Parallel Explicit Model Checking for
Generalized Biichi Automata

E. Renault, A. Duret-Lutz, F. Kordon, D. Poitrenaud

Friday, April 17th

yPmc Lp o, YT

E. Renault TACAS'15 Friday, April 17th 1/13

Biichi Automata & Emptiness Check

Biichi Automata (BA)

Transition-based Generalized
Biichi Automata (TGBA)

F={e} F={e, O}
ab l
ab —b =b
N -ab
-ab .

Friday, April 17th 2 /13

Biichi Automata & Emptiness Check

o Transition-based Generalized
Biichi Automata (BA) Biichi Automata (TGBA)
F={e} F={e, 0}

ab l
N -ab ab
-ab .

—-a —b

Runs are accepting iff they visit each acceptance set infinitely often. J

N Renaue, S Friday, April 17th

2/13

Biichi Automata & Emptiness Check

o Transition-based Generalized
Biichi Automata (BA) Biichi Automata (TGBA)
F={e} F={e, 0}

ab l
a “ab ab
-ab .

—-a —b

Runs are accepting iff they visit each acceptance set infinitely often. J

N Renaue, S Friday, April 17th

2/13

Biichi Automata & Emptiness Check

o Transition-based Generalized
Biichi Automata (BA) Biichi Automata (TGBA)
F={e} F={e, 0}

ab l
N -ab ab
-ab .

Runs are accepting iff they visit each acceptance set infinitely often. |

—-a —b

An emptiness check looks for accepting runs.]

E. Renault Context Friday, April 17th 2/13

Overview of sequential emptiness checks

o NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS
+ 2 bits per states
— Time complexity proportionnal of | F |

@ SCC-based: compute SCC of the automaton and look for
accepting SCC using only one DFS
» Time complexity independant of | F |
» Earlier counterexample detection
— 1 int per state

Both are compatible with main reductions techniques (On-the-fly, Bit
State Hashing, and State Space Caching). J

In practice, memory in SCC-based emptiness checks is not a problem!J

Friday, April 17th 3/ 13

SCC computation algorithms

o [Dijkstra, 1973] maintains best candidate to be a root

E. Renault Context Friday, April 17th 4 /13

SCC computation algorithms

o [Dijkstra, 1973] maintains best candidate to be a root

@\—'@\/\

f~___

E. Renault Context Friday, April 17th 4 /13

SCC computation algorithms

o [Dijkstra, 1973] maintains best candidate to be a root

@@, ®
® B -

@ [Tarjan, 1971] maintains lowlinks to detect roots
W= s = s3 00 = s5 U = s

® ~®

E. Renault Context Friday, April 17th

4/13

SCC computation algorithms

o [Dijkstra, 1973] maintains best candidate to be a root

@@, ®
® B -

@ [Tarjan, 1971] maintains lowlinks to detect roots
W= s = s3 56255£€i54

e Y
—_— { \
L %6
~_-
.
.
P
@ &

55253

E. Renault Context Friday, April 17th

4/13

SCC computation algorithms

o [Dijkstra, 1973] maintains best candidate to be a root

@@, ®
® B -

@ [Tarjan, 1971] maintains lowlinks to detect roots
W= s = s3 Eﬁi5466254

- —E@~_ E-®

55253

E. Renault Context Friday, April 17th

4/13

Overview of parallel emptiness checks
Non DFS-based

NDFS-based

SCC-based
Friday, April 17th 5 / 13

Overview of parallel emptiness checks

Non DFS-based [Barnat et al., since 2003]
+ Theoretically scales better than DFS-based emptiness checks
— Successors are re-computed many times

— Late counterexample detection

NDFS-based

SCC-based
Friday, April 17th 5 / 13

Overview of parallel emptiness checks
Non DFS-based [Barnat et al., since 2003]
+ Theoretically scales better than DFS-based emptiness checks
— Successors are re-computed many times
— Late counterexample detection
NDFS-based [Laarman et al., since 2011][Evangelista et al., since 2011]
+ In practice scales better than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

No support for generalized acceptance
— Require synchronization points or repair procedures
SCC-based
Friday, April 17th 5 / 13

Overview of parallel emptiness checks
Non DFS-based [Barnat et al., since 2003]
+ Theoretically scales better than DFS-based emptiness checks
— Successors are re-computed many times
— Late counterexample detection
NDFS-based [Laarman et al., since 2011][Evangelista et al., since 2011]
+ In practice scales better than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

No support for generalized acceptance

— Require synchronization points or repair procedures
SCC-based?
Friday, April 17th 5 / 13

This talk!

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures?

E. Renault Context Friday, April 17th 6 /13

This talk!

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures and that supports
generalized Biichi automata?

E. Renault Context Friday, April 17th 6 /13

This talk!

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures and that supports
generalized Biichi automata?

Suggestion

Sharing structural information between threads allows to build such
parallel emptiness checks.

N Renaue S Friday, April 17th 6 / 13

Structural information

Structural information do not depend of the thread traversal order:

@ Two states are in the same SCC
@ An acceptance set is present in an SCC

@ A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
@ is a structure to partition sets

v

Friday, April 17th 7/ 13

Structural information

Structural information do not depend of the thread traversal order:

@ Two states are in the same SCC
@ An acceptance set is present in an SCC

@ A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
@ is a structure to partition sets

@ can be extended to store acceptance sets

v

Friday, April 17th 7/ 13

Structural information

Structural information do not depend of the thread traversal order:

@ Two states are in the same SCC
@ An acceptance set is present in an SCC

@ A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
@ is a structure to partition sets
@ can be extended to store acceptance sets

@ is shared between threads

Friday, April 17th 7/ 13

Structural information

Structural information do not depend of the thread traversal order:

@ Two states are in the same SCC
@ An acceptance set is present in an SCC

@ A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
@ is a structure to partition sets
@ can be extended to store acceptance sets

@ is shared between threads
@ is lock-free since it relies on hash-tables and linked lists)

Friday, April 17th 7/ 13

Main Idea

Thread 1
(Tarjan-based)

O

dead, 0

E. Renault

o8

Parallel EC for Generalized BA

Thread 2

(Dijkstra-based)

Friday, April 17th

8 /13

Main Idea

Thread 1
(Tarjan-based)

S0

O

o8

dead, 0

E. Renault

Parallel EC for Generalized BA

Thread 2

(Dijkstra-based)

Friday, April 17th

8 /13

Main Idea

Thread 1
(Tarjan-based)

So
S1

O

&

)

dead, 0

&

0

E. Renault

o

Parallel EC for Generalized BA

Thread 2

(Dijkstra-based)

Friday, April 17th

8 /13

Main Idea

Thread 1 Thread 2
(Tarjan-based) l (Dijkstra-based)

LR

O O
dead, 0| |so, O|| s, 0

\

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 /13

Main Idea

Thread 1 Thread 2
(Tarjan-based) l (Dijkstra-based)

LR

O O
dead, 0| |so, O|| s, 0

\

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 /13

Main Idea

Thread 1
(Tarjan-based)

S0

O

dead, 0

e

\

E. Renault

Parallel EC for Generalized BA

Thread 2
(Dijkstra-based)

S0
53

Friday, April 17th 8 /13

Main Idea

Thread 1

Thread 2
(TarJan based)

(Dijkstra-based)

S0

Ay

03] [1B
dead, 0| |so0, D||s1, 0

\

E. Renault

Parallel EC for Generalized BA Friday, April 17th 8 /13

Main Idea

Thread 1 Thread 2
(Tarjan-based) (Dijkstra- based)
S0

S

7 [S B B
dead, 0| |so, O||s1, 0

\

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 /13

Main Idea

Thread 1
(Tarjan-based)

So
S
Sq

O

Thread 2
(Dijkstra- based)

oy

O

dead, 0

s0, ()

s1, 0

\

E. Renault

ORI

Parallel EC for Generalized BA Friday, April 17th 8 /13

Main Idea

Thread 1
(Tarjan-based)

So
S
Sq

O

5,

O

dead, 0

S0, O

s, 0

Thread 2
(Dijkstra-based)

0=

%

Parallel EC for Generalized BA

E. Renault

S0
53
S5

ss, 0

Friday, April 17th 8 /13

Main Idea

Thread 1

Thread 2
(Tarjan-based)

(Dijkstra-based)

So S0

: % :

O O
dead, 0| | S0, O || 51, s5, 0 sa, 0

_S&

E. Renault

Parallel EC for Generalized BA Friday, April 17th 8 /13

Main Idea

Thread 1
(Tarjan-based)

So
S
Sq

O

#5s,

O o~

dead, 0

Sy, Ce

s, 0

S3, @

S5, @

_&

Parallel EC for Generalized BA

E. Renault

Thread 2

(Dijkstra-based)

o1

S0
53
S5

ss, 0

Friday, April 17th

8 /13

Benchmark Description

@ All algorithms have been implemented into Spot !
@ 10 models from the BEEM benchmark 2 3

@ 3268 random formula such that:

» ndfs take between 15 seconds and 30 minutes per formula

» there is at least 2h of computation for verified formula and 2h
for violated formula

http://spot.lip6.fr
2http://anna.fi.muni.cz/models
3See www.lrde.epita.fr/"renault/benchs/TACAS-2015/results.html
for a full desciption
Friday, April 17¢h 9/ 13

http://spot.lip6.fr
http://anna.fi.muni.cz/models
www.lrde.epita.fr/~renault/benchs/TACAS-2015/results.html

Benchmark Setups

Different strategies have been implemented in spot:
e tarjan: all threads perform a Tarjan-based algorithm
e dijkstra: all threads perform a Dijkstra-based algorithm

@ mixed: a combination of the two previous strategies

These new emptiness checks have been compared with
state-of-the-art algorithms:

@ cndfs (ltsmin): the best NDFS-based parallel emptiness
check [Evangelista, 2012]

@ owcty (divine): the best non DFS-based parallel emptiness
check [Barnat, 2009]

Friday, April 17th 10/ 13

Benchmark Statistics

All synchronous products are close in terms of states or transitions.)

Model St. (avg.) Trans (avg.)
cyclic-scheduler.3 10° 108 Few
elevator2.3 106 107 large
elevator.4 3 x 106 7 x 107 scc
production-cell.3 3 x 10° 8 x 10°
adding.4 5 x 10° 1.2 x 107 Many
bridge.:f; 102 6 x 102 small
Ieader—e-lectlon.S 10] 4 x 107 scc
exit.3 7 x 10 2x10

Friday, April 17th 11/ 13

Results — Empty Products: few large SCC

cyclic_scheduler.3.dve elevator2.3.dve
3.0
2.5+
25+
©n20-
] 2.0+
B1s-
5" 1.5+
>
‘gl.o - 1.0 N r A
o5} elevator.4.dve production—cell.3.dve
5 3.5-
L2
230-
3 *
$25-
N2.0- 24
15+
1.0+ 14

2 4 6 8 10 12 2
Number of threads

Algorithms

—— dijkstra (spot) -+ tarjan (spot) - mixed (spot) —+ owcty (divine) - cndfs (ltsmin)

E. Renault Benchmark

Friday, April 17th

12 /13

Results — Non-Empty Products: few large SCC

cyclic_scheduler.3.dve elevator2.3.dve
10.0
44

%) 7.5+
g 3
8 5.0+
[2 -
2 25-
: -
IC elevator.4.dve production—cell.3.dve
o
c 5- 8-
8

4-
o 4
5 6
3 3-
2 4-
n 2-

24
1-

Algorithms

1

0 12 2
Number of threads

—— dijkstra (spot) - tarjan (spot) —= mixed (spot) —+ owcty (divine) —#- cndfs (ltsmin)

E. Renault Benchmark Friday, April 17th

12 /13

Results — Empty Products: many small SCC

adding.4.dve bridge.3.dve
6- 7.5+

[2]
S 4= 5.0
S
€
IS 2.5+
2
Qo
g leader—election.3.dve exit.3.dve
©10.0-
o 7.5+
>
8 7.5+
2 5.0+
0 50-

25- 257

2 4 6 8 10 12 2
Number of threads

Algorithms
—— dijkstra (spot) - tarjan (spot) —= mixed (spot) —+ owcty (divine) —#- cndfs (ltsmin)

E. Renault Benchmark Friday, April 17th 12 /13

Results — Non-Empty Products: many small SCC

adding.4.dve bridge.3.dve
120
75
) 90
o
2 50 - 60
IS
o
2‘25 - 30
o
g [0 i — t t t [0 e — t t t
IC leader-election.3.dve exit.3.dve
=} 125+
=y
540~ 1004
o
30- 4
_?3) 75
8 20- 50
n
10- 254
0= s— 0 # ;
T T

i ; " ! i i .
2 4 6 8 10

12 2
Number of threads

Algorithms
—— dijkstra (spot) —- tarjan (spot) —= mixed (spot) — owcty (divine) —#- cndfs (Itsmin)

E. Renault Benchmark Friday, April 17th 12 /13

Conclusion

o First generalized parallel emptiness checks
@ No synchronizations, no repair procedures

@ Union-find to share structural information

E. Renault Conclusion & Perspectives Friday, April 17th 13 /13

Conclusion & Perspectives

o First generalized parallel emptiness checks

No synchronizations, no repair procedures

Union-find to share structural information

(4]

@ Better use of informations stored in the union-find: live states
can be exploited?

Friday, April 17th 13/ 13

Conclusion & Perspectives

First generalized parallel emptiness checks

©

No synchronizations, no repair procedures

Union-find to share structural information

(4]

@ Better use of informations stored in the union-find: live states
can be exploited?

@ Asynchronous approaches based on a union-find

Friday, April 17th 13/ 13

Conclusion & Perspectives

First generalized parallel emptiness checks

©

No synchronizations, no repair procedures

Union-find to share structural information

(4]

Better use of informations stored in the union-find: live states
can be exploited?

(4]

@ Asynchronous approaches based on a union-find

@ Combine all this approch with partial-order reductions

Friday, April 17th 13/ 13

Conclusion & Perspectives

First generalized parallel emptiness checks

©

No synchronizations, no repair procedures

Union-find to share structural information

(4]

Better use of informations stored in the union-find: live states
can be exploited?

(4]

@ Asynchronous approaches based on a union-find

@ Combine all this approch with partial-order reductions

Questions? |

Friday, April 17th 13/ 13

