
The Quest for an Efficient LTL Model-Checking

E. Renault

Friday, May 18th

E. Renault MeFoSyLoMa’18 Friday, May 18th 1 / 60

What is Model-Checking? (Trebuchet Example)

Finally Pivot Bar released?

Model-Checking

Verified

Violated

Temporal Logic Formula

E. Renault Context Friday, May 18th 2 / 60

What is Model-Checking? (Trebuchet Example)

Finally Pivot Bar released?

Model-Checking

Verified

Violated

Temporal Logic Formula

E. Renault Context Friday, May 18th 2 / 60

What is Model-Checking? (Trebuchet Example)

Finally Pivot Bar released?

Model-Checking

Verified

Violated

Temporal Logic Formula

E. Renault Context Friday, May 18th 2 / 60

What is Model-Checking? (Trebuchet Example)

Finally Pivot Bar released?

Model-Checking

Verified

Violated

Temporal Logic Formula

E. Renault Context Friday, May 18th 2 / 60

What is Model-Checking? (Trebuchet Example)

Finally Pivot Bar released?

Model-Checking

Verified

Violated

Temporal Logic Formula

E. Renault Context Friday, May 18th 2 / 60

What is Model-Checking? (Trebuchet Example)

Finally Pivot Bar released?

Model-Checking

Verified

Violated

Temporal Logic Formula

E. Renault Context Friday, May 18th 2 / 60

Automata-Theoretic Approach to Model Checking

LTL formula ϕ

Automaton A¬ϕ

Model
Specification M

Automaton AM

A¬ϕ ⊗ AM

Emptiness
check

L (A¬ϕ ⊗ AM)
?
= ∅

Verified

Violated

Small automata
for smaller product
(+On-The-Fly)

Fast algorithms that
support fairness

Fight Combinatorial
Explosion (POR)

E. Renault Context Friday, May 18th 3 / 60

Automata-Theoretic Approach to Model Checking

LTL formula ϕ

Automaton A¬ϕ

Model
Specification M

Automaton AM

A¬ϕ ⊗ AM

Emptiness
check

L (A¬ϕ ⊗ AM)
?
= ∅

Verified

Violated

Small automata
for smaller product
(+On-The-Fly)

Fast algorithms that
support fairness

Fight Combinatorial
Explosion (POR)

E. Renault Context Friday, May 18th 3 / 60

Automata-Theoretic Approach to Model Checking

LTL formula ϕ

Automaton A¬ϕ

Model
Specification M

Automaton AM

A¬ϕ ⊗ AM

Emptiness
check

L (A¬ϕ ⊗ AM)
?
= ∅

Verified

Violated

Small automata
for smaller product
(+On-The-Fly)

Fast algorithms that
support fairness

Fight Combinatorial
Explosion (POR)

E. Renault Context Friday, May 18th 3 / 60

Automata-Theoretic Approach to Model Checking

LTL formula ϕ

Automaton A¬ϕ

Model
Specification M

Automaton AM

A¬ϕ ⊗ AM

Emptiness
check

L (A¬ϕ ⊗ AM)
?
= ∅

Verified

Violated

Small automata
for smaller product
(+On-The-Fly)

Fast algorithms that
support fairness

Fight Combinatorial
Explosion (POR)

E. Renault Context Friday, May 18th 3 / 60

1

2

3

4

5

E. Renault Context Friday, May 18th 4 / 60

ω-Automata Villages

E. Renault ω-automata Friday, May 18th 5 / 60

1

2

3

4

5

E. Renault ω-automata Friday, May 18th 6 / 60

Many automata . . .

Büchi, Co-Büchi, Streett, Rabin, Parity, Muller, other?
Generalized or not?
Transition-based or state-based?
Support fairness (weak or strong)

Transition-based Generalized Büchi Automata (TGBA) seems to be a
good compromise:

Support for weak fairness
Emptiness checks may be linear regardless the acceptance
condition

The HOA format support all these variations. HOA is supported by many tools:
Spot ltl3ba, Rabinizer3, ltl3dra

E. Renault ω-automata Friday, May 18th 7 / 60

Many automata . . .

Büchi, Co-Büchi, Streett, Rabin, Parity, Muller, other?
Generalized or not?
Transition-based or state-based?
Support fairness (weak or strong)

Transition-based Generalized Büchi Automata (TGBA) seems to be a
good compromise:

Support for weak fairness
Emptiness checks may be linear regardless the acceptance
condition

The HOA format support all these variations. HOA is supported by many tools:
Spot ltl3ba, Rabinizer3, ltl3dra

E. Renault ω-automata Friday, May 18th 7 / 60

Fight Combinatorial Explosion

Büchi Automata (BA) Transition-based Generalized
Büchi Automata (TGBA)

F={ } F={ , }

s0

s1

s2 ¬b

¬a

¬a b

a ba b

¬ba b

¬a b

a s0a b ¬a b

a ¬b

¬a ¬b

Infinite runs are accepting if they visit each acceptance set infinitely
often. If there is such a run: L (A) 6= ∅.

Two equivalent and minimal automata for the LTL formula GF a ∧ GF b
E. Renault ω-automata Friday, May 18th 8 / 60

Support Fairness
Weak fairness can be expressed using the LTL property:∧

i∈Processes

GF progressi

Min. det. BA Min. det. TGBA
Nb. Processes states transitions states transitions

1 2 4 1 2
2 3 12 1 4
4 5 80 1 16
8 9 2 304 1 256
n (n + 1) (n + 1).2n 1 2n

TGBA are never worst than BA!
E. Renault ω-automata Friday, May 18th 9 / 60

The Forest of the Emptiness
and the SCC Hills

E. Renault Emptiness-Checks Friday, May 18th 10 / 60

1

2

3

4

5

E. Renault Emptiness-Checks Friday, May 18th 11 / 60

Sequential Emptiness Checks
NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS

SCC-based: compute SCC of the automaton and look for
accepting SCC using only one DFS

NDFS-based

SCC-based

Memory requirements 2 extra bits per state

1 or 2 int per state

Closing edge detect. easy only on DFS stack

easy

On-the-fly X

X

Bit state hashing X

X

State space caching X

X

Generalization Proportionnal to | F |

Independant to | F |

E. Renault Emptiness-Checks Friday, May 18th 12 / 60

Courcoubetis et al. [1991]

Holzmann [1991]

Godefroid and Holzmann [1993]

Holzmann and Peled [1994]

Holzmann et al. [1996] Edelkamp et al. [2004]

Tauriainen [2004]

Schwoon and Esparza [2005]

Gaiser and Schwoon [2009]

E. Renault Emptiness-Checks Friday, May 18th 13 / 60

Sequential Emptiness Checks
NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS

SCC-based: compute SCC of the automaton and look for
accepting SCC using only one DFS

NDFS-based

SCC-based

Memory requirements 2 extra bits per state

1 or 2 int per state

Closing edge detect. easy only on DFS stack

easy

On-the-fly X

X

Bit state hashing X

X

State space caching X

X

Generalization Proportionnal to | F |

Independant to | F |

E. Renault Emptiness-Checks Friday, May 18th 14 / 60

Sequential Emptiness Checks
NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS

SCC-based: compute SCC of the automaton and look for
accepting SCC using only one DFS

NDFS-based

SCC-based

Memory requirements 2 extra bits per state

1 or 2 int per state

Closing edge detect. easy only on DFS stack

easy

On-the-fly X

X

Bit state hashing X

X

State space caching X

X

Generalization Proportionnal to | F |

Independant to | F |

E. Renault Emptiness-Checks Friday, May 18th 14 / 60

Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994] ?

E. Renault Emptiness-Checks Friday, May 18th 15 / 60

Sequential Emptiness Checks
NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS

SCC-based: compute SCC of the automaton and look for
accepting SCC using only one DFS

NDFS-based SCC-based

Memory requirements 2 extra bits per state 1 or 2 int per state

Closing edge detect. easy only on DFS stack easy

On-the-fly X X

Bit state hashing X X

State space caching X X

Generalization Proportionnal to | F | Independant to | F |

E. Renault Emptiness-Checks Friday, May 18th 16 / 60

Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994] ?

E. Renault Emptiness-Checks Friday, May 18th 17 / 60

Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994] ?

E. Renault Emptiness-Checks Friday, May 18th 18 / 60

Using Union-Find for Emptiness Check
Main Idea

Store state’s SCC-membership in a Union-Find
Marking an SCC of size S as Dead in O(Ack−1(S))
(quasi-constant) rather that in O(S)

Independant from the underlying algorithm (Tarjan/Dijkstra)

Easy to parallelize (later on this talk!)

s1

s2

s3

s4

s5 s6

s3

s4

s5 s6

dead s1 s2 s3 s4 s5 s6

dead s1 s2 s3 s4 s5 s6

E. Renault Emptiness-Checks Friday, May 18th 19 / 60

Using Union-Find for Emptiness Check
Main Idea

Store state’s SCC-membership in a Union-Find
Marking an SCC of size S as Dead in O(Ack−1(S))
(quasi-constant) rather that in O(S)

Independant from the underlying algorithm (Tarjan/Dijkstra)

Easy to parallelize (later on this talk!)

s1

s2

s3

s4

s5 s6

s3

s4

s5 s6

dead s1 s2 s3 s4 s5 s6dead s1 s2 s3 s4 s5 s6

E. Renault Emptiness-Checks Friday, May 18th 19 / 60

Using Union-Find for Emptiness Check
Main Idea

Store state’s SCC-membership in a Union-Find
Marking an SCC of size S as Dead in O(Ack−1(S))
(quasi-constant) rather that in O(S)

Independant from the underlying algorithm (Tarjan/Dijkstra)
Easy to parallelize (later on this talk!)

s1

s2

s3

s4

s5 s6

s3

s4

s5 s6

dead s1 s2 s3 s4 s5 s6dead s1 s2 s3 s4 s5 s6

E. Renault Emptiness-Checks Friday, May 18th 19 / 60

The outpost of the parallelism

The Decomposition Tower

E. Renault Decomposition Tower Friday, May 18th 20 / 60

1

2

3

4

5

E. Renault Decomposition Tower Friday, May 18th 21 / 60

Strength of A¬ϕ & Emptiness Check of A¬ϕ⊗ASys

Terminal Weak Strong
Automaton Automaton Automaton

Accepting SCC
are complete

and contain only
accepting cycles

>

a
b

b̄

c

b̄

d

Accepting SCC
contain only

accepting cycles

a

a >
b

b̄

c

b̄

d

Accepting
SCC can mix

accepting
cycles and non
accepting cycles

ab

ab̄

āb

āb̄

Reachability Simple NDFS-based or
Assumption on ASys : cycle search SCC-based

no deadlock.

< <

⊂ ⊂

[Bloem al., 1999]

E. Renault Decomposition Tower Friday, May 18th 22 / 60

Strength of A¬ϕ & Emptiness Check of A¬ϕ⊗ASys

Terminal Weak Strong
Automaton Automaton Automaton

Accepting SCC
are complete

and contain only
accepting cycles

>

a
b

b̄

c

b̄

d

Accepting SCC
contain only

accepting cycles

a

a >
b

b̄

c

b̄

d

Accepting
SCC can mix

accepting
cycles and non
accepting cycles

ab

ab̄

āb

āb̄

Reachability Simple NDFS-based or
Assumption on ASys : cycle search SCC-based

no deadlock.

< <

⊂ ⊂

[Bloem al., 1999]

E. Renault Decomposition Tower Friday, May 18th 22 / 60

Strength of A¬ϕ & Emptiness Check of A¬ϕ⊗ASys

Terminal Weak Strong
Automaton Automaton Automaton

Accepting SCC
are complete

and contain only
accepting cycles

>

a
b

b̄

c

b̄

d

Accepting SCC
contain only

accepting cycles

a

a >
b

b̄

c

b̄

d

Accepting
SCC can mix

accepting
cycles and non
accepting cycles

ab

ab̄

āb

āb̄

Reachability Simple NDFS-based or
Assumption on ASys : cycle search SCC-based

no deadlock.

< <

⊂ ⊂

[Bloem al., 1999]

E. Renault Decomposition Tower Friday, May 18th 22 / 60

Strength of A¬ϕ & Emptiness Check of A¬ϕ⊗ASys

Terminal Weak Strong
Automaton Automaton Automaton

Accepting SCC
are complete

and contain only
accepting cycles

>

a
b

b̄

c

b̄

d

Accepting SCC
contain only

accepting cycles

a

a >
b

b̄

c

b̄

d

Accepting
SCC can mix

accepting
cycles and non
accepting cycles

ab

ab̄

āb

āb̄

Reachability Simple NDFS-based or
Assumption on ASys : cycle search SCC-based

no deadlock.

< <

⊂ ⊂

[Bloem al., 1999]

E. Renault Decomposition Tower Friday, May 18th 22 / 60

Strength of A¬ϕ & Emptiness Check of A¬ϕ⊗ASys

Terminal Weak Strong
Automaton Automaton Automaton

Accepting SCC
are complete

and contain only
accepting cycles

>

a
b

b̄

c

b̄

d

Accepting SCC
contain only

accepting cycles

a

a >
b

b̄

c

b̄

d

Accepting
SCC can mix

accepting
cycles and non
accepting cycles

ab

ab̄

āb

āb̄

Reachability Simple NDFS-based or
Assumption on ASys : cycle search SCC-based

no deadlock.

< <

⊂ ⊂
[Bloem al., 1999]

E. Renault Decomposition Tower Friday, May 18th 22 / 60

Strong Automaton with Multiple SCC Strengths

s0 s1

s2 s3

s4

Strong SCC

Weak SCC Non accepting
SCC

Terminal SCC

āc̄

ac̄

abc̄

b

ac̄āc̄

ac

a

ā

āc

c

>

[Edelkamp et al., 2004]

A¬ϕ for ¬ϕ = (G a→ G b)W c
E. Renault Decomposition Tower Friday, May 18th 23 / 60

Decomposing the Property Automaton

s0 s1

s2 s3

s4

L (A) = L (AT) ∪L (AW) ∪L (AS).

AT : captures the terminal behaviors of A
AW : captures the weak behaviors of A
AS : captures the strong behaviors of A

AT :

AW :

AS :

A:

E. Renault Decomposition Tower Friday, May 18th 24 / 60

Decomposition Canevas
LTL

formula TGBA Decompo-
sition

AS ⊗ ASysAW ⊗ ASysAT ⊗ ASys

Terminal
emptiness
check

Weak
emptiness
check

Strong
emptiness
check

Verified / Violated

Automata simplifications

Launched in parallel

Note: emptiness-check agnostic.

E. Renault Decomposition Tower Friday, May 18th 25 / 60

Results
On 10 models from BEEM and 3 268 random formula

No simpl. With simpl.
AT AW AS AT AW AS

States Reduction (%) 20 27 54 47 40 60
Transitions Reduction (%) 25 35 67 50 42 67

After simplifications
Reduction of 86% of states for Asys ⊗ AT

Reduction of 39% of states for Asys ⊗ AW

Reduction of 42% of states for Asys ⊗ AS

Average Speedup
15% for empty products,
70% for non-empty products.

E. Renault Decomposition Tower Friday, May 18th 26 / 60

The outpost of the parallelism

The Dead forest of the Union-Find (UFSCC & CNDFS)

E. Renault Parallel Emptiness Checks Friday, May 18th 27 / 60

1

2

3

4

5

E. Renault Parallel Emptiness Checks Friday, May 18th 28 / 60

Problem Statement

Reif [1985]
Depth-First Search is Inherently Sequential

E. Renault Parallel Emptiness Checks Friday, May 18th 29 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCCBloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCC

Bloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCC

Bloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCC

Bloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Brim et al. [2001]

Detects negative cycles
Transitions are tagged 0 except the one from an accepting
state (tagged −1
Maintains shortest distance from the initial state
If negative distance, a counterexample is reported

Barnat et al. [2003]

Track BFS detph of each state
When a transition goes to an
highest state: launch a sequential
DFS

Černá and Pelánek [2003]

Explicit OWCTY
Compute SCCs with accepting states
If such an SCC, a counterexample exists

Brim et al. [2004]

Total order between states and propagate
the smallest accepting predecessor
Check wether smallest states belongs to
an accepting SCC

Holzmann et al. [2011]

Run multiple independant emptiness
check in parallel
Each thead has it own transition order

Laarman et al. [2011]

Evangelista et al. [2011]

Swarming with (pessimistic) information sharing
Shares state than cannot be part of an accepting run
Uses synchronisations

Swarming with (optimistic) information sharing
Shares colors among all DFS walks
Uses repair procedures

Laarman and van de Pol [2011]

Mix the 2 previous algorithms: Laarman et al. [2011]
is used as a repair procedure

Evangelista et al. [2012]

Improve Laarman et al. [2011]
with ideas of Evangelista
et al. [2011]
Still synchronisations

Renault et al. [2016]

Use Lock-free union-find to share information
First Generalized Emptiness check without
synchronisation nor repair procedure
Shares state than cannot be part of an accepting
SCC

Bloemen et al. [2016]

Use Lock-free union-find to share information
Improve Renault et al. [2016] with work stealing
Neither a BFS nor a DFS

Jayanti and Tarjan [2016]

E. Renault Parallel Emptiness Checks Friday, May 18th 30 / 60

Example for Bloemen et al.

Thread 1

s0

Thread 2

s0
s3

s0

s0s0s0

s1

s1s1s1

s3

s3s3s3s3

s5

s5s5s5s5

s2

s2s2s2s2

s4

s4s4s4s4

dead, ∅

s0, ∅s0,s0,s0, s1, ∅s1, ∅ s3, ∅ s5, ∅s5, ∅s5, ∅ s2, ∅s2, ∅s2, ∅ s4, ∅s4, ∅s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0

Thread 2

s0
s3

s0

s0

s0s0

s1

s1s1s1

s3

s3s3s3s3

s5

s5s5s5s5

s2

s2s2s2s2

s4

s4s4s4s4

dead, ∅ s0, ∅

s0,s0,s0, s1, ∅s1, ∅ s3, ∅ s5, ∅s5, ∅s5, ∅ s2, ∅s2, ∅s2, ∅ s4, ∅s4, ∅s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0
s1

Thread 2

s0
s3

s0

s0

s0s0

s1

s1

s1s1

s3

s3s3s3s3

s5

s5s5s5s5

s2

s2s2s2s2

s4

s4s4s4s4

dead, ∅ s0, ∅

s0,s0,s0,

s1, ∅

s1, ∅ s3, ∅ s5, ∅s5, ∅s5, ∅ s2, ∅s2, ∅s2, ∅ s4, ∅s4, ∅s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0
s1[s1]

Thread 2

s0
s3

s0

s0

s0s0

s1s1

s1

s1

s3

s3s3s3s3

s5

s5s5s5s5

s2

s2s2s2s2

s4

s4s4s4s4

dead, ∅ s0, ∅

s0,s0,s0,

s1, ∅

s1, ∅ s3, ∅ s5, ∅s5, ∅s5, ∅ s2, ∅s2, ∅s2, ∅ s4, ∅s4, ∅s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0

Thread 2

s0
s3

s0

s0

s0s0

s1s1s1

s1 s3

s3s3s3s3

s5

s5s5s5s5

s2

s2s2s2s2

s4

s4s4s4s4

dead, ∅ s0, ∅

s0,s0,s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅s5, ∅s5, ∅ s2, ∅s2, ∅s2, ∅ s4, ∅s4, ∅s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0

Thread 2

s0

s3
s0

s0

s0s0

s1s1s1

s1 s3

s3s3s3s3

s5

s5s5s5s5

s2

s2s2s2s2

s4

s4s4s4s4

dead, ∅ s0, ∅

s0,s0,s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅s5, ∅s5, ∅ s2, ∅s2, ∅s2, ∅ s4, ∅s4, ∅s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0

Thread 2

s0
s3

s0

s0

s0s0

s1s1s1

s1

s3

s3

s3s3s3

s5

s5s5s5s5

s2

s2s2s2s2

s4

s4s4s4s4

dead, ∅ s0, ∅

s0,s0,s0, s1, ∅

s1, ∅ s3, ∅

s5, ∅s5, ∅s5, ∅ s2, ∅s2, ∅s2, ∅ s4, ∅s4, ∅s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0

Thread 2

s0
s3
s5

s0

s0

s0s0

s1s1s1

s1

s3

s3

s3s3s3

s5

s5

s5s5s5

s2

s2s2s2s2

s4

s4s4s4s4

dead, ∅ s0, ∅

s0,s0,s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅s5, ∅ s2, ∅s2, ∅s2, ∅ s4, ∅s4, ∅s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0
s2

Thread 2

s0
s3
s5

s0

s0

s0s0

s1s1s1

s1

s3

s3

s3s3s3

s5

s5

s5s5s5

s2

s2

s2s2s2

s4

s4s4s4s4

dead, ∅ s0, ∅

s0,s0,s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅s5, ∅

s2, ∅

s2, ∅s2, ∅ s4, ∅s4, ∅s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.
Thread 1

s0
s2
s4

Thread 2

s0
s3
s5

s0

s0

s0s0

s1s1s1

s1

s3

s3

s3s3s3

s5

s5

s5s5s5

s2

s2

s2s2s2

s4

s4

s4s4s4

dead, ∅ s0, ∅

s0,s0,s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅s5, ∅

s2, ∅

s2, ∅s2, ∅

s4, ∅

s4, ∅s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.
Thread 1

s0
s2
s4

Thread 2

s0
s3
s5

s0

s0

s0s0

s1s1s1

s1

s3

s3

s3s3s3

s5

s5

s5s5s5

s2

s2

s2s2s2

s4s4

s4

s4s4

dead, ∅

s0, ∅

s0,

s0,s0, s1, ∅

s1, ∅ s3, ∅ s5, ∅

s5, ∅s5, ∅

s2, ∅

s2, ∅s2, ∅ s4, ∅

s4, ∅

s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.
Thread 1

s0
s2
s4

Thread 2

s0
s3
s5

s0

s0

s0s0

s1s1s1

s1

s3

s3

s3s3s3

s5s5

s5

s5s5

s2

s2

s2s2s2

s4s4

s4

s4s4

dead, ∅

s0, ∅

s0,

s0,s0, s1, ∅

s1, ∅ s3, ∅

s5, ∅

s5, ∅

s5, ∅

s2, ∅

s2, ∅s2, ∅ s4, ∅

s4, ∅

s4, ∅s3, ∅s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.
Thread 1

s0
s2
s4

Thread 2

s0
s3
s5

s0

s0

s0s0

s1s1s1

s1

s3s3

s3

s3s3

s5s5

s5

s5s5

s2

s2

s2s2s2

s4s4

s4

s4s4

dead, ∅

s0, ∅s0,

s0,

s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅

s5, ∅

s2, ∅

s2, ∅s2, ∅ s4, ∅

s4, ∅

s4, ∅

s3, ∅

s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.
Thread 1

s0
s2
s4

Thread 2

s0
s3
s5

s0

s0

s0s0

s1s1s1

s1

s3s3

s3

s3s3

s5s5

s5

s5s5

s2

s2

s2s2s2

s4s4

s4

s4s4

dead, ∅

s0, ∅s0,

s0,

s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅

s5, ∅

s2, ∅

s2, ∅s2, ∅ s4, ∅

s4, ∅

s4, ∅

s3, ∅

s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.
Thread 1

s0
s2
s4

Thread 2

s0
s3

s5[s4]

s0

s0

s0s0

s1s1s1

s1

s3s3

s3

s3s3

s5s5

s5

s5s5

s2

s2

s2s2s2

s4s4s4

s4

s4

dead, ∅

s0, ∅s0,

s0,

s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅

s5, ∅

s2, ∅

s2, ∅s2, ∅ s4, ∅

s4, ∅

s4, ∅

s3, ∅

s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0
s2
s4

Thread 2

s0
s3
s5[s0]
s2

s0

s0

s0s0

s1s1s1

s1

s3s3

s3

s3s3

s5s5

s5

s5s5

s2

s2

s2s2s2

s4s4s4

s4

s4

dead, ∅

s0, ∅s0,

s0,

s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅

s5, ∅

s2, ∅

s2, ∅s2, ∅ s4, ∅

s4, ∅

s4, ∅

s3, ∅

s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0
s2
s4

Thread 2

s0
s3
s5[s0]
s2

s0

s0

s0s0

s1s1s1

s1

s3s3

s3

s3s3

s5s5

s5

s5s5

s2s2

s2

s2s2

s4s4s4

s4

s4

dead, ∅

s0, ∅s0,

s0,

s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅

s5, ∅ s2, ∅

s2, ∅

s2, ∅ s4, ∅

s4, ∅

s4, ∅

s3, ∅

s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0
s2

s4[s0]

Thread 2

s0
s3
s5[s0]
s2

s0s0

s0

s0

s1s1s1

s1

s3s3

s3

s3s3

s5s5

s5

s5s5

s2s2

s2

s2s2

s4s4s4

s4

s4

dead, ∅

s0, ∅s0,

s0,

s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅

s5, ∅ s2, ∅

s2, ∅

s2, ∅ s4, ∅

s4, ∅

s4, ∅

s3, ∅

s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0
s2
s4[s3]

Thread 2

s0
s3
s5[s0]
s2

s0s0

s0

s0

s1s1s1

s1

s3s3

s3s3

s3

s5s5

s5

s5s5

s2s2

s2

s2s2

s4s4s4

s4

s4

dead, ∅

s0, ∅s0,

s0,

s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅

s5, ∅ s2, ∅

s2, ∅

s2, ∅ s4, ∅

s4, ∅

s4, ∅

s3, ∅

s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0
s2
s4[s3]

Thread 2

s0
s3
s5[s0]
s2[s5]

s0s0

s0

s0

s1s1s1

s1

s3s3s3

s3

s3

s5s5s5

s5

s5

s2s2

s2

s2s2

s4s4s4

s4

s4

dead, ∅

s0, ∅s0,

s0,

s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅

s5, ∅ s2, ∅

s2, ∅

s2, ∅ s4, ∅

s4, ∅

s4, ∅

s3, ∅

s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0
s2
s4[s2]

Thread 2

s0
s3
s5[s0]
s2[s5]

s0s0

s0

s0

s1s1s1

s1

s3s3s3

s3

s3

s5s5s5

s5

s5

s2s2s2

s2

s2

s4s4s4

s4

s4

dead, ∅

s0, ∅s0,

s0,

s0, s1, ∅

s1, ∅

s3, ∅ s5, ∅

s5, ∅

s5, ∅ s2, ∅

s2, ∅

s2, ∅ s4, ∅

s4, ∅

s4, ∅

s3, ∅

s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Example for Bloemen et al.

Thread 1

s0
s2
s4[s2]

Thread 2

s0
s3
s5[s0]
s2[s5]

s0s0s0

s0

s1s1s1

s1

s3s3s3s3

s3

s5s5s5s5

s5

s2s2s2s2

s2

s4s4s4s4

s4

dead, ∅

s0, ∅s0,s0,

s0,

s1, ∅

s1, ∅

s3, ∅ s5, ∅s5, ∅

s5, ∅

s2, ∅s2, ∅

s2, ∅

s4, ∅s4, ∅

s4, ∅

s3, ∅

s3, ∅

If F = { , } then report counterexampe otherwise continue!

E. Renault Parallel Emptiness Checks Friday, May 18th 31 / 60

Results 1/2 (Bloemen and van de Pol [2016])

E. Renault Parallel Emptiness Checks Friday, May 18th 32 / 60

Results 1/2 (Bloemen and van de Pol [2016])

E. Renault Parallel Emptiness Checks Friday, May 18th 33 / 60

The lakes of the POR &
the one hundred bridges of the

proviso

E. Renault POR and Proviso Friday, May 18th 34 / 60

1

2

3

4

5

E. Renault POR and Proviso Friday, May 18th 35 / 60

State Space Explosion
Two concurrent processes
β independent of α1, α2, and α3

Process 1 Process 2 State Space

α1 α2

α3

β β

α1 α2

α3

α1 α2

α3

β β β β β β

Process interleavings are one of the main sources of
state-space explosion for explicit model checkers

E. Renault POR and Proviso Friday, May 18th 36 / 60

State Space Explosion
Two concurrent processes
β independent of α1, α2, and α3

Process 1 Process 2 State Space

α1 α2

α3

β β

α1 α2

α3

α1 α2

α3

β β β β β β

Process interleavings are one of the main sources of
state-space explosion for explicit model checkers

E. Renault POR and Proviso Friday, May 18th 36 / 60

Partial Order Reductions (POR)
Build a reduced state space
For each state only consider a reduced subset of actions

State Space Possible Reduced State Space

α1 α2

α3

α1 α2

α3

β β β β β β

α1 α2

α3

α1 α2

α3

β β β β β β

POR work only iff the property to check belongs to LTL\X
E. Renault POR and Proviso Friday, May 18th 37 / 60

The Ignoring Problem for Liveness Properties
If the same actions are consistently ignored along a cycle, they
may never be executed (below β is never executed)

α1 α2

α3

α1 α2

α3

β β β β β β

Requires an extra condition: the proviso
A provisoa ensures that every cycle in the reduced graph contains at
least one expanded state, i.e, a state where all actions are
considered.

aMore simpler provisos can be applied for safety properties Evangelista
and Pajault [2010]

E. Renault POR and Proviso Friday, May 18th 38 / 60

The Ignoring Problem for Liveness Properties
If the same actions are consistently ignored along a cycle, they
may never be executed (below β is never executed)

α1 α2

α3

α1 α2

α3

β β β β β β

Requires an extra condition: the proviso
A provisoa ensures that every cycle in the reduced graph contains at
least one expanded state, i.e, a state where all actions are
considered.

aMore simpler provisos can be applied for safety properties Evangelista
and Pajault [2010]

E. Renault POR and Proviso Friday, May 18th 38 / 60

Model Checking LTL\X with POR

Use classical DFS-based emptiness checks
During DFS:

how to detect cycles without expanded states?
which state to expand in a cycle?

Objectives:
Choose states to expand states in order to have the smallest
reduced state space

E. Renault Objectives Friday, May 18th 39 / 60

Variations on SPIN’s proviso

Source [Peled, 1994] CondSource

Systematically expands the Expands the source of
source of a backedge backedge iff destination

is not expanded

Expanded state Not expanded state Already visited edge
E. Renault Variations on SPIN’s proviso Friday, May 18th 40 / 60

Variations on SPIN’s proviso

Source [Peled, 1994] CondSource

Systematically expands the

Expands the source of

source of a backedge

backedge iff destination
is not expanded

Expanded state Not expanded state Already visited edge
E. Renault Variations on SPIN’s proviso Friday, May 18th 40 / 60

Variations on SPIN’s proviso

Source [Peled, 1994] CondSource

Systematically expands the

Expands the source of

source of a backedge

backedge iff destination
is not expanded

Expanded state Not expanded state Already visited edge
E. Renault Variations on SPIN’s proviso Friday, May 18th 40 / 60

Variations on SPIN’s proviso

Source [Peled, 1994] CondSource

Systematically expands the Expands the source of
source of a backedge backedge iff destination

is not expanded

Expanded state Not expanded state Already visited edge
E. Renault Variations on SPIN’s proviso Friday, May 18th 40 / 60

Evaluation

38 models from the BEEM benchmark
reduced implements the stubborn-set method from Valmari
Each model is run 100 times with different transition order

states (106) transitions (106) st/ms

Full 784.45 100.00% 2,677.73 100.00% 17.90

Source [Peled, 1994] 303.21 38.65% 679.16 25.36% 12.33
CondSource 252.83 32.23% 518.80 19.37% 11.85

None 57.58 7.34% 97.65 3.65% 22.65

E. Renault Variations on SPIN’s proviso Friday, May 18th 41 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp- Early tag Prioritizing known
-anded states on DFS “safe” states successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:

Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp- Early tag Prioritizing known
-anded states on DFS “safe” states successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp- Early tag Prioritizing known
-anded states on DFS “safe” states successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp- Early tag Prioritizing known
-anded states on DFS “safe” states successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp- Early tag Prioritizing known
-anded states on DFS “safe” states successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp-

Early tag Prioritizing known

-anded states on DFS

“safe” states successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp-

Early tag Prioritizing known

-anded states on DFS

“safe” states successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp-

Early tag Prioritizing known

-anded states on DFS

“safe” states successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp-

Early tag Prioritizing known

-anded states on DFS

“safe” states successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp- Early tag

Prioritizing known

-anded states on DFS “safe” states

successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp- Early tag

Prioritizing known

-anded states on DFS “safe” states

successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp- Early tag

Prioritizing known

-anded states on DFS “safe” states

successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp- Early tag

Prioritizing known

-anded states on DFS “safe” states

successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Deconstructing Evangelista and Pajault [2010] proviso

Based on CondSource

Try to reduce useless expansions:
Must consider all closing-edges:

Colors: safe, dangerous, on-dfs & not expanded

Weighted Scan Known

weight: 0

weight: 1

weight: 1

Keep track of exp- Early tag Prioritizing known
-anded states on DFS “safe” states successors

E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 42 / 60

Evaluation of each optimization

states (106) transitions (106) st/ms

Full 784.45 100.00% 2,677.73 100.00% 17.90

Source [Peled, 1994] 303.21 38.65% 679.16 25.36% 12.33
WeightedSource 263.43 33.58% 537.56 20.08% 11.68
WeightedSourceKnown1 262.63 33.48% 534.35 19.96% 11.77
CondSource 252.83 32.23% 518.80 19.37% 11.85
CondSourceKnown 251.05 32.00% 510.91 19.08% 11.89
WeightedSourceScan 250.49 31.93% 505.98 18.90% 11.67
WeightedSourceKnownScan1 248.11 31.63% 498.68 18.62% 11.70

None 57.58 7.34% 97.65 3.65% 22.65

Source have the best throughput
Most of the improvement comes from Cond
Evangelista’s provisos outperforms Source

1 [Evangelista and Pajault, 2010]
E. Renault Deconstructing Evangelista’s proviso Friday, May 18th 43 / 60

Provisos Based on Destination Expansion

Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower
context

Source Dest

Systematically expands the

Systematically expands the

source of a backegde

destination of a backedge

E. Renault Destination Expansion Based Provisos Friday, May 18th 44 / 60

Provisos Based on Destination Expansion

Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower
context

Source Dest

Systematically expands the

Systematically expands the

source of a backegde

destination of a backedge

E. Renault Destination Expansion Based Provisos Friday, May 18th 44 / 60

Provisos Based on Destination Expansion

Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower
context

Source Dest

Systematically expands the

Systematically expands the

source of a backegde

destination of a backedge

E. Renault Destination Expansion Based Provisos Friday, May 18th 44 / 60

Provisos Based on Destination Expansion

Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower
context

Source Dest

Systematically expands the

Systematically expands the

source of a backegde

destination of a backedge

E. Renault Destination Expansion Based Provisos Friday, May 18th 44 / 60

Provisos Based on Destination Expansion

Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower
context

Source Dest

Systematically expands the Systematically expands the
source of a backegde destination of a backedge

E. Renault Destination Expansion Based Provisos Friday, May 18th 44 / 60

Provisos Based on Destination Expansion

Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower
context

Source Dest

Systematically expands the Systematically expands the
source of a backegde destination of a backedge

E. Renault Destination Expansion Based Provisos Friday, May 18th 44 / 60

Provisos Based on Destination Expansion

Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower
context

Source Dest

Systematically expands the Systematically expands the
source of a backegde destination of a backedge

E. Renault Destination Expansion Based Provisos Friday, May 18th 44 / 60

Provisos Based on Destination Expansion

Proposed by Nalumasu and Gopalakrishnan [2002] in a narrower
context

Source Dest

Systematically expands the Systematically expands the
source of a backegde destination of a backedge

E. Renault Destination Expansion Based Provisos Friday, May 18th 44 / 60

Optimizations for these new provisos

Compatible with: Cond, Weighted, Known

Colored Unknown Deepest

Reuse colors Prioritizing Only mark the deepest
Mark for expansion unknown dest. for expansion
Expand iff necessary successsors

Mark for expansion Already visited edge Not yet visited edge
E. Renault Destination Expansion Based Provisos Friday, May 18th 45 / 60

Optimizations for these new provisos

Compatible with: Cond, Weighted, Known

Colored Unknown Deepest

Reuse colors Prioritizing Only mark the deepest
Mark for expansion unknown dest. for expansion
Expand iff necessary successsors

Mark for expansion Already visited edge Not yet visited edge
E. Renault Destination Expansion Based Provisos Friday, May 18th 45 / 60

Optimizations for these new provisos

Compatible with: Cond, Weighted, Known

Colored Unknown Deepest

Reuse colors

Prioritizing Only mark the deepest

Mark for expansion

unknown dest. for expansion

Expand iff necessary

successsors

Mark for expansion Already visited edge Not yet visited edge
E. Renault Destination Expansion Based Provisos Friday, May 18th 45 / 60

Optimizations for these new provisos

Compatible with: Cond, Weighted, Known

Colored Unknown Deepest

Reuse colors

Prioritizing Only mark the deepest

Mark for expansion

unknown dest. for expansion

Expand iff necessary

successsors

Mark for expansion Already visited edge Not yet visited edge
E. Renault Destination Expansion Based Provisos Friday, May 18th 45 / 60

Optimizations for these new provisos

Compatible with: Cond, Weighted, Known

Colored Unknown Deepest

Reuse colors Prioritizing

Only mark the deepest

Mark for expansion unknown

dest. for expansion

Expand iff necessary successsors

Mark for expansion Already visited edge Not yet visited edge
E. Renault Destination Expansion Based Provisos Friday, May 18th 45 / 60

Optimizations for these new provisos

Compatible with: Cond, Weighted, Known

Colored Unknown Deepest

Reuse colors Prioritizing Only mark the deepest
Mark for expansion unknown dest. for expansion
Expand iff necessary successsors

Mark for expansion Already visited edge Not yet visited edge
E. Renault Destination Expansion Based Provisos Friday, May 18th 45 / 60

Optimizations for these new provisos

Compatible with: Cond, Weighted, Known

Colored Unknown Deepest

Reuse colors Prioritizing Only mark the deepest
Mark for expansion unknown dest. for expansion
Expand iff necessary successsors

Mark for expansion Already visited edge Not yet visited edge
E. Renault Destination Expansion Based Provisos Friday, May 18th 45 / 60

Evaluation

states (106) transitions (106) st/ms

DeepestDestUnknown 276.51 35.25% 570.52 21.31% 11.81
DeepestDest 275.31 35.10% 566.63 21.16% 11.87
WeightedDestUnknown 273.94 34.92% 563.61 21.05% 11.83
Dest 272.79 34.77% 508.17 18.98% 14.48
WeightedDest 272.68 34.76% 559.73 20.90% 11.80
WeightedSourceKnownScan 248.11 31.63% 498.68 18.62% 11.70
CondDest 213.98 27.28% 413.15 15.43% 12.57
CondDestUnknown 213.92 27.27% 412.75 15.41% 12.52
ColoredDest 213.92 27.27% 412.93 15.42% 12.54
ColoredDestUnknown 213.83 27.26% 412.27 15.40% 12.46

CondDest outperforms state-of-the-art provisos
Weighted and Deepest variants are disappointing

E. Renault Destination Expansion Based Provisos Friday, May 18th 46 / 60

Improving Provisos With SCCs information
When destination is red, an expansion is required:

I Until now, the source was expanded

Dead Highlinks

Dead

q1

q2

q3

q4

s

s′

← highlink(s)

Avoid expansions when dest. Adaptation of Deepest when dest.
is dead, i.e. in a fully visited SCC is not on the DFS and not dead

Dead and Highlinks are compatibles with both
source and destination expansion-based provisos.

E. Renault Destination Expansion Based Provisos Friday, May 18th 47 / 60

Improving Provisos With SCCs information
When destination is red, an expansion is required:

I Until now, the source was expanded

Dead Highlinks

Dead

q1

q2

q3

q4

s

s′

← highlink(s)

Avoid expansions when dest. Adaptation of Deepest when dest.
is dead, i.e. in a fully visited SCC is not on the DFS and not dead

Dead and Highlinks are compatibles with both
source and destination expansion-based provisos.

E. Renault Destination Expansion Based Provisos Friday, May 18th 47 / 60

Improving Provisos With SCCs information
When destination is red, an expansion is required:

I Until now, the source was expanded

Dead Highlinks

Dead

q1

q2

q3

q4

s

s′

← highlink(s)

Avoid expansions when dest.

Adaptation of Deepest when dest.

is dead, i.e. in a fully visited SCC

is not on the DFS and not dead

Dead and Highlinks are compatibles with both
source and destination expansion-based provisos.

E. Renault Destination Expansion Based Provisos Friday, May 18th 47 / 60

Improving Provisos With SCCs information
When destination is red, an expansion is required:

I Until now, the source was expanded

Dead Highlinks

Dead

q1

q2

q3

q4

s

s′

← highlink(s)

Avoid expansions when dest. Adaptation of Deepest when dest.
is dead, i.e. in a fully visited SCC is not on the DFS and not dead

Dead and Highlinks are compatibles with both
source and destination expansion-based provisos.

E. Renault Destination Expansion Based Provisos Friday, May 18th 47 / 60

Improving Provisos With SCCs information
When destination is red, an expansion is required:

I Until now, the source was expanded

Dead Highlinks

Dead

q1

q2

q3

q4

s

s′

← highlink(s)

Avoid expansions when dest. Adaptation of Deepest when dest.
is dead, i.e. in a fully visited SCC is not on the DFS and not dead

Dead and Highlinks are compatibles with both
source and destination expansion-based provisos.

E. Renault Destination Expansion Based Provisos Friday, May 18th 47 / 60

Evaluation 1/2

states (106) transitions (106)

DeepestDest 275.31 35.10% 566.63 21.16%
DeadDeepestDest 269.10 34.30% 543.64 20.30%
WeightedDest 272.68 34.76% 559.73 20.90%
DeadWeightedDest 270.62 34.50% 554.91 20.72%
DeadWeightedSourceKnownScan 247.68 31.57% 497.79 18.59%
ColoredDest 213.92 27.27% 412.93 15.42%
DeadColoredDest 213.87 27.26% 412.80 15.42%
HighlinkWeightedDest 207.41 26.44% 393.22 14.68%
HighlinkWeightedDestScan 206.23 26.29% 391.05 14.60%
HighlinkWeightedSourceKnown 203.20 25.90% 386.84 14.45%
HighlinkWeightedSourceKnownScan 203.08 25.89% 386.60 14.44%
HighlinkDeepestDest 192.84 24.58% 349.89 13.07%
HighlinkDeepestDestScan 191.78 24.45% 347.95 12.99%

E. Renault Destination Expansion Based Provisos Friday, May 18th 48 / 60

Evaluation 2/2

Standard score for selected provisos
I take the set of 1600 runs generated
I compute a mean number µM for each model M
I compute a standard deviation σM for each model M
I standard score for a run r is then states(r)−µM

σM

Boxplot standard score

● ●●● ●●●●●●●●●● ●● ●●● ●● ●●● ●●● ●● ●●●●●● ●●●●● ●●● ●●● ●●●● ●● ●●●●●● ●● ●●● ●●● ●●● ●●●●● ●●●●●●●● ●●●● ●● ●●●●●●● ●● ●● ● ●●●●●●●●●● ●● ● ●●●●● ●●●●●●● ●●● ●●●●●● ●● ●● ●●●●● ●●●●●● ●●● ●● ●● ●●●●●●● ●● ●●●●●●● ●●

●●●●●●●

●●● ● ●●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●●●● ●●● ●●●●●●●● ●●●● ●●●● ●●●● ●●● ●●●●● ●● ●●●●●

●● ● ●●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●●●● ●●● ●●●●●●●● ●●●● ●●●● ●●●● ●●● ●●●●● ●● ●●●●●

●●●●●●●●●●●●●●●●●● ● ●●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●●●● ●●● ●●●●●●●● ●●●● ●●●● ●●●● ●●● ●●●●● ●● ●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●● ● ●●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●●●● ●●● ●●●●●●●● ●●●● ●●●● ●●●● ●●● ●●●●● ●● ●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●● ● ●●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●●●● ●●● ●●●●●●●● ●●●● ●●●● ●●●● ●●● ●●●●● ●● ●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●● ●● ●● ●● ●●●● ●● ●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●● ●●● ●●● ●● ●●●●●●● ●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●● ●●● ●●●

●●● ●●● ●●●●● ●●●●●●●●● ●●●● ●●●●●●●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●●●●●● ●●●●● ● ●● ●●●● ●●●● ●● ●●●●●●●●● ●● ●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●● ●●● ●● ●●● ●● ●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●● ● ●● ●●●●● ●●● ●●●●●

●● ●● ●●● ●●●●● ●●●●●●●●● ●●●●● ●●●●●● ●●●●●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●●●●●● ●●●●● ● ●● ●●●● ●●●● ●● ●●●●●●●●● ●● ●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●● ●● ●● ●●●●●●● ●●●●●● ●●● ●●●● ●●● ●●●●● ● ●● ●● ●●●●● ●●● ●●● ●● ●

●● ●● ● ●● ●●●● ●● ●●● ●●●● ●●●● ●● ●● ● ●●●

●● ●● ●●●● ●● ●● ● ●● ● ●● ●●●●●● ●●●●●

●●●●●● ●●●●● ●● ●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ●● ●●●● ●●●●● ●●●●● ● ●●● ●●● ● ●●●●● ●●● ●● ●● ● ●●●● ●●● ●●●● ●● ●●●● ●●● ●● ● ● ●● ●●● ●● ●● ●●●● ●●● ●● ●●● ●● ●●●●●●●●●●● ●● ●●●●●●●●● ● ●● ●● ●●● ●● ●●●●● ● ●●● ●● ●● ●● ●●●● ●● ●● ● ●●● ● ●● ●● ●●●● ●● ●●● ●●●●● ●●● ●● ● ●●●●●● ● ●●● ●● ● ●●●● ●●●● ● ●● ● ● ●●●●●● ●●● ●●●● ●● ●●● ● ●● ● ●●● ●● ●●● ●●● ●●● ●● ● ● ●●● ●●● ●● ●●● ●● ●●● ●● ●● ●●●● ●● ●●●●●● ●●●● ●

●●● ●● ●●● ●● ●● ●●● ●● ● ●● ●●

●●● ● ●●● ● ●●●● ●● ●●● ●●

HDpDSc
HWSKSc

DeCD
CD

CdD
CdDU

CDU
DeWSKSc

WSKSc
WSSc

WS
WSK

D
CdSK

CdS
S

−4 −2 0 2 4 6

Source expansion
Dest. expansion
SCC−based dest. exp.
SCC−based source exp.

S: Source
Cd: Cond
K: Known
W: Weighted
Sc: Scan
D: Dest
U: Unknown
C: Colored
Dp: Deepest
De: Dead
H: Highlink

E. Renault Destination Expansion Based Provisos Friday, May 18th 49 / 60

Results

Overview of state-of-the-art provisos for checking liveness
properties
New heuristics: Colored, Deepest, Dead, Highlink
Combination with existing heuristics
Intensive evaluation
Independant of the reduction technique: ample set, sttuborn set,
etc. (see [Laarman et al., 2014] for survey)

Our recommended provisos:
CondDest in NDFS-based emptiness-checks
HighlinkWeightedSourceKnown in SCC-based
emptiness checks (no scan required)

E. Renault Destination Expansion Based Provisos Friday, May 18th 50 / 60

Explore new Lands . . .

E. Renault Destination Expansion Based Provisos Friday, May 18th 51 / 60

Perspectives

Parallel Algorithms
I Exploit Topology:

F If the automaton to check is linear, parallel algorithms can’t help
to speed up computation

I Mix UFSCC with POR:
F CNDFS has been successfuly mixed with POR and can benefits

from all previous techniques.
I Improve classical ω-automata algorithms

Distributed Algorithms
I Improve existing algorithms
I Build message-passing algorithms rather than shared

memory-one

E. Renault Destination Expansion Based Provisos Friday, May 18th 52 / 60

E. Renault Destination Expansion Based Provisos Friday, May 18th 53 / 60

Bibliography I

Alur, R., Chaudhuri, S., Etessami, K., and Madhusudan, P. (2005). On-the-fly reachability and
cycle detection for recursive state machines. In Halbwachs, N. and Zuck, L., editors,
Proceedings of the 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05), volume 3440 of Lecture Notes in
Computer Science, pages 61–76. Springer Berlin Heidelberg.

Barnat, J., Brim, L., and Chaloupka, J. (2003). Parallel breadth-first search LTL
model-checking. In Proceedings of the 18th IEEE International Conference On Automated
Software Engineering (ASE’03), pages 106–115. IEEE Computer Society.

Bloemen, V., Laarman, A., and van de Pol, J. (2016). Multi-core On-the-fly SCC
Decomposition. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’16). ACM.

Bloemen, V. and van de Pol, J. (2016). Multi-core scc-based ltl model checking. Hardware and
Software: Verification and Testing: 12th International Haifa Verification Conference
(HVC’16), pages 18–33.

Brim, L., Černá, I., Krcal, P., and Pelánek, R. (2001). Distributed LTL model checking based
on negative cycle detection. In Proceedings of the 21st Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’01), pages 96–107.

E. Renault Destination Expansion Based Provisos Friday, May 18th 54 / 60

Bibliography II
Brim, L., Černá, I., Moravec, P., and Šimša, J. (2004). Accepting predecessors are better than

back edges in distributed LTL model-checking. In Hu, A. J. and Martin, A. K., editors,
Proceedings of the 5th International Conference on Formal Methods in Computer-Aided
Design (FMCAD’04), volume 3312 of Lecture Notes in Computer Science, pages 352–366.
Springer.

Černá, I. and Pelánek, R. (2003). Distributed explicit fair cycle detection (set based approach).
In Ball, T. and Rajamani, S., editors, Proceedings of the 10th International SPIN Workshop
on Model Checking of Software (SPIN’03), volume 2648 of Lecture Notes in Computer
Science, pages 49–73. Springer Berlin Heidelberg.

Cheriyan, J. and Mehlhorn, K. (1996). Algorithms for dense graphs and networks on the
random access computer. Algorithmica, 15(6):521–549.

Courcoubetis, C., Vardi, M. Y., Wolper, P., and Yannakakis, M. (1991). Memory-efficient
algorithm for the verification of temporal properties. In Clarke, E. M. and Kurshan, R. P.,
editors, Proceedings of the 2nd international workshop on Computer Aided Verification
(CAV’90), volume 531 of Lecture Notes in Computer Science, pages 233–242.
Springer-Verlag.

Couvreur, J.-M. (1999). On-the-fly verification of temporal logic. In Wing, J. M., Woodcock,
J., and Davies, J., editors, Proceedings of the World Congress on Formal Methods in the
Development of Computing Systems (FM’99), volume 1708 of Lecture Notes in Computer
Science, pages 253–271, Toulouse, France. Springer-Verlag.

E. Renault Destination Expansion Based Provisos Friday, May 18th 55 / 60

Bibliography III
Couvreur, J.-M., Duret-Lutz, A., and Poitrenaud, D. (2005). On-the-fly emptiness checks for

generalized Büchi automata. In Godefroid, P., editor, Proceedings of the 12th International
SPIN Workshop on Model Checking of Software (SPIN’05), volume 3639 of Lecture Notes
in Computer Science, pages 143–158. Springer.

Dijkstra, E. W. (1973). EWD 376: Finding the maximum strong components in a directed
graph. http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF.

Edelkamp, S., Leue, S., and Lluch-Lafuente, A. (2004). Directed explicit-state model checking
in the validation of communication protocols. STTT, 5(2–3):247–267.

Evangelista, S., Laarman, A., Petrucci, L., and van de Pol, J. (2012). Improved multi-core
nested depth-first search. In Proceedings of the 10th international conference on Automated
technology for verification and analysis (ATVA’12), volume 7561 of Lecture Notes in
Computer Science, pages 269–283. Springer-Verlag.

Evangelista, S. and Pajault, C. (2010). Solving the ignoring problem for partial order reduction.
STTT, 12(2):155–170.

Evangelista, S., Petrucci, L., and Youcef, S. (2011). Parallel nested depth-first searches for LTL
model checking. In Proceedings of the 9th international conference on Automated
technology for verification and analysis (ATVA’11), volume 6996 of Lecture Notes in
Computer Science, pages 381–396. Springer-Verlag.

Gabow, H. N. (2000). Path-based depth-first search for strong and biconnected components.
Information Processing Letters, 74(3-4):107–114.

E. Renault Destination Expansion Based Provisos Friday, May 18th 56 / 60

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF

Bibliography IV
Gaiser, A. and Schwoon, S. (2009). Comparison of algorithms for checking emptiness on Büchi

automata. In Hlinený, P., Matyás, V., and Vojnar, T., editors, Procedings of Annual Doctoral
Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS’09),
volume 13 of OASICS. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, Germany.

Geldenhuys, J. and Valmari, A. (2004). Tarjan’s algorithm makes on-the-fly LTL verification
more efficient. In Jensen, K. and Podelski, A., editors, Proceedings of the 10th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04), volume 2988 of Lecture Notes in Computer Science, pages 205–219. Springer.

Geldenhuys, J. and Valmari, A. (2005). More efficient on-the-fly LTL verification with Tarjan’s
algorithm. Theoretical Computer Science, 345(1):60–82.

Godefroid, P. and Holzmann, G. J. (1993). On the verification of temporal properties. In
Danthine, A. A. S., Leduc, G., and Wolper, P., editors, Proceedings of the 13th IFIP
TC6/WG6.1 International Symposium on Protocol Specification, Testing, and Verification
(PSTV’93), volume C-16 of IFIP Transactions, pages 109–124, Liege, Belgium.
North-Holland.

Hansen, H. and Geldenhuys, J. (2008). Cheap and small counterexamples. In Cerone, A. and
Gruner, S., editors, Proceedings of the 6th IEEE International Conference on Software
Engineering and Formal Methods (SEFM’08), pages 53–62. IEEE Computer Society.

Holzmann, G. J. (1991). Design and Validation of computer protocols, volume 07632 of
Prentice Hall Software Series. Brian W. Kernighan.

E. Renault Destination Expansion Based Provisos Friday, May 18th 57 / 60

Bibliography V
Holzmann, G. J., Joshi, R., and Groce, A. (2011). Swarm verification techniques. IEEE

Transaction on Software Engineering, 37(6):845–857.

Holzmann, G. J. and Peled, D. (1994). An improvement in formal verification. In Proceeding of
the 7th IFIP WG 6.1 International Conference on Formal Description Techniques
(FORTE’94), volume 6 of IFIP Conference Proceedings, pages 109–124, Berne, Switzerland.
Chapman & Hall.

Holzmann, G. J., Peled, D. A., and Yannakakis, M. (1996). On nested depth first search. In
Grégoire, J.-C., Holzmann, G. J., and Peled, D. A., editors, Proceedings of the 2nd Spin
Workshop, volume 32 of DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society.

Jayanti, S. V. and Tarjan, R. E. (2016). A randomized concurrent algorithm for disjoint set
union. pages 75–82.

Laarman, A., Langerak, R., van de Pol, J., Weber, M., and Wijs, A. (2011). Multi-core nested
depth-first search. In Bultan, T. and Hsiung, P.-A., editors, Proceedings of the Automated
Technology for Verification and Analysis, 9th International Symposium (ATVA’11), volume
6996 of Lecture Notes in Computer Science, pages 321–335, Taipei, Taiwan. Springer.

Laarman, A., Pater, E., Pol, J., and Hansen, H. (2014). Guard-based partial-order reduction.
STTT, pages 1–22.

Laarman, A. and van de Pol, J. (2011). Variations on multi-core nested depth-first search. In
PDMC, pages 13–28.

E. Renault Destination Expansion Based Provisos Friday, May 18th 58 / 60

Bibliography VI
Nalumasu, R. and Gopalakrishnan, G. (2002). An efficient partial order reduction algorithm

with an alternative proviso implementation. FMSD, 20(1):231–247.

Nuutila, E. and Soisalon-Soininen, E. (1994). On finding the strongly connected components in
a directed graph. Information Processing Letters, 49(1):9–14.

Peled, D. (1994). Combining partial order reductions with on-the-fly model-checking. In
Proceedings of the 6th International Conference on Computer Aided Verification (CAV’94),
volume 818 of Lecture Notes in Computer Science, pages 377–390. Springer-Verlag.

Reif, J. H. (1985). Depth-first search is inherently sequential. Information Processing Letters,
20:229–234.

Renault, E., Duret-Lutz, A., Kordon, F., and Poitrenaud, D. (2016). Variations on parallel
explicit model checking for generalized Büchi automata. International Journal on Software
Tools for Technology Transfer (STTT), ??(??):??–??

Schwoon, S. and Esparza, J. (2005). A note on on-the-fly verification algorithms. In Halbwachs,
N. and Zuck, L., editors, Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’05), volume 3440 of
Lecture Notes in Computer Science, Edinburgh, Scotland. Springer.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160.

Tauriainen, H. (2004). Nested emptiness search for generalized Büchi automata. In Proceedings
of the 4th International Conference on Application of Concurrency to System Design
(ACSD’04), pages 165–174. IEEE Computer Society.

E. Renault Destination Expansion Based Provisos Friday, May 18th 59 / 60

Construction of AW

s0

s2

s1

s3

s4

a

>

ā

āc

c

ac

āc̄ āc̄

ac̄

abc̄

b

ac̄

All acceptance sets are removed and
a single acceptance set labels all transitions of weak SCC.

E. Renault Destination Expansion Based Provisos Friday, May 18th 60 / 60

Construction of AW

s0

s2

s1

a

ac

āc̄ āc̄

ac̄

abc̄

b

ac̄

All acceptance sets are removed and
a single acceptance set labels all transitions of weak SCC.

E. Renault Destination Expansion Based Provisos Friday, May 18th 60 / 60

