphabet2fith(180 + 1) = 384
letters according to formula (1)).

Table 1 summarizes the data collected in the first experin@lumns, from left
to right show: the value oN, the number of concrete configurations, the size of the
symbolic configuration space (nodes/arcs), the ratio batwwee number of symbolic
configurations and the number of concrete ones, the memaquyreel by the program
to compute the symbolic configuration space, the time requio compute the sym-
bolic configuration space, and the estimated memory redjuoestore the computed
configuration space (evaluated with formula (2)).

10 The one that can be reached with the smallest number of transitions.

Number of Symbolic Representation
N Concrete Size of Symboliﬁ Ratio Memory for Time for Memory to Store
Configurations|| Config. Space Computation (MB) |Computation (s)| Symbolic Conf. Space (MB
Line configuration

4 3888 81/202 2x 4l 3.44 0.42 0.019

6| ~1.049% 10° 729/1822 2x 6! 1248 9.39 0.159

8| ~5297x 107 || 6561/16442 |2x 8! 11688 155 1.408

10| ~ 4.285x 10" || 59049/147622 |2 x 10! 1272 2496 12619
Square configuration

4 4032 84/925 2x 4! 4.45 0.56 0.064

8| ~291x10° H 36093388209 2 x 8! ‘ 789 73669 ‘ 25.901
Crawler configuration

4 3888 81/202 2x 41 355 0.46 0.019

8" ‘ ~1.01x 10 || 124652311360 2 x 8! ‘ 2306 2286 26.616

Table 1.Evaluating performances of computation and storage of the configuisgigrce

As expected, the symbolic configuration space offers gra@sgcompared to the
concrete one. The largest symbolic configuration space fmo8ules can be stored
in a few mega bytes that is now easy to embed in small devidas. could not be
the case with a concrete representation of the configurafiane that quickly contains
billions of elements. Moreover, symbolic ports-conndtfivatrices are not stored as
sparse ones and we use 64-bits integer to encode the al@rabé# bits to encode a
pointer Gnt = Spt = 8 bytes in formula (2)). Consequently, less memory couldyeas
be consumed by using sparse matrices and/or less bits tdeadetter in the alphabet.

For squareand crawler configurations, our fixed-point algorithm also computes
configurations that must be discarded because they leachtiad&s or absurd situa-
tions (e.g.modules that are located in the same tridimensional po3gitdhen such
states are detected, we note the corresponding line witim dable 1. Such cases are
usually rare compared to the size of the symbolic state spacexample, 360 con-
figurations are discarded for tlsgjuarewith 4 modules, 88560 for thequarewith 8
modules and only 1 for th€rawler with 8 modules. This only affects the computation
time and not our most important evaluation criterion in #Mperiment: the amount of
memory required to store the symbolic configuration space.

We also note that we could not compute the configuration sfaaceore than 8
modules in most cases. This is an implementation probletstiwuld be considered in
further work (intensive recursions and allocations leathtensive memory consump-
tion). Execution time is also quite long whiihgrows but, since the configuration space
is computed off-line, there is no time constraint on thipsikthe process. This should
be corrected later with a more refined version of our firstgiyqte.

6.2 Experiment 2: Computing Paths in the Symbolic Configuraion Space

For the second experiment, we computed the full configuratjmace from the three
selected initial configurations with several valuesNofThen, we performed several
searches between arandomly selected departure concaeteaspd a randomly selected
target symbolic state. We also consideBee-90° for rotations.

Table 2 summarizes the data collected in this second expatil@olumns, from left
to right show: the value d¥l, the size of the symbolic configuration state, the minimum,

average and maximum time (in ms) required to compute a gahmtnimum, average
and maximum length of computed paths.

Size of Symboli¢| Search Time (ms) Path length
Config. Space || Min | Avg | Max |[Min| Avg | Max

Line configuration
4 81 0.0180.0915 0.199|| 1 |11.75 31
8 6561 1.195 1.515| 1.717|| 375|1649 2925
Square configuration
4 84 0.021f 1.107{ 1.697|| O | 17 | 88
8 36093 0.506 1.212|404.87| 19 | 781 |2604
Crawler configuration
4 81 0.039 0.118{ 0.187|| 3 | 12 | 20
8 124652 0.0371.810| 3.561|| 2 | 517 |1456
Table 2. Performances of configuration search

Once again, time performances are quite good and show thabutation could
be performed on the fly by a software that drives the robotesinoever takes more
than half a second (averages remains around a few millisisgomhe average size of
computed paths remain reasonable, compared to the sizes afotiifiguration space
(e.g.781 transitions for a 18 states configuration space in the case of3faarewith
8 modules).

These data are extracted from a prototype that was not g@thand performances
can clearly be enhanced.

7 Conclusion

Configuration recognition and dynamic auto-reconfiguratibmodular and self-recon-
figurable robots face numerous challenges, ranging froere to software and con-
trol issues. The one we focused on in this paper is relatede@onfiguration space
combinatorial explosion when the number of modules grows.

We present in this paper a symbolic encoding techniquejradfrom the ones
developed for model checking that also suffers from contbitel explosion. We use
this technique to represent configurations of the CKBot, wrril modular and self-
reconfigurable robot. The symbolic representation of coamditions exploits structural
symmetries in the modules that allow to gather in one clagsrakequivalent configu-
rations.

These new techniques are far more efficient compact regegsenof the robot
configuration space than the initial encoding presente@®]inNlodules rotation, per-
mutation or a combination of both can be quickly recognized disambiguated. Our
technique can be easily adapted to robots presenting a asgdapology similar to the
CKBot one. We call this new representation fyenbolic configuration space

A second contribution is the computation of reconfiguratiSimce the symbolic
configuration space can be stored in a small amount of mememrgnfiguration corre-
sponds to the computation of a path between two nodes in tifegooation space. This
can be achieved by classical graph-based algorithms sutble asie of Dijkstra.

Experiments made on a first prototype show promising restilis expected ex-
ponential gain between the symbolic configuration space ®fstem and its related
configuration space is observed for several types of initafigurations. Thus, all con-
figurations can be stored in a few MegaBytes that could ndiéease otherwise (more
memory can technically be embedded in small devices likedhet modules we con-
sider). Computation of the symbolic state space can be lahthis operation is typi-
cally performed off-line. Thus, no performances are reafigded.

Experiment also showed that (still with our first prototy@epath between two
configurations €.g.reconfiguration of the robot) could be computed in a average t
of a fewmilliseconds. This enables the use of our technigughe fly during the robot
mission. When the robot is performing a move, the next one eatomputed.

Since our experiment was done in a quickly implemented pyp&y numerous op-
timizations can be applied that should increase perforesnc

Future work will consider some application to a real missioth a CKBot-based
robots (possibly with several types of modules) to assessility with several config-
urations when the robot is driven by an external computeritir @mbedded code.

References

1. D. Arney, S. Fischmeister, I. Lee, Y. Takashima, and M. Yim. Mdxsed Programming of

Modular Robots. In3th IEEE International Symposium on Object-oriented Real-time dis-
tributed Computing (ISORC’10pages 87-91, Carmona, Spain, May 2010. IEEE Computer

Society.

2. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. StochagizFdfmed
Coloured Nets for Symmetric Modelling Application$EEE Transactions on Computers
42(11):1343-1360, November 1993.

3. D. J. Christensen. Evolution of shape-changing and self-repaiangol for the ATRON
self-reconfigurable robot. IFEEEE International Conference on Robotics and Automation,
ICRA 2006, pages 25392545, 2006.

4. E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetrnu®ieas in Model
Checking. In A. J. Hu and M. Y. Vardi, editor§AV, volume 1427 ofLecture Notes in
Computer Sciencgages 147-158. Springer, 1998.

5. T. Cormen, C. Leiserson, R. Rivest, and C. Stditroduction to Algorithms MIT press,
Cambridge, MA, second edition, 2003.

6. C. Girault and R. Valk, editorsPetri Nets and System Engineerjrafpapter 2, pages 9-23.
Springer Verlag, 2003.

7. GreatSPN. Petri nets suite:t p: // wwv. di . unito.it/~greatspn.

8. M. G. Park.Configuration recognition, Communication Fault Tolerance and Selfse@bly
for the CKBot PhD thesis, University of Pennsylvannia, 2009.

9. W.-M. Shen. Self-reconfigurable robots for adaptive and multifonal tasks. Technical
report, University of Florida, Florida, USA, Dec. 2008.

10. The CKBot home page. http://modlabupenn.org/ckbot/.

11. A. Valmari. The State Explosion Problem.Uectures on Petri Nets |: Basic Modetsumber
1491 in Lecture Notes in Computer Science, pages 429-528. Spkiagag, 1998.

12. M.Yim, P. White, M. Park, and J. Sastra. Modular Self-RecondiglerRobots. IfEncyclo-
pedia of Complexity and System Scier@gringer, 2009.

13. M.Yim, Y. Zhang, K. Roufas, D. Duff, and C. Eldershaw. Coctirgg and disconnecting for
chain self-reconfiguration with PolyBaEEE/ASME Transactions on mechatronics, special
issue on Information Technology in Mechatroni2z803.

