
Leader Election in a Synchronous Ring

Etienne Renault

2 octobre 2020

https://www.lrde.epita.fr/~renault/teaching/algorep/

Etienne Renault algorep 2 octobre 2020 1 / 31

https://www.lrde.epita.fr/~renault/teaching/algorep/


Table of Contents

1 Problem Statement

2 LCR Algorithm (comparison-based)

3 HS Algorithm (comparison-based)

4 TimeSlice Algorithm (non-comparison-based)

5 Lower Bounds

Etienne Renault algorep 2 octobre 2020 2 / 31



Problem Statement

The network digraph is a ring with n nodes

All processes are identical

Each process can only communicate with clockwise neighbour
and counterclockwise neighbour

One process outputs “I’m the leader” while the other process output
“I’m not the leader”

?

?

?

?

?

?

Etienne Renault algorep 2 octobre 2020 3 / 31



Problem Statement

The network digraph is a ring with n nodes

All processes are identical

Each process can only communicate with clockwise neighbour
and counterclockwise neighbour

One process outputs “I’m the leader” while the other process output
“I’m not the leader”

?

?

?

?

?

?

Etienne Renault algorep 2 octobre 2020 3 / 31



Problem Statement

The network digraph is a ring with n nodes

All processes are identical

Each process can only communicate with clockwise neighbour
and counterclockwise neighbour

One process outputs “I’m the leader” while the other process output
“I’m not the leader”

?

?

?

?

?

?

Etienne Renault algorep 2 octobre 2020 3 / 31



Impossibility Result for Identical Processes

Theorem
Let S be a system of n processes, n > 1, arranged in a bidirectionnal
ring. If all the processes are identical then S does not solve the
leader-election problem.

Etienne Renault algorep 2 octobre 2020 4 / 31



Sketch of Proof

1 Suppose there is a system S that solves this problem

2 Without loss of generality, we can assume that each process of S
have a unique initial state.

3 By induction on the number r of rounds, all the processes are in
identical states immediately after r rounds.

4 Then if a process reaches a state where it considers to be the
leader, all the other processes do so.

5 But this violates the uniqueness requirement

Etienne Renault algorep 2 octobre 2020 5 / 31



Sketch of Proof

1 Suppose there is a system S that solves this problem

2 Without loss of generality, we can assume that each process of S
have a unique initial state.

3 By induction on the number r of rounds, all the processes are in
identical states immediately after r rounds.

4 Then if a process reaches a state where it considers to be the
leader, all the other processes do so.

5 But this violates the uniqueness requirement

Etienne Renault algorep 2 octobre 2020 5 / 31



Sketch of Proof

1 Suppose there is a system S that solves this problem

2 Without loss of generality, we can assume that each process of S
have a unique initial state.

3 By induction on the number r of rounds, all the processes are in
identical states immediately after r rounds.

4 Then if a process reaches a state where it considers to be the
leader, all the other processes do so.

5 But this violates the uniqueness requirement

Etienne Renault algorep 2 octobre 2020 5 / 31



Sketch of Proof

1 Suppose there is a system S that solves this problem

2 Without loss of generality, we can assume that each process of S
have a unique initial state.

3 By induction on the number r of rounds, all the processes are in
identical states immediately after r rounds.

4 Then if a process reaches a state where it considers to be the
leader, all the other processes do so.

5 But this violates the uniqueness requirement

Etienne Renault algorep 2 octobre 2020 5 / 31



Sketch of Proof

1 Suppose there is a system S that solves this problem

2 Without loss of generality, we can assume that each process of S
have a unique initial state.

3 By induction on the number r of rounds, all the processes are in
identical states immediately after r rounds.

4 Then if a process reaches a state where it considers to be the
leader, all the other processes do so.

5 But this violates the uniqueness requirement

Etienne Renault algorep 2 octobre 2020 5 / 31



Problem Statement Revisited

The network digraph is a ring with n nodes

All processes are identical except for a UID

Each process can only communicate with clockwise neighbour
and counterclockwise neighbour

Two kind of algorithms solving the leader election problem exist :

Comparison-based : UIDs are only used in comparisons

Non-Comparison-based : UIDs may be used for computation

Etienne Renault algorep 2 octobre 2020 6 / 31



Problem Statement Revisited

The network digraph is a ring with n nodes

All processes are identical except for a UID

Each process can only communicate with clockwise neighbour
and counterclockwise neighbour

Two kind of algorithms solving the leader election problem exist :

Comparison-based : UIDs are only used in comparisons

Non-Comparison-based : UIDs may be used for computation

Etienne Renault algorep 2 octobre 2020 6 / 31



Table of Contents

1 Problem Statement

2 LCR Algorithm (comparison-based)

3 HS Algorithm (comparison-based)

4 TimeSlice Algorithm (non-comparison-based)

5 Lower Bounds

Etienne Renault algorep 2 octobre 2020 7 / 31



1 Problem Statement

2 LCR Algorithm (comparison-based)

3 HS Algorithm (comparison-based)

4 TimeSlice Algorithm (non-comparison-based)

5 Lower Bounds

Etienne Renault algorep 2 octobre 2020 8 / 31



LCR Algorithm

Tribute to LeLann[1977] algorithm
Optimized later by Chang & Roberts [1979]

Unidirectionnal Ring

The size of the ring is unknown to the processes

Comparison-based Algorithm

It elects the process with the maximum UID

Etienne Renault algorep 2 octobre 2020 9 / 31



LCR Algorithm : Informal

1 Each process sends its UID around the ring

2 When a process receives a UID, it compares this one to its own :

I If the incoming UID is greater, then it passes this UID to the
next process

I If the incoming UID is smaller, then it discards it
I If it is equal, then the process declares itself the leader

Etienne Renault algorep 2 octobre 2020 10 / 31



LCR Algorithm : Informal

1 Each process sends its UID around the ring

2 When a process receives a UID, it compares this one to its own :

I If the incoming UID is greater, then it passes this UID to the
next process

I If the incoming UID is smaller, then it discards it
I If it is equal, then the process declares itself the leader

Etienne Renault algorep 2 octobre 2020 10 / 31



LCR Algorithm : Informal

1 Each process sends its UID around the ring

2 When a process receives a UID, it compares this one to its own :
I If the incoming UID is greater, then it passes this UID to the

next process

I If the incoming UID is smaller, then it discards it
I If it is equal, then the process declares itself the leader

Etienne Renault algorep 2 octobre 2020 10 / 31



LCR Algorithm : Informal

1 Each process sends its UID around the ring

2 When a process receives a UID, it compares this one to its own :
I If the incoming UID is greater, then it passes this UID to the

next process
I If the incoming UID is smaller, then it discards it

I If it is equal, then the process declares itself the leader

Etienne Renault algorep 2 octobre 2020 10 / 31



LCR Algorithm : Informal

1 Each process sends its UID around the ring

2 When a process receives a UID, it compares this one to its own :
I If the incoming UID is greater, then it passes this UID to the

next process
I If the incoming UID is smaller, then it discards it
I If it is equal, then the process declares itself the leader

Etienne Renault algorep 2 octobre 2020 10 / 31



Example

1

21

13

42

15

51

51

Initial State

1 21

13

4215

51

Round 1

51

21

42

Round 2

51

Round 3

51

Round 4

51

Round 5

51

Round 7Election Successful

Etienne Renault algorep 2 octobre 2020 11 / 31



Example

1

21

13

42

15

51

51

Initial State

1 21

13

4215

51

Round 1

51

21

42

Round 2

51

Round 3

51

Round 4

51

Round 5

51

Round 7Election Successful

Etienne Renault algorep 2 octobre 2020 11 / 31



Example

1

21

13

42

15

51

51

Initial State

1 21

13

4215

51

Round 1

51

21

42

Round 2

51

Round 3

51

Round 4

51

Round 5

51

Round 7Election Successful

Etienne Renault algorep 2 octobre 2020 11 / 31



Example

1

21

13

42

15

51

51

Initial State

1 21

13

4215

51

Round 1

51

21

42

Round 2

51

Round 3

51

Round 4

51

Round 5

51

Round 7Election Successful

Etienne Renault algorep 2 octobre 2020 11 / 31



Example

1

21

13

42

15

51

51

Initial State

1 21

13

4215

51

Round 1

51

21

42

Round 2

51

Round 3

51

Round 4

51

Round 5

51

Round 7Election Successful

Etienne Renault algorep 2 octobre 2020 11 / 31



Example

1

21

13

42

15

51

51

Initial State

1 21

13

4215

51

Round 1

51

21

42

Round 2

51

Round 3

51

Round 4

51

Round 5

51

Round 7Election Successful

Etienne Renault algorep 2 octobre 2020 11 / 31



Example

1

21

13

42

15

51

51

Initial State

1 21

13

4215

51

Round 1

51

21

42

Round 2

51

Round 3

51

Round 4

51

Round 5

51

Round 7

Election Successful

Etienne Renault algorep 2 octobre 2020 11 / 31



Example

1

21

13

42

15

5151

Initial State

1 21

13

4215

51

Round 1

51

21

42

Round 2

51

Round 3

51

Round 4

51

Round 5

51

Round 7

Election Successful

Etienne Renault algorep 2 octobre 2020 11 / 31



Complexity

Best Case : UIDs are sorted by increasing order
I n rounds
I O(n) messages

Worst Case : UIDs are sorted by decreasing order
I n rounds
I O(n2) messages

When a node has been elected, n rounds and n messages are required
to ensure the halting of the system.

Etienne Renault algorep 2 octobre 2020 12 / 31



Table of Contents

1 Problem Statement

2 LCR Algorithm (comparison-based)

3 HS Algorithm (comparison-based)

4 TimeSlice Algorithm (non-comparison-based)

5 Lower Bounds

Etienne Renault algorep 2 octobre 2020 13 / 31



1 Problem Statement

2 LCR Algorithm (comparison-based)

3 HS Algorithm (comparison-based)

4 TimeSlice Algorithm (non-comparison-based)

5 Lower Bounds

Etienne Renault algorep 2 octobre 2020 14 / 31



Problem

The communication complexity of LCR algorithm is high !

We want to minimize the number of messages to avoid network
congestion.

Etienne Renault algorep 2 octobre 2020 15 / 31



HS Algorithm

Tribute to Hirshberg & Sainclair[1980] algorithm

Bididirectionnal Ring

The size of the ring is unknown to the processes

Comparison-based Algorithm

It elects the process with the maximum UID

Etienne Renault algorep 2 octobre 2020 16 / 31



HS Algorithm : Informal

1 Each process i operates in phases

2 In each phase ` :

I Process i send out tokens containings its UIDi in both
directions

I Tokens travel distance 2` and return to their origin i
I When a process i receive a token t containing UID tuid :

F if tuid < UIDi then the token is discarded

F if tuid > UIDi then the process i relays the token

F if tuid = UIDi then the process is the leader

I If both tokens come back safely, process i starts a new phase

I Otherwise the process considers itself as a non-leader

Etienne Renault algorep 2 octobre 2020 17 / 31



HS Algorithm : Informal

1 Each process i operates in phases

2 In each phase ` :

I Process i send out tokens containings its UIDi in both
directions

I Tokens travel distance 2` and return to their origin i
I When a process i receive a token t containing UID tuid :

F if tuid < UIDi then the token is discarded

F if tuid > UIDi then the process i relays the token

F if tuid = UIDi then the process is the leader

I If both tokens come back safely, process i starts a new phase

I Otherwise the process considers itself as a non-leader

Etienne Renault algorep 2 octobre 2020 17 / 31



HS Algorithm : Informal

1 Each process i operates in phases

2 In each phase ` :

I Process i send out tokens containings its UIDi in both
directions

I Tokens travel distance 2` and return to their origin i
I When a process i receive a token t containing UID tuid :

F if tuid < UIDi then the token is discarded

F if tuid > UIDi then the process i relays the token

F if tuid = UIDi then the process is the leader

I If both tokens come back safely, process i starts a new phase

I Otherwise the process considers itself as a non-leader

Etienne Renault algorep 2 octobre 2020 17 / 31



HS Algorithm : Informal

1 Each process i operates in phases

2 In each phase ` :

I Process i send out tokens containings its UIDi in both
directions

I Tokens travel distance 2` and return to their origin i

I When a process i receive a token t containing UID tuid :

F if tuid < UIDi then the token is discarded

F if tuid > UIDi then the process i relays the token

F if tuid = UIDi then the process is the leader

I If both tokens come back safely, process i starts a new phase

I Otherwise the process considers itself as a non-leader

Etienne Renault algorep 2 octobre 2020 17 / 31



HS Algorithm : Informal

1 Each process i operates in phases

2 In each phase ` :

I Process i send out tokens containings its UIDi in both
directions

I Tokens travel distance 2` and return to their origin i
I When a process i receive a token t containing UID tuid :

F if tuid < UIDi then the token is discarded

F if tuid > UIDi then the process i relays the token

F if tuid = UIDi then the process is the leader

I If both tokens come back safely, process i starts a new phase

I Otherwise the process considers itself as a non-leader

Etienne Renault algorep 2 octobre 2020 17 / 31



HS Algorithm : Informal

1 Each process i operates in phases

2 In each phase ` :

I Process i send out tokens containings its UIDi in both
directions

I Tokens travel distance 2` and return to their origin i
I When a process i receive a token t containing UID tuid :

F if tuid < UIDi then the token is discarded

F if tuid > UIDi then the process i relays the token

F if tuid = UIDi then the process is the leader

I If both tokens come back safely, process i starts a new phase

I Otherwise the process considers itself as a non-leader

Etienne Renault algorep 2 octobre 2020 17 / 31



HS Algorithm : Informal

1 Each process i operates in phases

2 In each phase ` :

I Process i send out tokens containings its UIDi in both
directions

I Tokens travel distance 2` and return to their origin i
I When a process i receive a token t containing UID tuid :

F if tuid < UIDi then the token is discarded

F if tuid > UIDi then the process i relays the token

F if tuid = UIDi then the process is the leader

I If both tokens come back safely, process i starts a new phase

I Otherwise the process considers itself as a non-leader

Etienne Renault algorep 2 octobre 2020 17 / 31



HS Algorithm : Informal

1 Each process i operates in phases

2 In each phase ` :

I Process i send out tokens containings its UIDi in both
directions

I Tokens travel distance 2` and return to their origin i
I When a process i receive a token t containing UID tuid :

F if tuid < UIDi then the token is discarded

F if tuid > UIDi then the process i relays the token

F if tuid = UIDi then the process is the leader

I If both tokens come back safely, process i starts a new phase

I Otherwise the process considers itself as a non-leader

Etienne Renault algorep 2 octobre 2020 17 / 31



HS Algorithm : Informal

1 Each process i operates in phases

2 In each phase ` :

I Process i send out tokens containings its UIDi in both
directions

I Tokens travel distance 2` and return to their origin i
I When a process i receive a token t containing UID tuid :

F if tuid < UIDi then the token is discarded

F if tuid > UIDi then the process i relays the token

F if tuid = UIDi then the process is the leader

I If both tokens come back safely, process i starts a new phase

I Otherwise the process considers itself as a non-leader

Etienne Renault algorep 2 octobre 2020 17 / 31



HS Algorithm : Informal

1 Each process i operates in phases

2 In each phase ` :

I Process i send out tokens containings its UIDi in both
directions

I Tokens travel distance 2` and return to their origin i
I When a process i receive a token t containing UID tuid :

F if tuid < UIDi then the token is discarded

F if tuid > UIDi then the process i relays the token

F if tuid = UIDi then the process is the leader

I If both tokens come back safely, process i starts a new phase

I Otherwise the process considers itself as a non-leader

Etienne Renault algorep 2 octobre 2020 17 / 31



Example

1

21

13

42

15

51

Initial State

1 21

13

4215

51

21 13

42

1551

1

Round 1, phase 1, distance = 1

1

21

13

42

15

51

Round 1, distance = 1, Discarded messages

21

42

51

21

42

51

Round 2, phase 1, distance = 1

21

42

51

21

42

51

Round 2, phase 2, distance = 2

51

21

42

42

51

21

Round 2, phase 2, distance = 2

21

42

Messages then go back to 51, and a last phase is

started so that 51 can detect it is the leader

Etienne Renault algorep 2 octobre 2020 18 / 31



Example

1

21

13

42

15

51

Initial State

1 21

13

4215

51

21 13

42

1551

1

Round 1, phase 1, distance = 1

1

21

13

42

15

51

Round 1, distance = 1, Discarded messages

21

42

51

21

42

51

Round 2, phase 1, distance = 1

21

42

51

21

42

51

Round 2, phase 2, distance = 2

51

21

42

42

51

21

Round 2, phase 2, distance = 2

21

42

Messages then go back to 51, and a last phase is

started so that 51 can detect it is the leader

Etienne Renault algorep 2 octobre 2020 18 / 31



Example

1

21

13

42

15

51

Initial State

1 21

13

4215

51

21 13

42

1551

1

Round 1, phase 1, distance = 1

1

21

13

42

15

51

Round 1, distance = 1, Discarded messages

21

42

51

21

42

51

Round 2, phase 1, distance = 1

21

42

51

21

42

51

Round 2, phase 2, distance = 2

51

21

42

42

51

21

Round 2, phase 2, distance = 2

21

42

Messages then go back to 51, and a last phase is

started so that 51 can detect it is the leader

Etienne Renault algorep 2 octobre 2020 18 / 31



Example

1

21

13

42

15

51

Initial State

1 21

13

4215

51

21 13

42

1551

1

Round 1, phase 1, distance = 1

1

21

13

42

15

51

Round 1, distance = 1, Discarded messages

21

42

51

21

42

51

Round 2, phase 1, distance = 1

21

42

51

21

42

51

Round 2, phase 2, distance = 2

51

21

42

42

51

21

Round 2, phase 2, distance = 2

21

42

Messages then go back to 51, and a last phase is

started so that 51 can detect it is the leader

Etienne Renault algorep 2 octobre 2020 18 / 31



Example

1

21

13

42

15

51

Initial State

1 21

13

4215

51

21 13

42

1551

1

Round 1, phase 1, distance = 1

1

21

13

42

15

51

Round 1, distance = 1, Discarded messages

21

42

51

21

42

51

Round 2, phase 1, distance = 1

21

42

51

21

42

51

Round 2, phase 2, distance = 2

51

21

42

42

51

21

Round 2, phase 2, distance = 2

21

42

Messages then go back to 51, and a last phase is

started so that 51 can detect it is the leader

Etienne Renault algorep 2 octobre 2020 18 / 31



Example

1

21

13

42

15

51

Initial State

1 21

13

4215

51

21 13

42

1551

1

Round 1, phase 1, distance = 1

1

21

13

42

15

51

Round 1, distance = 1, Discarded messages

21

42

51

21

42

51

Round 2, phase 1, distance = 1

21

42

51

21

42

51

Round 2, phase 2, distance = 2

51

21

42

42

51

21

Round 2, phase 2, distance = 2

21

42

Messages then go back to 51, and a last phase is

started so that 51 can detect it is the leader

Etienne Renault algorep 2 octobre 2020 18 / 31



Example

1

21

13

42

15

51

Initial State

1 21

13

4215

51

21 13

42

1551

1

Round 1, phase 1, distance = 1

1

21

13

42

15

51

Round 1, distance = 1, Discarded messages

21

42

51

21

42

51

Round 2, phase 1, distance = 1

21

42

51

21

42

51

Round 2, phase 2, distance = 2

51

21

42

42

51

21

Round 2, phase 2, distance = 2

21

42

Messages then go back to 51, and a last phase is

started so that 51 can detect it is the leader

Etienne Renault algorep 2 octobre 2020 18 / 31



Communication Complexity 1/2

1 Phase 0 : every process sends a message in both directions
4× n messages

2 Phase ` : for ` > 0 a process sends a token if it receive exactly
two tokens in phase `− 1, i.e. it has not been defeated in phase
2`−1. This implies that within any group of 2`−1 + 1 consecutive
processes at most one will initiate tokens in phase `.
There is b n

2`−1+1
c process that initiates tokens at phase `.

At phase ` the number of messages is 4(2`(b n
2`−1+1

c)) ≤ 8n

Etienne Renault algorep 2 octobre 2020 19 / 31



Communication Complexity 2/2

How many phase are executed before a leader is elected ?

1 + dlog ne

The number of messages is at most 8n(1 + dlog ne)

Etienne Renault algorep 2 octobre 2020 20 / 31



Communication Complexity 2/2

How many phase are executed before a leader is elected ?

1 + dlog ne

The number of messages is at most 8n(1 + dlog ne)

Etienne Renault algorep 2 octobre 2020 20 / 31



Communication Complexity 2/2

How many phase are executed before a leader is elected ?

1 + dlog ne

The number of messages is at most 8n(1 + dlog ne)

Etienne Renault algorep 2 octobre 2020 20 / 31



Time Complexity

The time complexity for phase ` is 2`+1

The complexity of all but the final phase is 2× 2log n

In the final phase takes n since tokens only travel outbound

The final complexity is at most 3n (if n is power of 2) 5n
otherwise.

Etienne Renault algorep 2 octobre 2020 21 / 31



HS Summary

Time Complexity

O(n) (dominated by last phase)

Message Complexity

O(n log n)

Etienne Renault algorep 2 octobre 2020 22 / 31



Table of Contents

1 Problem Statement

2 LCR Algorithm (comparison-based)

3 HS Algorithm (comparison-based)

4 TimeSlice Algorithm (non-comparison-based)

5 Lower Bounds

Etienne Renault algorep 2 octobre 2020 23 / 31



1 Problem Statement

2 LCR Algorithm (comparison-based)

3 HS Algorithm (comparison-based)

4 TimeSlice Algorithm (non-comparison-based)

5 Lower Bounds

Etienne Renault algorep 2 octobre 2020 24 / 31



TimeSlice Algorithm

Unidirectionnal Ring

UIDs are positive integer

Deeper use of synchrony (especially non-arrival of a message)
than HS or LCR

Non-comparison-based Algorithm

n is known in advance

It elects the process with the minimum UID

Etienne Renault algorep 2 octobre 2020 25 / 31



TimeSlice Algorithm : Informal

1 Computation proceeds in phases where each phase consists in n
consecutive rounds.

2 Each phase is devoted to the possible circulation of a token
carrying a particular token

I In phase ` only a token carrying ` circulates
I Phase ` consist of rounds (`− 1)n + 1 to `n

3 If (`− 1)n + 1 is reached without having received non-null
message and a process with UID ` exist then it sends its token
on the ring.

4 When a process receive a non-null token

I if tokenuid is equal to process’UID then the process declares
itself as the leader

I Otherwise, it declares itself as a non-leader and relay the token

Etienne Renault algorep 2 octobre 2020 26 / 31



TimeSlice Algorithm : Informal

1 Computation proceeds in phases where each phase consists in n
consecutive rounds.

2 Each phase is devoted to the possible circulation of a token
carrying a particular token

I In phase ` only a token carrying ` circulates
I Phase ` consist of rounds (`− 1)n + 1 to `n

3 If (`− 1)n + 1 is reached without having received non-null
message and a process with UID ` exist then it sends its token
on the ring.

4 When a process receive a non-null token

I if tokenuid is equal to process’UID then the process declares
itself as the leader

I Otherwise, it declares itself as a non-leader and relay the token

Etienne Renault algorep 2 octobre 2020 26 / 31



TimeSlice Algorithm : Informal

1 Computation proceeds in phases where each phase consists in n
consecutive rounds.

2 Each phase is devoted to the possible circulation of a token
carrying a particular token

I In phase ` only a token carrying ` circulates

I Phase ` consist of rounds (`− 1)n + 1 to `n

3 If (`− 1)n + 1 is reached without having received non-null
message and a process with UID ` exist then it sends its token
on the ring.

4 When a process receive a non-null token

I if tokenuid is equal to process’UID then the process declares
itself as the leader

I Otherwise, it declares itself as a non-leader and relay the token

Etienne Renault algorep 2 octobre 2020 26 / 31



TimeSlice Algorithm : Informal

1 Computation proceeds in phases where each phase consists in n
consecutive rounds.

2 Each phase is devoted to the possible circulation of a token
carrying a particular token

I In phase ` only a token carrying ` circulates
I Phase ` consist of rounds (`− 1)n + 1 to `n

3 If (`− 1)n + 1 is reached without having received non-null
message and a process with UID ` exist then it sends its token
on the ring.

4 When a process receive a non-null token

I if tokenuid is equal to process’UID then the process declares
itself as the leader

I Otherwise, it declares itself as a non-leader and relay the token

Etienne Renault algorep 2 octobre 2020 26 / 31



TimeSlice Algorithm : Informal

1 Computation proceeds in phases where each phase consists in n
consecutive rounds.

2 Each phase is devoted to the possible circulation of a token
carrying a particular token

I In phase ` only a token carrying ` circulates
I Phase ` consist of rounds (`− 1)n + 1 to `n

3 If (`− 1)n + 1 is reached without having received non-null
message and a process with UID ` exist then it sends its token
on the ring.

4 When a process receive a non-null token

I if tokenuid is equal to process’UID then the process declares
itself as the leader

I Otherwise, it declares itself as a non-leader and relay the token

Etienne Renault algorep 2 octobre 2020 26 / 31



TimeSlice Algorithm : Informal

1 Computation proceeds in phases where each phase consists in n
consecutive rounds.

2 Each phase is devoted to the possible circulation of a token
carrying a particular token

I In phase ` only a token carrying ` circulates
I Phase ` consist of rounds (`− 1)n + 1 to `n

3 If (`− 1)n + 1 is reached without having received non-null
message and a process with UID ` exist then it sends its token
on the ring.

4 When a process receive a non-null token

I if tokenuid is equal to process’UID then the process declares
itself as the leader

I Otherwise, it declares itself as a non-leader and relay the token

Etienne Renault algorep 2 octobre 2020 26 / 31



TimeSlice Algorithm : Informal

1 Computation proceeds in phases where each phase consists in n
consecutive rounds.

2 Each phase is devoted to the possible circulation of a token
carrying a particular token

I In phase ` only a token carrying ` circulates
I Phase ` consist of rounds (`− 1)n + 1 to `n

3 If (`− 1)n + 1 is reached without having received non-null
message and a process with UID ` exist then it sends its token
on the ring.

4 When a process receive a non-null token
I if tokenuid is equal to process’UID then the process declares

itself as the leader

I Otherwise, it declares itself as a non-leader and relay the token

Etienne Renault algorep 2 octobre 2020 26 / 31



TimeSlice Algorithm : Informal

1 Computation proceeds in phases where each phase consists in n
consecutive rounds.

2 Each phase is devoted to the possible circulation of a token
carrying a particular token

I In phase ` only a token carrying ` circulates
I Phase ` consist of rounds (`− 1)n + 1 to `n

3 If (`− 1)n + 1 is reached without having received non-null
message and a process with UID ` exist then it sends its token
on the ring.

4 When a process receive a non-null token
I if tokenuid is equal to process’UID then the process declares

itself as the leader
I Otherwise, it declares itself as a non-leader and relay the token

Etienne Renault algorep 2 octobre 2020 26 / 31



Example

1

21

13

42

15

51

1

Round 1, phase 1

1

Round 2, phase 1

21

1

Round 3, phase 1

13

1

Round 4, phase 1

42
1

Round 5, phase 1

15

1

Round 6, phase 1

51

1

Etienne Renault algorep 2 octobre 2020 27 / 31



Example

1

21

13

42

15

51

1

Round 1, phase 1

1

Round 2, phase 1

21

1

Round 3, phase 1

13

1

Round 4, phase 1

42
1

Round 5, phase 1

15

1

Round 6, phase 1

51

1

Etienne Renault algorep 2 octobre 2020 27 / 31



Example

1

21

13

42

15

51

1

Round 1, phase 1

1

Round 2, phase 1

21

1

Round 3, phase 1

13

1

Round 4, phase 1

42
1

Round 5, phase 1

15

1

Round 6, phase 1

51

1

Etienne Renault algorep 2 octobre 2020 27 / 31



Example

1

21

13

42

15

51

1

Round 1, phase 1

1

Round 2, phase 1

21

1

Round 3, phase 1

13

1

Round 4, phase 1

42
1

Round 5, phase 1

15

1

Round 6, phase 1

51

1

Etienne Renault algorep 2 octobre 2020 27 / 31



Example

1

21

13

42

15

51

1

Round 1, phase 1

1

Round 2, phase 1

21

1

Round 3, phase 1

13

1

Round 4, phase 1

42

1

Round 5, phase 1

15

1

Round 6, phase 1

51

1

Etienne Renault algorep 2 octobre 2020 27 / 31



Example

1

21

13

42

15

51

1

Round 1, phase 1

1

Round 2, phase 1

21

1

Round 3, phase 1

13

1

Round 4, phase 1

42
1

Round 5, phase 1

15

1

Round 6, phase 1

51

1

Etienne Renault algorep 2 octobre 2020 27 / 31



Example

1

21

13

42

15

51

1

Round 1, phase 1

1

Round 2, phase 1

21

1

Round 3, phase 1

13

1

Round 4, phase 1

42

1

Round 5, phase 1

15

1

Round 6, phase 1

51

1

Etienne Renault algorep 2 octobre 2020 27 / 31



Example

1

21

13

42

15

51

1

Round 1, phase 1

1

Round 2, phase 1

21

1

Round 3, phase 1

13

1

Round 4, phase 1

42

1

Round 5, phase 1

15

1

Round 6, phase 1

51

1

Etienne Renault algorep 2 octobre 2020 27 / 31



Complexity

Communication : O(n)

Time : n × UIDmin

Limitations
Small ring networks

UIDs from small positive integers

Huge running time

Etienne Renault algorep 2 octobre 2020 28 / 31



Table of Contents

1 Problem Statement

2 LCR Algorithm (comparison-based)

3 HS Algorithm (comparison-based)

4 TimeSlice Algorithm (non-comparison-based)

5 Lower Bounds

Etienne Renault algorep 2 octobre 2020 29 / 31



1 Problem Statement

2 LCR Algorithm (comparison-based)

3 HS Algorithm (comparison-based)

4 TimeSlice Algorithm (non-comparison-based)

5 Lower Bounds

Etienne Renault algorep 2 octobre 2020 30 / 31



Lower Bounds

Comparison-based

The best case is Ω(n log n) messages.

Non-Comparison-based

O(n) messages can be reached but only at the cost of large time
complexity (Ramsey Theorem).

Etienne Renault algorep 2 octobre 2020 31 / 31


	Problem Statement
	LCR Algorithm (comparison-based)
	HS Algorithm (comparison-based)
	TimeSlice Algorithm (non-comparison-based)
	Lower Bounds

