
Self-Reconfigurable Modular Robots
and their Symbolic Configuration Space

S. Baarir1, L.M. Hillah1, F. Kordon2, and E. Renault2

1 LIP6, CNRS UMR 7606 and Université Paris Ouest Nanterre La Défense
200, avenue de la République, F-92001 Nanterre CEDEX, FRANCE

Lom-Messan.Hillah@lip6.fr, Souheib.Baarir@lip6.fr
2 LIP6, CNRS UMR 7606, Université P. & M. Curie - Paris 6

4, place Jussieu, F-75252 Paris CEDEX 05, FRANCE
Fabrice.Kordon@lip6.fr, Etienne.Renault@gmail.com

Abstract. Modular and self-reconfigurable robots are a powerful way to design
versatile systems that can adapt themselves to different physical environment con-
ditions. Self-reconfiguration is not an easy task since there are numerous possi-
bilities of module organization. Moreover, some module organizations areequiv-
alent one to another.
In this paper, we applysymbolicrepresentation techniques from model check-
ing to provide an optimized representation of all configurations for a modular
robot. The proposed approach captures symmetries of the system andavoids stor-
ing all the equivalences generated by permuting modules, for a given configura-
tion. From this representation, we can generate a compactsymbolic configuration
spaceand use it to efficiently compute the moves required for self-reconfiguration
(i.e. going from one configuration to another). A prototype implementation is
used to provide some benchmarks showing promising results.

Keywords: Modular robotics, Self-reconfiguration, Symbolic configuration space,
Symmetries, CKBot

1 Introduction

Context Modular robotics is an active research field where robots areassembled using
numerous identical or different types of small modules. This is a powerful way to design
versatile systems that can adapt themselves to different physical environment conditions
or according to the purpose of their mission [9]. Moreover, self-reconfiguration allows
to adjust the robot to a given task on the fly. Modular robots are thus perceived as
a means to reach a balanced compromise between realization cost and multitasking
capabilities. They are particularly well-suited to exploration (e.g.spatial) and search
and rescue missions in hostile environments. Finally, theyare robust and cheaper to
produce.

Problem If auto-reconfiguration is a way to change the shape of a robotmade of mod-
ules, it is also a way to create complex movements by means of successive configuration
changes. The robot follows a path of configurations that allows it to move, to grab and
drop objects, etc.

This is a key feature whose implementation faces numerous issues [12]:



– memory limitation, computation power and energy consumption,
– limited degrees of freedom, sometimes more constrained because some types of

modules are more constrained than the others,
– coordinated communication between modules and inter-module communication

schemes,
– structural symmetries in modules, generating equivalent modules configurations.

The last issue raises a problem for the computation of theconfiguration spacefor a
robot composed ofN modules. The size of the configuration space increases exponen-
tially with N (whereNi , i ∈ [1..T] when the robot is composed ofT types of modules).
Both the generation of the full configuration space and the identification of a given
configuration in it are known problems [8].

Contribution The objective of this paper is to tackle the combinatorial explosion prob-
lem in the configuration space of modular robots. Our solution also helps to identify a
given configuration among the ones that are equivalent. Self-reconfigurable modular
robots are usually classified in two categories.

First, lattice-based self-reconfigurable robots can physically organize themselves in
2D or 3D grid structures. They are rigidly interconnected but are able to connect/dis-
connect and move relative to one another in a 2D or 3D space. Inthis kind of configu-
ration, modules can only connect to their adjacent neighbors. Connection is assumed to
be performed without alignment, because modules are assumed to be always aligned.
This may not be true in practice for large configurations. TheATRON [3] is a typical
example of a 3D lattice-based self-reconfigurable robot.

Second, chain-based robots can assemble in serial chains fashion (linear loops con-
nections/disconnections) aligning themselves for connecting. They can form flexible
configurations and are efficient for locomotion, since they can bend themselves in arbi-
trary angles to move. For instance, a snake-shaped robot canmove like a snake because
its modules bend in coordination to perform this kind of movement. The PolyBot [13]
is a typical example of a chain-based robot.

This study focuses on CKBot [10]: a hybrid robot whose modules allow both chain and
lattice reconfiguration capabilities [12].

The CKBot has two types of module: the UBar and the L7. Our study focuses on
the UBar, whose picture you can find online at [10]. We only consider robots made of
one type of module but this work can easily be extended to the case where several types
of modules are involved.

Symmetries are a serious issue in the original explicit approaches to generate the
CKBot configurations, when the number of modules grows. For instance, the methods
presented in [8] take a lot of time for disambiguation because of the symmetries be-
tween numerous similar configurations. Our purpose is to propose a new approach for
modeling the system, using symbolic representation techniques where symmetries are
handled efficiently .

Our contribution lies in the following points. First, we propose an efficient symbolic
representation of the modular robot configurations. It represents, by means of a single



matrix, both connections and orientations of modules. It isa significant improvement
of the proposal made in [8] where two matrices are involved.

Then, we optimize the symbolic representation, where similar connection schemes
of some inter-dependent connectors are only represented once in a symbolic way. From
this symbolic representation, explicit configurations maybe generated. Similarly to
model checking, we produce the configuration space of the system as an oriented graph
where nodes represent a set of equivalent configurations andarcs represent an action
of any module in the system. This reduced graph replaces the traditional plain graph
approach.

Therefore, we can exploit this configuration space to compute the moves that lead
from a configurationc to any configurationc′ ∈C, the set of target equivalent configu-
rations. This is a classical path search in an oriented graph.

Content Section 2 presents the CKBot UBar module and the two-matrix based rep-
resentation technique of the robot configuration originally presented in [8]. We also
describe the core principles of the symmetry techniques applied in this paper. Then,
sections 3 proposes an alternative to the robot descriptionof [8] and section 4 explains
how we turn this new explicit representation into a symbolicone. Section 5 deals with
the reconfiguration computation issue, where the transition system of the robot suc-
cessive configurations is built and used to find paths betweenconfigurations. Finally,
section 6 presents performance evaluation provided by a prototype implementation be-
fore a conclusion in section 7.

2 Problem Statement and Related Works

Controlling the configuration of modular and self-reconfigurable robots is computa-
tionally complex. This complexity depends on how the systemis organized, both at
the hardware and software levels. We consider the CKBot, where both a global bus
and neighbor-to-neighbor communication schemes enable the system to determine its
configuration.

In the CKBot, connections between modules are represented by graphs, translated
into adjacency matrices and ports adjacency matrices. Modules interconnect via con-
nectors and are identified by values from 1 toN, whereN is the number of modules3.
Adjacency matrices areN×N matrices in which 1s denote interconnections between
modules and 0s the absence of connection. In port adjacency matrices (which also are
N×N matrices), non-zero numbers identify the IDs of the ports through which modules
interconnect. Fig. 3 shows a CKBot assembly and its adjacency matrices.

We first present the CKbot module, then an explicit way to encode its configura-
tion and the symmetry-based methods used in model checking to tackle combinatorial
explosion. Section 3 applies this technique to efficiently encode the configuration space.

3 Here, we only consider a system with one type of module. For a system withT types of
module, we can consider the identities being 1, ..,N1,N1+1, ..,N2, ..,NT−1, ..,NT whereNi is
associated to theith type of module,i ∈ [1,T]



2.1 Presentation of the CKBot

Fig. 1(a) presents a picture of a CKBot UBar module4 and Fig. 1(b) shows its cor-
responding 2D schema representation. The CKBot UBar modulehas 7 ports (pair of
infrared transmitters/receivers) and 20-pin headers on each of its 4 faces. Ports, repre-
sented by a square, are used for inter-module communication. 20-pin headers, repre-
sented by a rectangle, are used for electrical connection and communication on a CAN
(Controller Area Network) bus. In the latter part of this paper, we may simply refer
to couples〈port, 20-pin header〉 as connectors(e.g. the Bottom face holds only one
connector).

(a) A CKBot UBar module

Bottom

7

Right
4

3

Left
6

5

Top
2

1

(b) Its corresponding 2D structure

Fig. 1. Overview of the CKbot

Top and Right faces share the same disposition for their connectors, whereas the
one ofLeft is reversed (port 5). Thus, a module can attach to another in different ways.
According to [12], each module can beuniquely connected to another module in 10
ways (3 rotations for each of the 3 top faces and 1 orientationfor the bottom). The only
impossible connection is when two same faces are in front of one another in reverse
positions. Fig. 2 presents an example of modular robot builtfrom four CKBot modules5.

4 This picture is extracted from [8].
5 This picture is extracted from [1].

Fig. 2.A 5-module T shape robot and its corresponding adjacency matrices



2.2 Explicit Encoding of CKBot Configurations (from [8])

The technique used to describe the robot configuration is based on twoN×N matrices,
N being the number of modules6. The first matrix is a simple adjacency matrix, where
1-entries denote a connection between two modules and 0-entries no connection. The
second matrix is a port adjacency matrix, where non-zero entries denote the type of
connection from a module to another (referencing the port number). Fig. 3 shows a
5-module T shape and its corresponding adjacency matrices on the right.

2 31

4

5

Adjacency matrix












0 1 0 0 0

1 0 1 1 0

0 1 0 0 0

0 1 0 0 1

0 0 0 1 0

























0 4 0 0 0

6 0 4 7 0

0 6 0 0 0

0 1 0 0 7

0 0 0 1 0













Port adjacency matrix

Fig. 3.A 5-module T shape robot and its corresponding adjacency matrices

This representation is suitable for configuration recognition on small configurations.
However, it does not scale well. In particular, when reconfiguration is the problem under
consideration, searching the configuration space forN modules which can move in
parallel, quickly leads to combinatorial explosion of the configuration space for large
values ofN.

In [8], the author deals with automatic configuration recognition based on three
principles:

– graph-based isomorphism identification: this method suffers from the exponential
size of the automorphism group in the number of modules (worst case), as the size
of the library of predefined configurations grows;

– port adjacency matrix spectral decomposition: it is very fast for small numbers of
modules but suffers from numerical issues when numerous modules are involved.
Explicit disambiguation due to symmetries in the configurations can be very long;

– heuristic-based linked list (called 3DLL) representationof the physical proper-
ties of configurations: it exploits the ports adjacency matrix of the modules. This
method appears to be the most scalable, but suffers from the need to run exhaus-
tively through every configuration in the library.

In order to tackle the combinatorial explosion in the configuration space, we propose
to get inspiration from formal analysis methods [11] where this problem is common.
Different and complementary techniques are used to reduce the size of the state space:
decomposition, bounding, partial order, symmetry detection and the use of very efficient
data structures (Decision Diagrams).

6 In the remainder of this paper,N will always denote the number of modules that compose the
complete robot.



It appears that the configurations of the CKBot can be organized into consistent
sets of similar configurations where they only vary by modulepermutations. Hence, a
more compact representation for the model can be designed toremove redundant and
explicit information which can be inferred otherwise. In this setting, symmetry-based
techniques are suitable to build their representation.

2.3 Compact Representation of Large State Spaces

This section presents through an example the principles of the symmetry-based tech-
niques underlying compact representation of large state spaces in model checking. For-
mal definitions of the underlying theory can be found in [4].

Symmetry-based methods, exploit the presence of similarly behaving components
to aggregate states (or, in our case, configurations) and state transitions (or, in our case,
configurations changes) into equivalence classes. Hence, they generate a more abstract
and compact state space: thequotient graph.

To present the quotient graph in the general framework, let us consider the classical
example of a client/server system, with two identical clientsC1 andC2 and a serverS.
Clients build a messagem∈ {m1,m2}, send it toSwith their identity, and wait for an
acknowledgment message.Sprocesses incoming messages and then sends the acknowl-
edgment to the client having issued the request.

C1(1);C2(1);S(1) 

C1(2);C2(1) 

S(1) 
R(<C1,m1>) 

C1(1);C2(2) 

S(1) 
R(<C2,m1>) 

C1(1);C2(2) 

S(1) 
R(<C2,m2>) 

C1(2);C2(1) 

S(1) 
R(<C1,m2>) 

C1(2);C2(2) 

S(1) 
R(<C1,m1> 

  +<C2,m1>) 

C1(2);C2(1) 

S(2,C1) 

C1(1);C2(2) 

S(2,C2) 

C1(2);C2(2) 

S(1) 
R(<C1,m1> 

  +<C2,m2>) 

C1(2);C2(2) 

S(1) 
R(<C1,m2> 

  +<C2,m1>) 

C1(2);C2(2) 

S(1) 
R(<C1,m2> 

  +<C2,m2>) 

s
1 

s
2 s

3 s
4 

s
6 

s
7 

s
8 s

9 

s
5 

s
10 

Fig. 4. First 11 states (among 24) of the reachability graph of the client/server example

We consider two local states for a client: (1) the message construction state and,
(2) the receiving state. For the server, we consider: (1) thereceiving state and (2) the
sending of the acknowledgment. We also consider the networkstateR: R(〈C1,m1〉)
means that messagem1 of clientC1 is passing through the networkR. Thus, the global
state of our system will be the synthesis of all local states.

The behavior of the system can then be represented bya reachability graph, where
nodes are global states, and arcs represent changes betweenstates. Figure 4 represents



s’1={s1 ,s2 ,s3 ,s4 } 

s’2={s9 ,s6} s’3={s5 ,s10} s’4={s7 ,s8} 

s’0={s0 } 

Fig. 5. First 5 states (among 10) of the quotient graph of the client/server example, w.r.t equiva-
lence relationR

the beginning of the reachability graph of our toy example (the whole graph contains
24 states).

As shown in Fig. 4 the state space grows quickly with the number of clients and
the type of messages. Exploitation of symmetries in the system helps to tackle this
combinatorial explosion. We observe thatC1 andC2 behave identically, hence they are
symmetrical. Similarly, messages values are not distinguished by the server (i.e. they
are processed identically), introducing another symmetry.

Let us formally identify these symmetries by an equivalencerelationR = {C =
{C1,C2},M = {m1,m2}}, whereC andM are equivalent classes.R can then be used to
build a quotient graph that preserves reachability and sometemporal logic properties of
the original reachability graph.

According toR, states of the reachability graph are partitioned in five equivalence
classes:s′0 = {s0}, s′1 = {s1,s2,s3,s4}, s′2 = {s6,s7}, s′3 = {s5,s10} ands′4 = {s7,s8}.
The quotient graph corresponding to the 11 states of the reachability graph presented in
Fig. 4 is represented in Fig. 5. Let us note that, in this case,its size neither depends on
the number of clients nor the number of values for messages.

In the next section, we apply this technique to build all the configurations of a robot
made with CKBot modules. To do so, there are three issues to deal with:

– identifying symmetries in the configurations in terms of permutations,

– elaborating an efficient symbolic representation for the equivalent classes generated
by these permutations,

– building the symbolic transition relation.

3 Representing CKBot States

The first technique to fight against combinatorial explosionin the configuration space
is to design a compact and efficient representation to model the robot. An important
requirement for this compact representation is that it mustpreserve all the important
information that cannot be computed from existing ones.



3.1 Matrix Representation

Our new model is also stored in a matrix, where 7 columns encode the ports connec-
tivity of a module7 and an 8th column encodes its angle. Figure 6 shows the definition
of this representation. The configuration of a module is thusencoded in a vector of
sizeNumber of Ports + Degrees of Freedom. The size of a configuration involvingN
modules is thenN×(Number of Ports + Degrees of Freedom). A CKBot module has 1
degree of freedom, hence a single column is sufficient to encode it.

Top
p1, p2

Right
p3, p4

Left
p5, p6

Bottom
p7

[

top1 top2 right1 right2 left1 left2 bottom angle

p1 p2 p3 p4 p5 p6 p7 α

]

Fig. 6.Ports-connectivity matrix of an UBar module.

In the ports-connectivity matrix, non-zero entries denotea connection of the corre-
sponding port (column) to a module whose identity is the value of the entry. As for the
explicit representation (section 2.2), identities of modules range from 1 toN, so that no
ambiguity is raised between an absence of connection and a module identity.

The angle scale ranges from 0 to 180° with a graduation inD° increments. To de-
termine the physical position of a module from its representation as described in Fig. 6,
angle is set to zero when the faceBottomis positioned such that ports 4, 6 and 7 are
aligned. It is illustrated in Fig. 7, withBottomoriented to the right. Angle 180 is deter-
mined when the module has made a rotation such thatBottomis oriented to the left.

Right

Left

Bottom

0° 180° Right

Left

Fig. 7.Angles representation for a UBar module.

Example Let us determine the ports-connectivity matrix for the 5-module T shape
example shown in Fig 3. The matrix encoding this configuration is shown in Fig. 8.
It has the fixed 8 columns for the UBar and 5 lines for the numberof modules. We
can expect this type of representation to be much more compact than the adjacency
matrices, where the number of modules will be in most cases greater than the sum of
the numbers of ports and degrees of freedom.

7 Numerotation of ports (e.g. top1, top2, etc.) refers to the 2D flat representation of a CKBot
module as presented in Fig. 1(b).



2 31

4

5

=> module1

=> module2

=> module3

=> module4

=> module5

















p1 p2 p3 p4 p5 p6 p7 α

0 0 0 2 0 0 0 90

0 0 0 3 0 1 4 90

0 0 0 0 0 2 0 90

2 0 0 0 0 0 5 90

4 0 0 0 0 0 0 90

















to
p

ri
g
h
t

le
ft

b
o
tt
o
m

Fig. 8.Ports-connectivity matrix of the 5-module T shape of Fig. 3.

3.2 Matrix Encoding

An alphabet can be set up to encode all possible configurations of a module. Since a
port can be connected or not, we need two values per port (for 7ports). Thus, a 7-bit
alphabet can encode this.

We set up an alphabet to encode all possibles configurations for a module. A port
being either connected or not and since we have seven ports, we elaborate a compact
alphabet to encode connectivity. Therefore, each letter inthe alphabet is a concatenation
of two parts:

– a first part contains 7 bits describing the connectivity of the described module,
encoded as:p1×27+ p2×26+ p3×25+ p4×24+ p3×22+ p2×21+ p1×20.
Therefore, each configuration is represented in a unique way;

– a second part specifies the angle of the described module. There arex configurations
per connectivity, wherex is deduced fromD (x = 3 whenD = 90°, x = 4 when
D = 45°, etc).

p1 p2 p3 letter p1 p2 p3 letter
0 0 0 X0,α 1 0 0 X4,α
0 0 1 X1,α 1 0 1 X5,α
0 1 0 X2,α 1 1 0 X6,α
0 1 1 X3,α 1 1 1 X7,α

Fig. 9. Alphabet encoding the connectivity of a 3-port module.α represents the angle.

Example Let us consider a simple case with a module having only three ports. Figure 9
illustrates this encoding. There are 23× (180

D +1) values in the alphabet. There is a total
order since∀i ∈ [0,23], Xi,α ≤ Xi,β iff α≤ β. For the CKBot, we thus use the following
formula to compute the number of letters in the alphabet:

27× (
180
D

+1) (1)



4 Symbolic Representation of the CKBot Configuration Space

This section applies the symmetry technique described in section 2.3 to the representa-
tion presented in section 3. First, we identify equivalent configurations obtained from
module rotation, then we discuss isomorphic configurationsobtained by module permu-
tation. We show how the two matrices can be combined and finally present a canonical
way to express equivalence classes considering these two types of symmetries. This
leads to the notion ofsymbolic configuration space.

4.1 Identification of Structural Symmetries

Module Rotation In the UBar CKBot module, there exists a symmetry between faces
RightandLeft. When this module is rotated with 180° in the orientationRight-Left(or
in the reverse way), we obtain a mirror configuration. Ports 4and 6 are symmetric, as
well as ports 3 and 5. Therefore, a connection on p4 (or p3) with angleα is symmetric
to a connection on p6 (or p5) with angle(180−α) mod 180.

1

23





0 0 0 0 0 0 2 90

1 0 0 0 0 3 0 90

0 0 0 2 0 0 0 90





1

23





0 0 0 0 0 0 2 90

1 0 0 3 0 0 0 90

0 0 0 0 0 2 0 90





Fig. 10.Symmetry between two L-shape configurations

Figure 10 shows an example of symmetry in a 3-UBar CKBot configuration. On the
left, the initial configuration. On the right, the symmetricone. We can observe that all
modules have rotated. This corresponds to column permutation in the ports-connectivity
matrices that are aside these configurations.

Module Permutation Two configurations are considered isomorphic when they form
the same functional shape but where modules are permuted. Figure 11 shows an ex-
ample of two T-shape isomorphic configurations with their ports-connectivity matrices.
Modules have the same connectivity in the two configurationsbut modules 1, 2 and 3 are
not in the same position. This corresponds to line permutation in the ports-connectivity
matrix together with a value change to refer to the new modules id (the corresponding

2 41

3

3 42

1









0 0 2 0 0 0 0 90

0 0 4 0 1 0 3 90

2 0 0 0 0 0 0 90

0 0 0 0 2 0 0 90

















3 0 0 0 0 0 0 90

0 0 3 0 0 0 0 90

0 0 4 0 2 0 1 90

0 0 0 0 3 0 0 90









Fig. 11.Two T-shape isomorphic configurations.



lines are emphasized in the two matrices). On the first configuration, module 1 is on top
left and is represented by the first line of the left matrix. Onthe second configuration,
the top left module is 2 and is described by the second line in the right matrix. These
two lines are identical in structure (third column is non-zero) but refer to different lines
due to different neighbors.

Module Rotation and Permutation There is an issue to detect isomorphic configura-
tions when they are also symmetric due to module rotation as shown in Fig. 12.

0

5

1

4

2

6

3

0

5

1

4

2

6

3

Fig. 12.Two H-shape isomorphic configurations.

Therefore, our symbolic encoding of our ports-connectivity matrix must integrate
both types of equivalences together and distinguish all equivalence classes unambigu-
ously.

4.2 Symbolic Encoding and Canonization

Encoding To encode the ports-connectivity matrix, we replace each line by its corre-
sponding letter in the alphabet. Figure 13 shows, for module1 to 5, (i.e. top to bot-
tom) the encoding of a 5-UBar CKBot cross configuration (left) into an explicit ports-
connectivity matrix (center) and then its corresponding symbolic representation (right).
As mentioned in section 3.2, the number of letters in our alphabet is computed from
formula (1).

4

1

32

5













0 0 0 0 0 0 3 90

0 0 0 3 0 0 0 90

1 0 0 4 0 2 5 90

0 0 0 0 0 3 0 90

3 0 0 0 0 0 0 90

























0 0 0 0 0 0 X75,90 90

0 0 0 X75,90 0 0 0 90

X1,90 0 0 X2,90 0 X8,90 X64,90 90

0 0 0 0 0 X75,90 0 90

X75,90 0 0 0 0 0 0 90













Fig. 13.Encoding of a 5-module cross shape configuration

In this figure, module 1 is connected to module 3 via port 7. So module 3 configu-
ration is the value of the entry at line 1, column 7. Module 3 isconnected to module 1
via port 1, so module 1 configuration is the value of the entry at line 3, column 1.



Canonization To compute the configuration space as a fixed point, we must compare
symbolic states to detect if a new state has been already computed or not. However, the
symbolic representation is not unique since it depends on the module order. We there-
fore need to canonize this symbolic representation for comparison purposes. Moreover,
all representations of a given class of equivalent configurations must be computed from
this canonical representation thanks to columns and lines permutations.

Since the alphabet we defined to encode the port-connectivity matrix is ordered, we
can arrange the matrix by sorting lines as if there was a bit-encoding of integer values
where 0 means 0 and non-zero values mean 1. We use the quick sort algorithm whose
average complexity is inn∗Log(n).













0 0 0 0 0 0 X75,90 90

0 0 0 X75,90 0 0 0 90

X1,90 0 0 X2,90 0 X8,90 X64,90 90

0 0 0 0 0 X75,90 0 90

X75,90 0 0 0 0 0 0 90













Computed symbolic matrix












0 0 0 0 0 0 X75,90 90

0 0 0 0 0 X75,90 0 90

0 0 0 X75,90 0 0 0 90

X75,90 0 0 0 0 0 0 90

X1,90 0 0 X2,90 0 X8,90 X64,90 90













Canonized symbolic matrix

Fig. 14.Canonization of the ports-connectivity symbolic matrix shown in Fig. 13

Figure 14 shows the canonization of the symbolic matrix obtained in the exam-
ple illustrated by Fig. 13. This operation only changes the order of lines. Then, any
arrangement of modules can be considered by numbering lineswith different module
identities.

As an illustration, we can deduce from the canonical matrix,the cross configuration
shown in Fig. 13 by labeling lines with module identities in the following order: 1, 4,
2, 5, 3. Similarly, all equivalent configurations due to module permutations can be re-
constituted by setting new modules identities affected to lines (e.g.configuration where
lines in the canonical matrix are 5, 4, 3, 2, 1 correspond to another configuration of the
equivalence class).

Symbolic Configuration Space The symbolic encoding of the configuration space
allows us to compute thesymbolic configuration space. Each node of this reduced graph
is a symbolic configuration. The symbolic configuration space is thus much smaller than
the configuration space: the node ratio is exponential sinceeach equivalence class grows
with the number of modules (and only one symbolic configuration is required to store
all the configurations that belong to this class).

In the next section, we focus on the way to compute the symbolic configuration
space, as well as on the way to use it for defining the moves a robot made from CKBots
must perform to change its configuration.

5 Reconfiguration

Reconfiguration of a modular robot is a key feature since it isused for both movement
and adaptation. It faces both scalability and computation time issues, especially when



reconfiguration is to be performed on the fly. It is thus necessary to define an efficient
transition system and operations. To do so, we take advantage of the symbolic repre-
sentation elaborated in section 4.

5.1 Transition Relation Between Symbolic Configurations

A transition occurs when the robot changes from one symbolicconfiguration to an-
other. More specifically, a transition occurs when a module changes its configuration in
terms of connectivity and/or rotation. Several modules canperform a transition during
a reconfiguration of the robot. We distinguish two types of transitions:

– Functional Transitions: they lead to rotations on the different modules degrees of
freedom. They enable motion and do not alter the modules connectivity.

– Structural Transitions: they involve changes in modules connectivity and consist
of a connection/disconnection of ports.

Functional Reconfiguration Functional reconfiguration does not alter the connectiv-
ity. It enables motion and involves the rotation of modules.In this setting, the functional
successors of a module configuration are such that only the angle varies.

If D is the increment used on the angle scale such that 0≤ D ≤ 180, let a module
i which has a configurationXi,α. The possible successors of the current state fori are
configurationsXi,γ whereγ = ((α+n×D) mod 180), n∈ N (n being the number ofD
steps of the angle change).

All rotations cannot be performed in a functional reconfiguration. In particular,
when all modules are interconnected as in Fig. 15, a rotationfrom 90 to 180 degrees
cannot take place. Since all modules are connected, module 4must first disconnect from
module 1 before performing a rotation. Therefore, a set of structural transitions may be
necessary before a functional reconfiguration can actuallyhappen.

1 2

4 3

Fig. 15.Impossible rotation from 90 to 180 degrees for the bottom-left module

Structural Reconfiguration We consider in this paper that a functional reconfiguration
only involves functional transitions, while a structural reconfiguration involves both
kinds of transitions.

Since our study focuses on the CKBot, which is a hybrid robot (lattice or chain
configurations), three assumptions must be made on the considered transitions:



Assumption 1: the successor of a symbolic configuration is reached throughat most
an atomic action for each module: connection/disconnection8 or rotation.

Assumption 2: when a module is connected through one face only, it cannot discon-
nect, to avoid breaking the lattice or chain shape of the robot. This restriction is
sometimes considered in similar work like [3].

Assumption 3: We consider that only one action is performed at a time for theN mod-
ules involved in the symbolic configuration9.

Building Successors of a Symbolic ConfigurationTo illustrate structural reconfigu-
ration, let us consider again the simplified 3-port modules whose alphabet is presented
in Fig. 9. Configuration[010] (letterX2,α) has the following set of successors:{[010γ]
(letterX2,γ), [011α] (letterX3,α), [110α] (letterX6,α)}.

5.2 Generating and Exploiting the Symbolic Configuration Space

Computation of the symbolic configuration space is similar to the generation of the
state space in model checking. It corresponds to a fixed pointon the exploration of
all possibles moves. As for tools like greatSPN [7] that manage symmetries, each new
symbolic state must be discovered by performing a symbolic evolution (e.g., symbolic
firing in model checking) of the system as described in [2].

Input : Initial , the initial configuration of the robot (encoded in a symbolic way)
Output : returns a symbolic configuration Space
SymbCon f Space1 = /0;
SymbCon f Space2 = Initial ;
while SymbCon f Space1 6= SymbCon f Space2 do

SymbCon f Space1 = SymbCon f Space2;
foreachconfiguration c∈ SymbCon f Space2 do

foreachconfiguration s= Successor(c) do
s′ =Canonize(s);
if s′ 6∈ SymbCon f Space2 then

SymbCon f Space2← SymbCon f Space2∪s′;
end
Add Link betweenc ands′;

end
end

end
return Con f Space1;

Algorithm 1: Generation of the symbolic configuration space

8 A module may connect or disconnect at most one face per reconfiguration.
9 Similarly to model checking, we set an execution semantics at a low granularity: a single

operation in the whole system. Interleaving between these single actions in thesystem ensures
that we are compatible with a semantics where there are several parallel moves as for Petri
Nets [6].



Algorithm 1 describes the computation of the symbolic configuration space. Suc-
cessors ofc are computed by applying possible connections/disconnections and angle
rotation of each module ofc.

Since the symbolic configuration space is an oriented graph,searching a move that
leads from a concrete configurationc to any (the closest) concrete configurationc′ ∈C,
the class of the target form the robot must reach is very easy.It corresponds to a shortest
path search in an oriented graph like the Dijkstra algorithm[5] (in this case, all arcs in
the symbolic configuration space are valued by 1).

!!!

" Conf. 

Matrix

•••s1 s2

1 Conf. 

Matrix

•••s1 s2

1 Conf. 

Matrix

•••s1

2 Conf. 

Matrix

•••s1 s2

c0 c2 c3c1

to successors to successors

configurations main list

Fig. 16.Data structure to store the symbolic configuration space

So far, the data structure elaborated in the prototype is described in Fig. 16, which
shows how 4 configurationsc0,c1,c2,c3. . . (out of more) are represented.Configura-
tions main listrepresent the head pointer to this list of configurations. Inthis example,
c0 points to the initial configuration, which is shown in grey. Its distance to the initial
configuration is 0 and it has two successorsc1 andc2, which S1 andS2 of c0 point to.
The distance ofc1 andc2 to the initial configuration is 1. We also show one successor
of c2 (c3) whose distance to the initial configuration is 2.

Such data structure is suitable to search paths from one configuration to another one
in the symbolic configuration space. Memory required to store the symbolic configura-
tion space can be computed with formula (2) for the CKBot (7 ports and one degree of
freedom):

all configurations all successors main list

Memory(bytes) =
︷ ︸︸ ︷

[(Sint ×N×8)+1]
︸ ︷︷ ︸

×NBscon f +
︷ ︸︸ ︷

Spt×NBarcs +
︷ ︸︸ ︷

Spt×NBscon f+1

one symbolic
configuration

(2)

whereN is the number of modules in the configuration,Sint is the number of bytes
to store an integer,Spt the number of bytes to store a pointer,NBscon f the number of
symbolic configurations in the state space andNBarcs the number of arcs.



6 Performance Evaluation

To assess our modeling approach, we implemented a prototypeto evaluate its benefits.
The idea is to get an estimation of the gain provided by our symbolic representation. To
do so, we consider two experiments:

– the construction of the symbolic configuration space to evaluate if it can be com-
puted off-line and then embedded into a reasonable amount ofmemory,

– the on-the-fly computation of a path between a concrete current configuration of
the system and the "closest"10 concrete configuration in a class of configurations
the system must reach.

For the experiments, we selected three types of initial configurations. First, theline
configuration corresponds to a line ofN modules. Second, thesquareconfiguration cor-
responds to a square ofN modules. Finally, thecrawler configuration is the repetition
of a 4-CKBot pattern shown on the left side of Fig. 17.

2

3

4

1

2

3

4

1

%

&

'

(

Fig. 17.Crawler configuration for 4 and 8 modules

All experiments to compute the symbolic configuration spacewere run on a 2.80GHz
Intel Hyperthreaded Xeon computer with 14Gbytes of memory.As we show later, this
does not mean that such a configuration is required to exploitthe produced symbolic
configuration space.

6.1 Experiment 1: Generating the Symbolic Configuration Space

For the first experiment, we computed the full symbolic configuration space from the
three selected initial configurations with several values of N. For rotation, we consider
D =90° (thus, three positions for the angle and an alphabet with27× (180

90 +1) = 384
letters according to formula (1)).

Table 1 summarizes the data collected in the first experiment. Columns, from left
to right show: the value ofN, the number of concrete configurations, the size of the
symbolic configuration space (nodes/arcs), the ratio between the number of symbolic
configurations and the number of concrete ones, the memory required by the program
to compute the symbolic configuration space, the time required to compute the sym-
bolic configuration space, and the estimated memory required to store the computed
configuration space (evaluated with formula (2)).

10 The one that can be reached with the smallest number of transitions.



N
Number of Symbolic Representation
Concrete Size of Symbolic Ratio Memory for Time for Memory to Store

Configurations Config. Space Computation (MB) Computation (s) Symbolic Conf. Space (MB)

Line configuration
4 3888 81/202 2×4! 3.44 0.42 0.019
6 ∼ 1.049×105 729/1822 2×6! 12.48 9.39 0.159
8 ∼ 5.297×107 6561/16442 2×8! 116.88 155 1.408
10 ∼ 4.285×1011 59049/147622 2×10! 1272 2496 12.619

Square configuration
4∗ 4032 84/925 2×4! 4.45 0.56 0.064
8∗ ∼ 2.91×108 36093/388209 2×8! 789 736.69 25.901

Crawler configuration
4 3888 81/202 2×4! 3.55 0.46 0.019
8∗ ∼ 1.01×1010 124652/311360 2×8! 2306 2286 26.616

Table 1.Evaluating performances of computation and storage of the configuration space

As expected, the symbolic configuration space offers great gains compared to the
concrete one. The largest symbolic configuration space for 8modules can be stored
in a few mega bytes that is now easy to embed in small devices. This could not be
the case with a concrete representation of the configurationspace that quickly contains
billions of elements. Moreover, symbolic ports-connectivity matrices are not stored as
sparse ones and we use 64-bits integer to encode the alphabetand 64 bits to encode a
pointer (Sint = Spt = 8 bytes in formula (2)). Consequently, less memory could easily
be consumed by using sparse matrices and/or less bits to encode a letter in the alphabet.

For squareand crawler configurations, our fixed-point algorithm also computes
configurations that must be discarded because they lead to deadlocks or absurd situa-
tions (e.g.modules that are located in the same tridimensional position). When such
states are detected, we note the corresponding line with a∗ in Table 1. Such cases are
usually rare compared to the size of the symbolic state space: for example, 360 con-
figurations are discarded for thesquarewith 4 modules, 88560 for thesquarewith 8
modules and only 1 for theCrawler with 8 modules. This only affects the computation
time and not our most important evaluation criterion in thisexperiment: the amount of
memory required to store the symbolic configuration space.

We also note that we could not compute the configuration spacefor more than 8
modules in most cases. This is an implementation problem that should be considered in
further work (intensive recursions and allocations lead tointensive memory consump-
tion). Execution time is also quite long whenN grows but, since the configuration space
is computed off-line, there is no time constraint on this step of the process. This should
be corrected later with a more refined version of our first prototype.

6.2 Experiment 2: Computing Paths in the Symbolic Configuration Space

For the second experiment, we computed the full configuration space from the three
selected initial configurations with several values ofN. Then, we performed several
searches between a randomly selected departure concrete space and a randomly selected
target symbolic state. We also consideredD =90° for rotations.

Table 2 summarizes the data collected in this second experiment. Columns, from left
to right show: the value ofN, the size of the symbolic configuration state, the minimum,



average and maximum time (in ms) required to compute a path, the minimum, average
and maximum length of computed paths.

N
Size of Symbolic Search Time (ms) Path length

Config. Space Min Avg Max Min Avg Max

Line configuration
4 81 0.018 0.0915 0.199 1 11.75 31
8 6 561 1.195 1.515 1.717 375 1 649 2 925

Square configuration
4 84 0.021 1.107 1.697 0 17 88
8 36 093 0.506 1.212 404.87 19 781 2 604

Crawler configuration
4 81 0.039 0.118 0.187 3 12 20
8 124 652 0.037 1.810 3.561 2 517 1 456

Table 2.Performances of configuration search

Once again, time performances are quite good and show that computation could
be performed on the fly by a software that drives the robot since it never takes more
than half a second (averages remains around a few milliseconds). The average size of
computed paths remain reasonable, compared to the size of the configuration space
(e.g.781 transitions for a 1011 states configuration space in the case of theSquarewith
8 modules).

These data are extracted from a prototype that was not optimized and performances
can clearly be enhanced.

7 Conclusion

Configuration recognition and dynamic auto-reconfiguration of modular and self-recon-
figurable robots face numerous challenges, ranging from hardware to software and con-
trol issues. The one we focused on in this paper is related to the configuration space
combinatorial explosion when the number of modules grows.

We present in this paper a symbolic encoding technique, inspired from the ones
developed for model checking that also suffers from combinatorial explosion. We use
this technique to represent configurations of the CKBot, an hybrid modular and self-
reconfigurable robot. The symbolic representation of configurations exploits structural
symmetries in the modules that allow to gather in one class several equivalent configu-
rations.

These new techniques are far more efficient compact representation of the robot
configuration space than the initial encoding presented in [8]. Modules rotation, per-
mutation or a combination of both can be quickly recognized and disambiguated. Our
technique can be easily adapted to robots presenting a hardware topology similar to the
CKBot one. We call this new representation thesymbolic configuration space.

A second contribution is the computation of reconfiguration. Since the symbolic
configuration space can be stored in a small amount of memory,reconfiguration corre-
sponds to the computation of a path between two nodes in the configuration space. This
can be achieved by classical graph-based algorithms such asthe one of Dijkstra.



Experiments made on a first prototype show promising results. The expected ex-
ponential gain between the symbolic configuration space of asystem and its related
configuration space is observed for several types of initialconfigurations. Thus, all con-
figurations can be stored in a few MegaBytes that could not be the case otherwise (more
memory can technically be embedded in small devices like therobot modules we con-
sider). Computation of the symbolic state space can be long but this operation is typi-
cally performed off-line. Thus, no performances are reallyneeded.

Experiment also showed that (still with our first prototype)a path between two
configurations (e.g.reconfiguration of the robot) could be computed in a average time
of a fewmilliseconds. This enables the use of our technique on the fly during the robot
mission. When the robot is performing a move, the next one can be computed.

Since our experiment was done in a quickly implemented prototype, numerous op-
timizations can be applied that should increase performances.

Future work will consider some application to a real missionwith a CKBot-based
robots (possibly with several types of modules) to assess usability with several config-
urations when the robot is driven by an external computer or with embedded code.

References

1. D. Arney, S. Fischmeister, I. Lee, Y. Takashima, and M. Yim. Model-based Programming of
Modular Robots. In13th IEEE International Symposium on Object-oriented Real-time dis-
tributed Computing (ISORC’10), pages 87–91, Carmona, Spain, May 2010. IEEE Computer
Society.

2. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic Well-Formed
Coloured Nets for Symmetric Modelling Applications.IEEE Transactions on Computers,
42(11):1343–1360, November 1993.

3. D. J. Christensen. Evolution of shape-changing and self-repairingcontrol for the ATRON
self-reconfigurable robot. InIEEE International Conference on Robotics and Automation,
ICRA 2006., pages 2539–2545, 2006.

4. E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry Reductions in Model
Checking. In A. J. Hu and M. Y. Vardi, editors,CAV, volume 1427 ofLecture Notes in
Computer Science, pages 147–158. Springer, 1998.

5. T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduction to Algorithms. MIT press,
Cambridge, MA, second edition, 2003.

6. C. Girault and R. Valk, editors.Petri Nets and System Engineering, chapter 2, pages 9–23.
Springer Verlag, 2003.

7. GreatSPN. Petri nets suite:http://www.di.unito.it/~greatspn.
8. M. G. Park.Configuration recognition, Communication Fault Tolerance and Self-reassembly

for the CKBot. PhD thesis, University of Pennsylvannia, 2009.
9. W.-M. Shen. Self-reconfigurable robots for adaptive and multifunctional tasks. Technical

report, University of Florida, Florida, USA, Dec. 2008.
10. The CKBot home page. http://modlabupenn.org/ckbot/.
11. A. Valmari. The State Explosion Problem. InLectures on Petri Nets I: Basic Models, number

1491 in Lecture Notes in Computer Science, pages 429–528. Springer-Verlag, 1998.
12. M. Yim, P. White, M. Park, and J. Sastra. Modular Self-Reconfigurable Robots. InEncyclo-

pedia of Complexity and System Science. Springer, 2009.
13. M. Yim, Y. Zhang, K. Roufas, D. Duff, and C. Eldershaw. Connecting and disconnecting for

chain self-reconfiguration with PolyBot.IEEE/ASME Transactions on mechatronics, special
issue on Information Technology in Mechatronics, 2003.


