
Parallel Explicit Model Checking for
Generalized Büchi Automata

E. Renault, A. Duret-Lutz, F. Kordon, D. Poitrenaud

Friday, April 17th

E. Renault TACAS’15 Friday, April 17th 1 / 13

Büchi Automata & Emptiness Check

Büchi Automata (BA) Transition-based Generalized
Büchi Automata (TGBA)

F={ } F={ , }

s0

s1

s2 ¬b

¬a

¬a b

a b

a b

¬ba b

a b

¬a b

a s0a b

a b

¬a b

a ¬b

¬a ¬b

Runs are accepting iff they visit each acceptance set infinitely often.

An emptiness check looks for accepting runs.

E. Renault Context Friday, April 17th 2 / 13

Büchi Automata & Emptiness Check

Büchi Automata (BA) Transition-based Generalized
Büchi Automata (TGBA)

F={ } F={ , }

s0

s1

s2 ¬b

¬a

¬a b

a b

a b

¬b

a b

a b

¬a b

a s0a b

a b

¬a b

a ¬b

¬a ¬b

Runs are accepting iff they visit each acceptance set infinitely often.

An emptiness check looks for accepting runs.

E. Renault Context Friday, April 17th 2 / 13

Büchi Automata & Emptiness Check

Büchi Automata (BA) Transition-based Generalized
Büchi Automata (TGBA)

F={ } F={ , }

s0

s1

s2 ¬b

¬a

¬a b

a b

a b

¬b

a b

a b

¬a b

a s0

a b

a b ¬a b

a ¬b

¬a ¬b

Runs are accepting iff they visit each acceptance set infinitely often.

An emptiness check looks for accepting runs.

E. Renault Context Friday, April 17th 2 / 13

Büchi Automata & Emptiness Check

Büchi Automata (BA) Transition-based Generalized
Büchi Automata (TGBA)

F={ } F={ , }

s0

s1

s2 ¬b

¬a

¬a b

a b

a b

¬b

a b

a b

¬a b

a s0

a b

a b ¬a b

a ¬b

¬a ¬b

Runs are accepting iff they visit each acceptance set infinitely often.

An emptiness check looks for accepting runs.

E. Renault Context Friday, April 17th 2 / 13

Overview of sequential emptiness checks
NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS
+ 2 bits per states
− Time complexity proportionnal of | F |

SCC-based: compute SCC of the automaton and look for
accepting SCC using only one DFS

I Time complexity independant of | F |
I Earlier counterexample detection
− 1 int per state

Both are compatible with main reductions techniques (On-the-fly, Bit
State Hashing, and State Space Caching).

In practice, memory in SCC-based emptiness checks is not a problem!

E. Renault Context Friday, April 17th 3 / 13

SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root

s1

s2

s3

s4

s5 s6

s5 s6

[Tarjan, 1971] maintains lowlinks to detect roots

s1

s2

s3

s4

s5 s6

`` = s1 `` = s3

`` = s3

`` = s5`` = s4

s5

`` = s6

s6

`` = s4

s6

E. Renault Context Friday, April 17th 4 / 13

SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root

s1

s2

s3

s4

s5 s6

s5 s6

[Tarjan, 1971] maintains lowlinks to detect roots

s1

s2

s3

s4

s5 s6

`` = s1 `` = s3

`` = s3

`` = s5`` = s4

s5

`` = s6

s6

`` = s4

s6

E. Renault Context Friday, April 17th 4 / 13

SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root

s1

s2

s3

s4

s5 s6

s5 s6

[Tarjan, 1971] maintains lowlinks to detect roots

s1

s2

s3

s4

s5 s6

`` = s1 `` = s3

`` = s3

`` = s5

`` = s4

s5

`` = s6

s6

`` = s4

s6

E. Renault Context Friday, April 17th 4 / 13

SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root

s1

s2

s3

s4

s5 s6

s5 s6

[Tarjan, 1971] maintains lowlinks to detect roots

s1

s2

s3

s4

s5

s6

`` = s1 `` = s3

`` = s3

`` = s5

`` = s4

s5

`` = s6

s6

`` = s4

s6

E. Renault Context Friday, April 17th 4 / 13

SCC computation algorithms

[Dijkstra, 1973] maintains best candidate to be a root

s1

s2

s3

s4

s5 s6

s5 s6

[Tarjan, 1971] maintains lowlinks to detect roots

s1

s2

s3

s4

s5 s6

`` = s1 `` = s3

`` = s3

`` = s5

`` = s4

s5

`` = s6

s6

`` = s4

s6

E. Renault Context Friday, April 17th 4 / 13

Overview of parallel emptiness checks
Non DFS-based

[Barnat et al., since 2003]

+ Theoretically scales better than DFS-based emptiness checks

− Successors are re-computed many times

− Late counterexample detection

NDFS-based

[Laarman et al., since 2011][Evangelista et al., since 2011]

+ In practice scales better than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

− No support for generalized acceptance

− Require synchronization points or repair procedures

SCC-based

?

E. Renault Context Friday, April 17th 5 / 13

Overview of parallel emptiness checks
Non DFS-based [Barnat et al., since 2003]

+ Theoretically scales better than DFS-based emptiness checks

− Successors are re-computed many times

− Late counterexample detection

NDFS-based

[Laarman et al., since 2011][Evangelista et al., since 2011]

+ In practice scales better than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

− No support for generalized acceptance

− Require synchronization points or repair procedures

SCC-based

?

E. Renault Context Friday, April 17th 5 / 13

Overview of parallel emptiness checks
Non DFS-based [Barnat et al., since 2003]

+ Theoretically scales better than DFS-based emptiness checks

− Successors are re-computed many times

− Late counterexample detection

NDFS-based [Laarman et al., since 2011][Evangelista et al., since 2011]

+ In practice scales better than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

− No support for generalized acceptance

− Require synchronization points or repair procedures

SCC-based

?

E. Renault Context Friday, April 17th 5 / 13

Overview of parallel emptiness checks
Non DFS-based [Barnat et al., since 2003]

+ Theoretically scales better than DFS-based emptiness checks

− Successors are re-computed many times

− Late counterexample detection

NDFS-based [Laarman et al., since 2011][Evangelista et al., since 2011]

+ In practice scales better than non DFS-based emptiness checks

+ Faster counterexample detection (Swarming)

− No support for generalized acceptance

− Require synchronization points or repair procedures

SCC-based?

E. Renault Context Friday, April 17th 5 / 13

This talk!

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures?

and that supports
generalized Büchi automata?

Suggestion
Sharing structural information between threads allows to build such
parallel emptiness checks.

E. Renault Context Friday, April 17th 6 / 13

This talk!

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures

?

and that supports
generalized Büchi automata?

Suggestion
Sharing structural information between threads allows to build such
parallel emptiness checks.

E. Renault Context Friday, April 17th 6 / 13

This talk!

Question [Evangelista, 2012]

Can we build a DFS-based emptiness check that requires neither
synchronisation points nor repair procedures

?

and that supports
generalized Büchi automata?

Suggestion
Sharing structural information between threads allows to build such
parallel emptiness checks.

E. Renault Context Friday, April 17th 6 / 13

Structural information
Structural information do not depend of the thread traversal order:

Two states are in the same SCC
An acceptance set is present in an SCC
A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
is a structure to partition sets

can be extended to store acceptance sets
is shared between threads
is lock-free since it relies on hash-tables and linked lists

E. Renault Parallel EC for Generalized BA Friday, April 17th 7 / 13

Structural information
Structural information do not depend of the thread traversal order:

Two states are in the same SCC
An acceptance set is present in an SCC
A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
is a structure to partition sets
can be extended to store acceptance sets

is shared between threads
is lock-free since it relies on hash-tables and linked lists

E. Renault Parallel EC for Generalized BA Friday, April 17th 7 / 13

Structural information
Structural information do not depend of the thread traversal order:

Two states are in the same SCC
An acceptance set is present in an SCC
A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
is a structure to partition sets
can be extended to store acceptance sets
is shared between threads

is lock-free since it relies on hash-tables and linked lists

E. Renault Parallel EC for Generalized BA Friday, April 17th 7 / 13

Structural information
Structural information do not depend of the thread traversal order:

Two states are in the same SCC
An acceptance set is present in an SCC
A state cannot be part of an accepting cycle

Some sequential emptiness checks use an Union-Find data structure
to store SCC-membership for each state [Renault et al, 2013].

The union-find data structure:
is a structure to partition sets
can be extended to store acceptance sets
is shared between threads
is lock-free since it relies on hash-tables and linked lists

E. Renault Parallel EC for Generalized BA Friday, April 17th 7 / 13

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1

s1s1

s3

s3s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅

s0, ∅s0,s0, s1, ∅s1, ∅ s3, ∅ s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1

s1s1

s3

s3s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅s1, ∅ s3, ∅ s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0
s1

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1

s1

s1

s3

s3s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0,

s1, ∅

s1, ∅ s3, ∅ s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1 s3

s3s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0

s3
s5

s0

s0

s1s1

s1 s3

s3s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0
s3

s5

s0

s0

s1s1

s1

s3

s3

s3

s5

s5s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅ s3, ∅

s5, ∅s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3

s3

s3

s5

s5

s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅ s2, ∅ s4, ∅s4, ∅s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0
s2

s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3

s3

s3

s5

s5

s5

s2

s2

s4

s4s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅

s2, ∅

s4, ∅s4, ∅s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0
s2
s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3

s3

s3

s5

s5

s5

s2

s2

s4

s4

s4

dead, ∅ s0, ∅

s0,s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅

s2, ∅ s4, ∅

s4, ∅s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0
s2
s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3

s3

s3

s5

s5

s5

s2

s2

s4s4

s4

dead, ∅

s0, ∅

s0,

s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅

s2, ∅

s4, ∅

s4, ∅

s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0
s2
s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3

s3

s3

s5s5

s5

s2

s2

s4s4

s4

dead, ∅

s0, ∅

s0,

s0, s1, ∅

s1, ∅ s3, ∅

s5, ∅

s5, ∅ s2, ∅

s4, ∅

s4, ∅

s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Main Idea

Thread 1
(Tarjan-based)

s0
s2
s4

Thread 2
(Dijkstra-based)

s0
s3
s5

s0

s0

s1s1

s1

s3s3

s3

s5s5

s5

s2

s2

s4s4

s4

dead, ∅

s0, ∅s0,

s0,

s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅ s2, ∅

s4, ∅

s4, ∅s3, ∅

E. Renault Parallel EC for Generalized BA Friday, April 17th 8 / 13

Benchmark Description

All algorithms have been implemented into Spot 1

10 models from the BEEM benchmark 2 3

3 268 random formula such that:
I ndfs take between 15 seconds and 30 minutes per formula
I there is at least 2h of computation for verified formula and 2h

for violated formula

1http://spot.lip6.fr
2http://anna.fi.muni.cz/models
3See www.lrde.epita.fr/~renault/benchs/TACAS-2015/results.html

for a full desciption
E. Renault Benchmark Friday, April 17th 9 / 13

http://spot.lip6.fr
http://anna.fi.muni.cz/models
www.lrde.epita.fr/~renault/benchs/TACAS-2015/results.html

Benchmark Setups

Different strategies have been implemented in spot:

tarjan: all threads perform a Tarjan-based algorithm

dijkstra: all threads perform a Dijkstra-based algorithm

mixed: a combination of the two previous strategies

These new emptiness checks have been compared with
state-of-the-art algorithms:

cndfs (ltsmin): the best NDFS-based parallel emptiness
check [Evangelista, 2012]

owcty (divine): the best non DFS-based parallel emptiness
check [Barnat, 2009]

E. Renault Benchmark Friday, April 17th 10 / 13

Benchmark Statistics

All synchronous products are close in terms of states or transitions.

Model St. (avg.) Trans (avg.)

cyclic-scheduler.3 106 108


Few

large

SCC

elevator2.3 106 107

elevator.4 3× 106 7× 107

production-cell.3 3× 106 8× 106

adding.4 5× 106 1.2× 107


Many

small

SCC

bridge.3 106 6× 106

leader-election.3 106 4× 106

exit.3 7× 106 2× 107

E. Renault Benchmark Friday, April 17th 11 / 13

Results – Empty Products: few large SCC

●

●

●
● ●

●

●
● ● ●

●
●

● ●
●

●

●

●
● ●

cyclic_scheduler.3.dve elevator2.3.dve

elevator.4.dve production−cell.3.dve

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

em
pt

y
pr

od
uc

ts

Algorithms
● dijkstra (spot) tarjan (spot) mixed (spot) owcty (divine) cndfs (ltsmin)

E. Renault Benchmark Friday, April 17th 12 / 13

Results – Non-Empty Products: few large SCC

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

cyclic_scheduler.3.dve elevator2.3.dve

elevator.4.dve production−cell.3.dve

2.5

5.0

7.5

10.0

1

2

3

4

1

2

3

4

5

2

4

6

8

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

no
n−

em
pt

y
pr

od
uc

ts

Algorithms
● dijkstra (spot) tarjan (spot) mixed (spot) owcty (divine) cndfs (ltsmin)

E. Renault Benchmark Friday, April 17th 12 / 13

Results – Empty Products: many small SCC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

adding.4.dve bridge.3.dve

leader−election.3.dve exit.3.dve

2

4

6

2.5

5.0

7.5

2.5

5.0

7.5

10.0

2.5

5.0

7.5

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

em
pt

y
pr

od
uc

ts

Algorithms
● dijkstra (spot) tarjan (spot) mixed (spot) owcty (divine) cndfs (ltsmin)

E. Renault Benchmark Friday, April 17th 12 / 13

Results – Non-Empty Products: many small SCC

● ●
●

●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●

●

adding.4.dve bridge.3.dve

leader−election.3.dve exit.3.dve

0

25

50

75

0

30

60

90

120

0

10

20

30

40

0

25

50

75

100

125

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

no
n−

em
pt

y
pr

od
uc

ts

Algorithms
● dijkstra (spot) tarjan (spot) mixed (spot) owcty (divine) cndfs (ltsmin)

E. Renault Benchmark Friday, April 17th 12 / 13

Conclusion

& Perspectives

First generalized parallel emptiness checks

No synchronizations, no repair procedures

Union-find to share structural information

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Combine all this approch with partial-order reductions

Questions?

E. Renault Conclusion & Perspectives Friday, April 17th 13 / 13

Conclusion & Perspectives

First generalized parallel emptiness checks

No synchronizations, no repair procedures

Union-find to share structural information

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Combine all this approch with partial-order reductions

Questions?

E. Renault Conclusion & Perspectives Friday, April 17th 13 / 13

Conclusion & Perspectives

First generalized parallel emptiness checks

No synchronizations, no repair procedures

Union-find to share structural information

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Combine all this approch with partial-order reductions

Questions?

E. Renault Conclusion & Perspectives Friday, April 17th 13 / 13

Conclusion & Perspectives

First generalized parallel emptiness checks

No synchronizations, no repair procedures

Union-find to share structural information

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Combine all this approch with partial-order reductions

Questions?

E. Renault Conclusion & Perspectives Friday, April 17th 13 / 13

Conclusion & Perspectives

First generalized parallel emptiness checks

No synchronizations, no repair procedures

Union-find to share structural information

Better use of informations stored in the union-find: live states
can be exploited?

Asynchronous approaches based on a union-find

Combine all this approch with partial-order reductions

Questions?

E. Renault Conclusion & Perspectives Friday, April 17th 13 / 13

