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An emptiness check looks for accepting runs. ]

E. Renault Context Friday, April 17th 2/13




Overview of sequential emptiness checks

o NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS
+ 2 bits per states
— Time complexity proportionnal of | F |

@ SCC-based: compute SCC of the automaton and look for
accepting SCC using only one DFS
» Time complexity independant of | F |
» Earlier counterexample detection
— 1 int per state

Both are compatible with main reductions techniques (On-the-fly, Bit
State Hashing, and State Space Caching). J

In practice, memory in SCC-based emptiness checks is not a problem!J
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SCC computation algorithms

o [Dijkstra, 1973] maintains best candidate to be a root
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This talk!

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures?
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This talk!

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures and that supports
generalized Biichi automata?

Suggestion

Sharing structural information between threads allows to build such
parallel emptiness checks.
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Structural information

Structural information do not depend of the thread traversal order:

@ Two states are in the same SCC
@ An acceptance set is present in an SCC

@ A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
@ is a structure to partition sets

v
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Structural information

Structural information do not depend of the thread traversal order:

@ Two states are in the same SCC
@ An acceptance set is present in an SCC

@ A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
@ is a structure to partition sets
@ can be extended to store acceptance sets

@ is shared between threads
@ is lock-free since it relies on hash-tables and linked lists )
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Benchmark Description

@ All algorithms have been implemented into Spot !
@ 10 models from the BEEM benchmark 2 3

@ 3268 random formula such that:

» ndfs take between 15 seconds and 30 minutes per formula

» there is at least 2h of computation for verified formula and 2h
for violated formula

http://spot.lip6.fr
2http://anna.fi.muni.cz/models
3See www.lrde.epita.fr/"renault/benchs/TACAS-2015/results.html
for a full desciption
Friday, April 17¢h 9/ 13
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Benchmark Setups

Different strategies have been implemented in spot:
e tarjan: all threads perform a Tarjan-based algorithm
e dijkstra: all threads perform a Dijkstra-based algorithm

@ mixed: a combination of the two previous strategies

These new emptiness checks have been compared with
state-of-the-art algorithms:

@ cndfs (ltsmin): the best NDFS-based parallel emptiness
check [Evangelista, 2012]

@ owcty (divine): the best non DFS-based parallel emptiness
check [Barnat, 2009]
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Benchmark Statistics

All synchronous products are close in terms of states or transitions. )

Model St. (avg.) Trans (avg.)
cyclic-scheduler.3 10° 108 Few
elevator2.3 106 107 large
elevator.4 3 x 106 7 x 107 scc
production-cell.3 3 x 10° 8 x 10°
adding.4 5 x 10° 1.2 x 107 Many
bridge.:f; 102 6 x 102 small
Ieader—e-lectlon.S 10 ] 4 x 107 scc
exit.3 7 x 10 2x10
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Results — Empty Products: few large SCC
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Results — Non-Empty Products: few large SCC
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Results — Empty Products: many small SCC
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Results — Non-Empty Products: many small SCC
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Conclusion

o First generalized parallel emptiness checks
@ No synchronizations, no repair procedures

@ Union-find to share structural information
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Conclusion & Perspectives

First generalized parallel emptiness checks

©

No synchronizations, no repair procedures

Union-find to share structural information

(4]

Better use of informations stored in the union-find: live states
can be exploited?

(4]

@ Asynchronous approaches based on a union-find

@ Combine all this approch with partial-order reductions

Questions? |
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