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Büchi Automata & Emptiness Check
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Runs are accepting iff they visit each acceptance set infinitely often.

An emptiness check looks for accepting runs.
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Overview of sequential emptiness checks
NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS
+ 2 bits per states
− Time complexity proportionnal of | F |

SCC-based: compute SCC of the automaton and look for
accepting SCC using only one DFS

I Time complexity independant of | F |
I Earlier counterexample detection
− 1 int per state

Both are compatible with main reductions techniques (On-the-fly, Bit
State Hashing, and State Space Caching).

In practice, memory in SCC-based emptiness checks is not a problem!
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SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root
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Overview of parallel emptiness checks
Non DFS-based

[Barnat et al., since 2003]

+ Theoretically scales better than DFS-based emptiness checks

− Successors are re-computed many times

− Late counterexample detection

NDFS-based

[Laarman et al., since 2011][Evangelista et al., since 2011]

+ In practice scales better than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

− No support for generalized acceptance

− Require synchronization points or repair procedures

SCC-based

?
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This talk!

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures?

and that supports
generalized Büchi automata?

Suggestion
Sharing structural information between threads allows to build such
parallel emptiness checks.
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Structural information
Structural information do not depend of the thread traversal order:

Two states are in the same SCC
An acceptance set is present in an SCC
A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
is a structure to partition sets

can be extended to store acceptance sets
is shared between threads
is lock-free since it relies on hash-tables and linked lists

E. Renault Parallel EC for Generalized BA Friday, April 17th 7 / 13



Structural information
Structural information do not depend of the thread traversal order:

Two states are in the same SCC
An acceptance set is present in an SCC
A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
is a structure to partition sets
can be extended to store acceptance sets

is shared between threads
is lock-free since it relies on hash-tables and linked lists

E. Renault Parallel EC for Generalized BA Friday, April 17th 7 / 13



Structural information
Structural information do not depend of the thread traversal order:

Two states are in the same SCC
An acceptance set is present in an SCC
A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
is a structure to partition sets
can be extended to store acceptance sets
is shared between threads

is lock-free since it relies on hash-tables and linked lists

E. Renault Parallel EC for Generalized BA Friday, April 17th 7 / 13



Structural information
Structural information do not depend of the thread traversal order:

Two states are in the same SCC
An acceptance set is present in an SCC
A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
is a structure to partition sets
can be extended to store acceptance sets
is shared between threads
is lock-free since it relies on hash-tables and linked lists

E. Renault Parallel EC for Generalized BA Friday, April 17th 7 / 13



Main Idea
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Benchmark Description

All algorithms have been implemented into Spot 1

10 models from the BEEM benchmark 2 3

3 268 random formula such that:
I ndfs take between 15 seconds and 30 minutes per formula
I there is at least 2h of computation for verified formula and 2h

for violated formula

1http://spot.lip6.fr
2http://anna.fi.muni.cz/models
3See www.lrde.epita.fr/~renault/benchs/TACAS-2015/results.html

for a full desciption
E. Renault Benchmark Friday, April 17th 9 / 13
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Benchmark Setups

Different strategies have been implemented in spot:

tarjan: all threads perform a Tarjan-based algorithm

dijkstra: all threads perform a Dijkstra-based algorithm

mixed: a combination of the two previous strategies

These new emptiness checks have been compared with
state-of-the-art algorithms:

cndfs (ltsmin): the best NDFS-based parallel emptiness
check [Evangelista, 2012]

owcty (divine): the best non DFS-based parallel emptiness
check [Barnat, 2009]
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Benchmark Statistics

All synchronous products are close in terms of states or transitions.

Model St. (avg.) Trans (avg.)

cyclic-scheduler.3 106 108


Few

large

SCC

elevator2.3 106 107

elevator.4 3× 106 7× 107

production-cell.3 3× 106 8× 106

adding.4 5× 106 1.2× 107


Many

small

SCC

bridge.3 106 6× 106

leader-election.3 106 4× 106

exit.3 7× 106 2× 107
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Results – Empty Products: few large SCC
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Results – Non-Empty Products: few large SCC
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Results – Empty Products: many small SCC
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Results – Non-Empty Products: many small SCC

● ●
●

●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●

●

adding.4.dve bridge.3.dve

leader−election.3.dve exit.3.dve

0

25

50

75

0

30

60

90

120

0

10

20

30

40

0

25

50

75

100

125

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r 

no
n−

em
pt

y 
pr

od
uc

ts

Algorithms
● dijkstra (spot) tarjan (spot) mixed (spot) owcty (divine) cndfs (ltsmin)

E. Renault Benchmark Friday, April 17th 12 / 13



Conclusion

& Perspectives

First generalized parallel emptiness checks

No synchronizations, no repair procedures

Union-find to share structural information

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Combine all this approch with partial-order reductions

Questions?
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