
Abstractions

Etienne Renault

October 2, 2020

https://www.lrde.epita.fr/~renault/teaching/algorep/

Etienne Renault algorep October 2, 2020 1 / 28

https://www.lrde.epita.fr/~renault/teaching/algorep/


Forewords

Success really depends on the conception of problems, the design of
the system, not on the details of how it’s coated.

Leslie Lamport

Etienne Renault algorep October 2, 2020 2 / 28



A need for abstractions

Studying distributed systems is not trivial and many factors have to
be considered:

Communication infrastructures: latency, throughput, reliability,
protocols

Operating systems: preemption, multithreading, Ghz, etc.

Filesystem, middleware

Failures

What about details?
What about complexity?

Etienne Renault algorep October 2, 2020 3 / 28



A need for abstractions

Studying distributed systems is not trivial and many factors have to
be considered:

Communication infrastructures: latency, throughput, reliability,
protocols

Operating systems: preemption, multithreading, Ghz, etc.

Filesystem, middleware

Failures

What about details?
What about complexity?

Etienne Renault algorep October 2, 2020 3 / 28



Table of Contents

1 Abstracting Systems

2 Abstracting Failures

3 Combining Abstractions

4 Abstracting Properties

Etienne Renault algorep October 2, 2020 4 / 28



Maximal Abstraction

A distributed system is composed of computational entities
communicating by exchanging messages.

Processes (computing elements)

Links (network)

Messages (data/information)

Etienne Renault algorep October 2, 2020 5 / 28



Processes (informally)

Associated to each node i ∈ V we have a process.
A process is defined by a state machine, i.e. an algorithm.

Three kind of events can arise during a process’life:

1 local event: the status of the process has changed

2 send message: some information has been send to another
process

3 receive message: some information has been received from
another process

Etienne Renault algorep October 2, 2020 6 / 28



Distributed Systems (formally) 1/2

Consider G = (V ,E ) a directed graph, with:

V the nodes (processes) in the network

E the edges (channels) of the network

∀i ∈ V , outi denotes the outgoing neighbours of node i ,i.e.
nodes from which there are edges from i in G.

∀i ∈ V , ini denotes the incoming neighbours of node i ,i.e. nodes
from which there are edges to i in G.

Etienne Renault algorep October 2, 2020 7 / 28



Transitions Functions

Suppose we have some fixed message alphabet M , we denote by:

msgi a message-generation function mapping statesi × outi to
elements of M ∪ {null}
transi a state-transition function mapping statesi and vectors of
elements of M ∪ {null} (indexed by ini) to statesi .

Associated with each edge (i , j) there is a channel which is just a
location that can hold messages.

Etienne Renault algorep October 2, 2020 8 / 28



Various Timing models

Synchronising processes is one of the most difficult
part of distributed system

Multiple models exit:

Asynchronous model: Processes do not share a clock

Synchronous model: Processes share a clock

Partially-synchronous model: Processes have approximately
synchronized clocks

Etienne Renault algorep October 2, 2020 9 / 28



Asynchronous model

Etienne Renault algorep October 2, 2020 10 / 28



Asynchronous model

No timing assumption about processes and channels,
i.e. no physical assumptions about delays.

Each process have local view of time called logical time

Any time an event occurs (local or global) at process p, its
logical clock is updated:

I local event increase logical time by one unit
I global event requires more complex strategies (details in a later

lecture).

Etienne Renault algorep October 2, 2020 11 / 28



Synchronous model

Etienne Renault algorep October 2, 2020 12 / 28



Synchronous model

Physical timing assumption on processes and links

Synchronous computation: there is known upper bound on
processing delays.

Synchronous communication: there is a known upper bound on
message transmission delays.

Synchronous physical clocks: Processes are equipped with a
local physical clock and there is a known upper bound on the
rate at which the local physical clock deviates from a global real
time clock

The combination of the computation and communication
is called a round

Etienne Renault algorep October 2, 2020 13 / 28



Complexity in Synchronous Model

Two measures of complexity are considered for synchronous
distributed algorithms:

Time Complexity : measured in term of number of rounds until
all the required outputs are produced.

Communication Complexity : measured in term of non-null
messages that are sent. (We may also sometime consider the
number of bits in these messages).

Etienne Renault algorep October 2, 2020 14 / 28



Partially Synchronous model

Etienne Renault algorep October 2, 2020 15 / 28



Partially Synchronous model

Most of the time distributed systems are completely synchronous, but
there are however periods where the timing assumptions do not hold.

⇒ Assume that a system that is eventually synchronous.

This does not mean that:

there is a time after which the underlying system (including
application, hardware and networking components) is
synchronous forever

The system needs to be initially asynchronous and then only
after some (long time) period becomes synchronous

Etienne Renault algorep October 2, 2020 16 / 28



Partially Synchronous model

Most of the time distributed systems are completely synchronous, but
there are however periods where the timing assumptions do not hold.

⇒ Assume that a system that is eventually synchronous.

This does not mean that:

there is a time after which the underlying system (including
application, hardware and networking components) is
synchronous forever

The system needs to be initially asynchronous and then only
after some (long time) period becomes synchronous

Etienne Renault algorep October 2, 2020 16 / 28



Table of Contents

1 Abstracting Systems

2 Abstracting Failures

3 Combining Abstractions

4 Abstracting Properties

Etienne Renault algorep October 2, 2020 17 / 28



Process Failures Model 1/3

Process Failures
Unless it fails, a process is supposed to execute the algorithm

assigned to it.

Etienne Renault algorep October 2, 2020 18 / 28



Process Failures Model 2/3

Arbitrary fault (Byzantines):
I Not necessarily malicious but can!
I Can be caused by a bug in the implementation
I Most expensive to tolerate, but this is the only acceptable

option when an extremely high coverage is required

Omissions
I A process that does not send (resp. receive) a message it is

supposed to send (resp. receive), according to its algorithm.
I Often due to buffer overflows or network congestion

Lies
I A process that does not send expected responses
I Often due to malicious behaviour (hacker)

Etienne Renault algorep October 2, 2020 19 / 28



Process Failures Model 3/3

Crashes
I Special case of omissions where at some point a process do not

reply to any message
I a process executes its algorithm correctly, unless it crashes

Recovery
I After a crash a process can recovers (a finite number of times)
I Can be seen as amnesia
I significantly complicates the design of algorithms because, upon

recovery, the process might send new messages that contradict
messages that the process might have sent prior to the crash

Etienne Renault algorep October 2, 2020 20 / 28



Link Failure

Crash, Loss, Duplicate can be addressed by some lower level protocol,
for instance TCP

As long as the network remains connected, link crashes may be
masked by routing.

Link Crashes reveal a lot of impossibility results (see later lectures)

Etienne Renault algorep October 2, 2020 21 / 28



Link Abstraction

Fair-loss Links:
I Guarantees that a link does not systematically drop any given

message
I Messages might be lost but the probability for a message not to

be lost is non-zero

Stubborn links:
I Make sure its messages are eventually delivered by the

destination processes.
I Keeps on retransmiting all messages sent

Perfect links:
I Stubborn Links
I + Duplication avoidance mechanism

Etienne Renault algorep October 2, 2020 22 / 28



Table of Contents

1 Abstracting Systems

2 Abstracting Failures

3 Combining Abstractions

4 Abstracting Properties

Etienne Renault algorep October 2, 2020 23 / 28



Classical combinations

Fail Stop
I Perfect links
I Crash-stop process abstraction
I Perfect failure detector

Fail Noisy
I Perfect links
I Crash-stop process abstraction
I Eventual Perfect failure detector

Fail Stop
I Perfect links
I Crash-stop process abstraction

Fail Recovery
I Stubborn Links
I Crash-recovery process abstraction

Etienne Renault algorep October 2, 2020 24 / 28



Table of Contents

1 Abstracting Systems

2 Abstracting Failures

3 Combining Abstractions

4 Abstracting Properties

Etienne Renault algorep October 2, 2020 25 / 28



Basic Properties of Distributed Systems

Safety: states that the algorithm should not do anything wrong
Example: no process should receive a message unless this
message was indeed sent

Liveness: states that eventually something good happens
Example: if a correct process sends a message to a correct
destination process, then the destination process should
eventually deliver the message

Etienne Renault algorep October 2, 2020 26 / 28



Temporal Logics

Expressing safety and liveness properties
can be done with temporal logics.

⇒ Ease the expression of complex properties about multiple
distributed processes

Verification of distributed systems in complex and can’t be done with
testing

⇒ Model Checking is a solution (see later lecture)

Etienne Renault algorep October 2, 2020 27 / 28



Conclusion

Distributed systems can’t be analyzed without abstractions

The system is modelled as a combination of graph and state
machine

Computing complexity of distributed algorithms is complex, and
must consider: classical complexity, message complexity and
rounds for synchronous systems

The system will be analyzed using a combination of link failures
and process failures

The verification of properties of distributed systems fall in two
classes : safety and liveness

This verification can be done with model checking

Etienne Renault algorep October 2, 2020 28 / 28


	Abstracting Systems
	Abstracting Failures
	Combining Abstractions
	Abstracting Properties

