
Global Snapshot

Etienne Renault

2 octobre 2020

https://www.lrde.epita.fr/~renault/teaching/algorep/

Etienne Renault algorep 2 octobre 2020 1 / 27

https://www.lrde.epita.fr/~renault/teaching/algorep/


Problem Statement 1/2

Why recording the global state of a distributed system is
important ?

Check-pointing and recovery if the system fails, it can start start
up from a meaningful state

Monitoring and Debugging

Termination or Deadlock detection

Etienne Renault algorep 2 octobre 2020 2 / 27



Problem Statement 2/2

Problem
No global clock

No shared memory

Unpredictable message delays

How to achieve this snapshot ?

Etienne Renault algorep 2 octobre 2020 3 / 27



Problem Statement 2/2

Problem
No global clock

No shared memory

Unpredictable message delays

How to achieve this snapshot ?

Etienne Renault algorep 2 octobre 2020 3 / 27



1 Global States and Cuts

2 Snapshot for FIFO channels

3 Snapshot for non-FIFO channels
Lai Yang Algorithm
Mattern’s Algorithm

Etienne Renault algorep 2 octobre 2020 4 / 27



Global State

The global state of a distributed system is a collection of the local
states of the processes and the channels.

Let us denote by :

LSi the local state of state i

SCi ,j denotes the state of the channel Ci ,j

Global State (formally)

GS = {
⋃
i

LSi ,
⋃
i ,j

SCij }

Etienne Renault algorep 2 octobre 2020 5 / 27



Cuts

A cut in a time diagram is a line joining an arbitrary point on each
process line that slices the space-time diagram into a PAST and a
FUTURE.

E

F

G

e1 e2 e3

f1 f2 f3 f4

g1 g2 g3 g4

Etienne Renault algorep 2 octobre 2020 6 / 27



Cuts

A cut in a time diagram is a line joining an arbitrary point on each
process line that slices the space-time diagram into a PAST and a
FUTURE.

E

F

G

e1 e2 e3

f1 f2 f3 f4

g1 g2 g3 g4

Etienne Renault algorep 2 octobre 2020 6 / 27



Cuts

A cut in a time diagram is a line joining an arbitrary point on each
process line that slices the space-time diagram into a PAST and a
FUTURE.

E

F

G

e1 e2 e3

f1 f2 f3 f4

g1 g2 g3 g4

Etienne Renault algorep 2 octobre 2020 6 / 27



Consistent Global State

A consistent global state corresponds to a cut in which every message
received in the PAST of the cut was sent in the PAST of that cut

A consistent global State must satisfy the two following rules :

1 C1 : A send implies that the reception is in progress

send(mi ,j) ∈ LSi =⇒ mi ,j ∈ SCi ,j ⊗ rec(mi ,j) ∈ LSj

(⊗ is Ex-OR operator)

2 C2 : A reception implies that the sent is in the global state

send(mi ,j) 6∈ LSi =⇒ mi ,j 6∈ SCi ,j ∧ rec(mi ,j) 6∈ LSj

Etienne Renault algorep 2 octobre 2020 7 / 27



Consistent Global State

A consistent global state corresponds to a cut in which every message
received in the PAST of the cut was sent in the PAST of that cut

A consistent global State must satisfy the two following rules :

1 C1 : A send implies that the reception is in progress

send(mi ,j) ∈ LSi =⇒ mi ,j ∈ SCi ,j ⊗ rec(mi ,j) ∈ LSj

(⊗ is Ex-OR operator)

2 C2 : A reception implies that the sent is in the global state

send(mi ,j) 6∈ LSi =⇒ mi ,j 6∈ SCi ,j ∧ rec(mi ,j) 6∈ LSj

Etienne Renault algorep 2 octobre 2020 7 / 27



Consistent Cut

E

F

G

e1 e2 e3

f1 f2 f3 f4

g1 g2 g3 g4

Etienne Renault algorep 2 octobre 2020 8 / 27



Issues in recording a global state

How to distinguish between the messages to be recorded in the
snapshot from those not to be recorded ?

Should respect rules C1 and C2

How to determine the instant when a process takes its snapshot ?

A process pj must record its snapshot before processing a
message mij that was sent by process pi after recording its
snapshot.

Etienne Renault algorep 2 octobre 2020 9 / 27



1 Global States and Cuts

2 Snapshot for FIFO channels

3 Snapshot for non-FIFO channels
Lai Yang Algorithm
Mattern’s Algorithm

Etienne Renault algorep 2 octobre 2020 10 / 27



Chandy-Lamport Algorithm : Informal

Use a control message called marker to separate messages in the
channels

After a site has recorded its snapshot, it sends a marker, along all
of its outgoing channels before sending out any more messages

A marker separates the messages in the channel into those to be
included in the snapshot from those not to be recorded

A process must record its snapshot no later than when it
receives a marker on any of its incoming channels

The algorithm can be initiated by any process

The algorithm terminates after each process has received a
marker on all of its incoming channels

Etienne Renault algorep 2 octobre 2020 11 / 27



Chandy-Lamport Algorithm : Informal

Use a control message called marker to separate messages in the
channels

After a site has recorded its snapshot, it sends a marker, along all
of its outgoing channels before sending out any more messages

A marker separates the messages in the channel into those to be
included in the snapshot from those not to be recorded

A process must record its snapshot no later than when it
receives a marker on any of its incoming channels

The algorithm can be initiated by any process

The algorithm terminates after each process has received a
marker on all of its incoming channels

Etienne Renault algorep 2 octobre 2020 11 / 27



Chandy-Lamport Algorithm : Informal

Use a control message called marker to separate messages in the
channels

After a site has recorded its snapshot, it sends a marker, along all
of its outgoing channels before sending out any more messages

A marker separates the messages in the channel into those to be
included in the snapshot from those not to be recorded

A process must record its snapshot no later than when it
receives a marker on any of its incoming channels

The algorithm can be initiated by any process

The algorithm terminates after each process has received a
marker on all of its incoming channels

Etienne Renault algorep 2 octobre 2020 11 / 27



Chandy-Lamport Algorithm : Informal

Use a control message called marker to separate messages in the
channels

After a site has recorded its snapshot, it sends a marker, along all
of its outgoing channels before sending out any more messages

A marker separates the messages in the channel into those to be
included in the snapshot from those not to be recorded

A process must record its snapshot no later than when it
receives a marker on any of its incoming channels

The algorithm can be initiated by any process

The algorithm terminates after each process has received a
marker on all of its incoming channels

Etienne Renault algorep 2 octobre 2020 11 / 27



Chandy-Lamport Algorithm : Informal

Use a control message called marker to separate messages in the
channels

After a site has recorded its snapshot, it sends a marker, along all
of its outgoing channels before sending out any more messages

A marker separates the messages in the channel into those to be
included in the snapshot from those not to be recorded

A process must record its snapshot no later than when it
receives a marker on any of its incoming channels

The algorithm can be initiated by any process

The algorithm terminates after each process has received a
marker on all of its incoming channels

Etienne Renault algorep 2 octobre 2020 11 / 27



Chandy-Lamport Algorithm : Informal

Use a control message called marker to separate messages in the
channels

After a site has recorded its snapshot, it sends a marker, along all
of its outgoing channels before sending out any more messages

A marker separates the messages in the channel into those to be
included in the snapshot from those not to be recorded

A process must record its snapshot no later than when it
receives a marker on any of its incoming channels

The algorithm can be initiated by any process

The algorithm terminates after each process has received a
marker on all of its incoming channels

Etienne Renault algorep 2 octobre 2020 11 / 27



Chandy-Lamport Algorithm : Informal
Sending Rule for process i :

Process i records its state

For each outgoing channel Ci ,j on which a marker has not been
sent, i sends a marker along Ci ,j before i sends further messages
along Ci ,j

Receiving Rule for process j :

On receiving a marker along channel Ci ,j :

if j has not recorded its state then
I Record the state of Ci , j as the empty set
I Follow the ”Marker Sending Rule”

else
I Record the state of Ci ,j as the set of messages received along

Ci ,j after j ’s state was recorded and before j received the
marker along Ci ,j .

Etienne Renault algorep 2 octobre 2020 12 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

Etienne Renault algorep 2 octobre 2020 13 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

Etienne Renault algorep 2 octobre 2020 13 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

Afer e2 E decide to take a snapshot.
E record local state SE

Send marker through channels CE−F and CE−G (start recording chan-
nels status)

Etienne Renault algorep 2 octobre 2020 13 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

G receive marker from E
G record local state SG

G record channel CE−G as empty
Message to E-F is still in transit.

Etienne Renault algorep 2 octobre 2020 13 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

G send marker through channels CG−E and CG−F

Etienne Renault algorep 2 octobre 2020 13 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

Marker received by E
Duplicate marker : stop recording state of channel CE−G and record it
as empty.

Etienne Renault algorep 2 octobre 2020 13 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

Marker received by F
F record local state SF

F record channel CG−F as empty

Etienne Renault algorep 2 octobre 2020 13 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

Send marker through channels CF−E and CF−G

Etienne Renault algorep 2 octobre 2020 13 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

Marker received by F
Duplicate marker : stop recording state of channel CE−F and record it
as empty.

Etienne Renault algorep 2 octobre 2020 13 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

Marker received by E
Duplicate marker : stop recording state of channel CF−E

Record it with message (f3-e4).

Etienne Renault algorep 2 octobre 2020 13 / 27



Example

E

F

G

e1 e2 e3 e4 e5

f1 f2 f3

g1 g2 g3

Marker received by G
Duplicate marker : stop recording state of channel CF−G

Etienne Renault algorep 2 octobre 2020 13 / 27



Correctness

When a process j receives message mi ,j that precedes the marker
on channel Ci ,j : If j has not taken its snapshot yet, then it
includes mi ,j in its recorded snapshot. Otherwise, it records mi ,j

in the state of the channel Ci ,j . Thus, condition C1 is satisfied.

Due to FIFO property of channels, no message sent after the
marker on that channel is recorded in the channel state. Thus,
condition C2 is satisfied

Etienne Renault algorep 2 octobre 2020 14 / 27



Complexity

Message Complexity

O(e) for the record of a single instance of the algorithm, with e the
number of edges in the graph

Time Complexity

O(d) time with d the diameter of the graph

Etienne Renault algorep 2 octobre 2020 15 / 27



Remarks

The recorded global state may not correspond to any of the
global states that occurred during the computation

BUT. . .

The recorded global state may not correspond to any of the
global states that occurred during the computation

The recorded global state is a valid state in an equivalent
execution

Etienne Renault algorep 2 octobre 2020 16 / 27



1 Global States and Cuts

2 Snapshot for FIFO channels

3 Snapshot for non-FIFO channels
Lai Yang Algorithm
Mattern’s Algorithm

Etienne Renault algorep 2 octobre 2020 17 / 27



Problem

A marker cannot be used to delineate messages into those to be
recorded in the global state from those not to be recorded in the

global state

Either some degree of inhibition or piggybacking of control
information on computation messages to capture out-of-sequence

messages.

Etienne Renault algorep 2 octobre 2020 18 / 27



1 Global States and Cuts

2 Snapshot for FIFO channels

3 Snapshot for non-FIFO channels
Lai Yang Algorithm
Mattern’s Algorithm

Etienne Renault algorep 2 octobre 2020 19 / 27



Lai Yang Algorithm : Informal 1/2

Use a coloring scheme

Every process is initially white and turns red while taking a
snapshot.

Every message sent by a white/red process is colored white/red

I White : a message that was sent before the sender of that
message recorded its local snapshot

I Red : a message that was sent after the sender of that message
recorded its local snapshot

Every white process takes its snapshot at its convenience, but no
later than the instant it receives a red message.

Etienne Renault algorep 2 octobre 2020 20 / 27



Lai Yang Algorithm : Informal 1/2

Use a coloring scheme

Every process is initially white and turns red while taking a
snapshot.

Every message sent by a white/red process is colored white/red

I White : a message that was sent before the sender of that
message recorded its local snapshot

I Red : a message that was sent after the sender of that message
recorded its local snapshot

Every white process takes its snapshot at its convenience, but no
later than the instant it receives a red message.

Etienne Renault algorep 2 octobre 2020 20 / 27



Lai Yang Algorithm : Informal 1/2

Use a coloring scheme

Every process is initially white and turns red while taking a
snapshot.

Every message sent by a white/red process is colored white/red

I White : a message that was sent before the sender of that
message recorded its local snapshot

I Red : a message that was sent after the sender of that message
recorded its local snapshot

Every white process takes its snapshot at its convenience, but no
later than the instant it receives a red message.

Etienne Renault algorep 2 octobre 2020 20 / 27



Lai Yang Algorithm : Informal 1/2

Use a coloring scheme

Every process is initially white and turns red while taking a
snapshot.

Every message sent by a white/red process is colored white/red
I White : a message that was sent before the sender of that

message recorded its local snapshot

I Red : a message that was sent after the sender of that message
recorded its local snapshot

Every white process takes its snapshot at its convenience, but no
later than the instant it receives a red message.

Etienne Renault algorep 2 octobre 2020 20 / 27



Lai Yang Algorithm : Informal 1/2

Use a coloring scheme

Every process is initially white and turns red while taking a
snapshot.

Every message sent by a white/red process is colored white/red
I White : a message that was sent before the sender of that

message recorded its local snapshot
I Red : a message that was sent after the sender of that message

recorded its local snapshot

Every white process takes its snapshot at its convenience, but no
later than the instant it receives a red message.

Etienne Renault algorep 2 octobre 2020 20 / 27



Lai Yang Algorithm : Informal 1/2

Use a coloring scheme

Every process is initially white and turns red while taking a
snapshot.

Every message sent by a white/red process is colored white/red
I White : a message that was sent before the sender of that

message recorded its local snapshot
I Red : a message that was sent after the sender of that message

recorded its local snapshot

Every white process takes its snapshot at its convenience, but no
later than the instant it receives a red message.

Etienne Renault algorep 2 octobre 2020 20 / 27



Lai Yang Algorithm : Informal 2/2

Every white process records a history of all white messages sent
or received by it along each channel

When a process turns red, it sends these histories along with its
snapshot to the initiator process that collects the global
snapshot

The initiator process evaluates transit(LSi , LSj) to compute the
state of a channel Ci ,j

SCi ,j = {send(mi ,j) | send(mi ,j) ∈ LSi}
− {rec(mi ,j) | rec(mi ,j) ∈ LSj}.

Etienne Renault algorep 2 octobre 2020 21 / 27



Lai Yang Algorithm : Informal 2/2

Every white process records a history of all white messages sent
or received by it along each channel

When a process turns red, it sends these histories along with its
snapshot to the initiator process that collects the global
snapshot

The initiator process evaluates transit(LSi , LSj) to compute the
state of a channel Ci ,j

SCi ,j = {send(mi ,j) | send(mi ,j) ∈ LSi}
− {rec(mi ,j) | rec(mi ,j) ∈ LSj}.

Etienne Renault algorep 2 octobre 2020 21 / 27



Lai Yang Algorithm : Informal 2/2

Every white process records a history of all white messages sent
or received by it along each channel

When a process turns red, it sends these histories along with its
snapshot to the initiator process that collects the global
snapshot

The initiator process evaluates transit(LSi , LSj) to compute the
state of a channel Ci ,j

SCi ,j = {send(mi ,j) | send(mi ,j) ∈ LSi}
− {rec(mi ,j) | rec(mi ,j) ∈ LSj}.

Etienne Renault algorep 2 octobre 2020 21 / 27



Example

Etienne Renault algorep 2 octobre 2020 22 / 27



1 Global States and Cuts

2 Snapshot for FIFO channels

3 Snapshot for non-FIFO channels
Lai Yang Algorithm
Mattern’s Algorithm

Etienne Renault algorep 2 octobre 2020 23 / 27



Mattern’s Algorithm : Informal 1/2

Based on vector clocks and assumes a single initiator process.

1 The initiator ”ticks” its local clock and selects a future vector
time T at which it would like a global snapshot to be recorded.

2 The initiator then broadcasts this time s and freezes all activity
until it receives all acknowledgements of the receipt of this
broadcast

3 When a process receives the broadcast, it remembers the value
T and returns an acknowledgement to the initiator.

Etienne Renault algorep 2 octobre 2020 24 / 27



Mattern’s Algorithm : Informal 1/2

Based on vector clocks and assumes a single initiator process.

1 The initiator ”ticks” its local clock and selects a future vector
time T at which it would like a global snapshot to be recorded.

2 The initiator then broadcasts this time s and freezes all activity
until it receives all acknowledgements of the receipt of this
broadcast

3 When a process receives the broadcast, it remembers the value
T and returns an acknowledgement to the initiator.

Etienne Renault algorep 2 octobre 2020 24 / 27



Mattern’s Algorithm : Informal 1/2

Based on vector clocks and assumes a single initiator process.

1 The initiator ”ticks” its local clock and selects a future vector
time T at which it would like a global snapshot to be recorded.

2 The initiator then broadcasts this time s and freezes all activity
until it receives all acknowledgements of the receipt of this
broadcast

3 When a process receives the broadcast, it remembers the value
T and returns an acknowledgement to the initiator.

Etienne Renault algorep 2 octobre 2020 24 / 27



Mattern’s Algorithm : Informal 2/2

4 After having received an acknowledgement from every process,
the initiator increases its vector clock to T and broadcasts a
dummy message to all processes

5 The receipt of this dummy message forces each recipient to
increase its clock to a value ≥ T if not already ≥ T .

6 Each process takes a local snapshot and sends it to the initiator
when (just before) its clock increases from a value less than T
to a value ≥ T

7 The state of Ci ,j is all messages sent along Ci ,j whose timestamp
is smaller than T and which are received by j after recording LSj .

Etienne Renault algorep 2 octobre 2020 25 / 27



Mattern’s Algorithm : Informal 2/2

4 After having received an acknowledgement from every process,
the initiator increases its vector clock to T and broadcasts a
dummy message to all processes

5 The receipt of this dummy message forces each recipient to
increase its clock to a value ≥ T if not already ≥ T .

6 Each process takes a local snapshot and sends it to the initiator
when (just before) its clock increases from a value less than T
to a value ≥ T

7 The state of Ci ,j is all messages sent along Ci ,j whose timestamp
is smaller than T and which are received by j after recording LSj .

Etienne Renault algorep 2 octobre 2020 25 / 27



Mattern’s Algorithm : Informal 2/2

4 After having received an acknowledgement from every process,
the initiator increases its vector clock to T and broadcasts a
dummy message to all processes

5 The receipt of this dummy message forces each recipient to
increase its clock to a value ≥ T if not already ≥ T .

6 Each process takes a local snapshot and sends it to the initiator
when (just before) its clock increases from a value less than T
to a value ≥ T

7 The state of Ci ,j is all messages sent along Ci ,j whose timestamp
is smaller than T and which are received by j after recording LSj .

Etienne Renault algorep 2 octobre 2020 25 / 27



Mattern’s Algorithm : Informal 2/2

4 After having received an acknowledgement from every process,
the initiator increases its vector clock to T and broadcasts a
dummy message to all processes

5 The receipt of this dummy message forces each recipient to
increase its clock to a value ≥ T if not already ≥ T .

6 Each process takes a local snapshot and sends it to the initiator
when (just before) its clock increases from a value less than T
to a value ≥ T

7 The state of Ci ,j is all messages sent along Ci ,j whose timestamp
is smaller than T and which are received by j after recording LSj .

Etienne Renault algorep 2 octobre 2020 25 / 27



Mattern’s Algorithm for non-FIFO channels

Messages sent before the snapshot are white, red otherwise.

Each process i keeps a counter cpti that indicates the difference
between the number of white messages it has sent and received
before recording its snapshot

It reports this value to the initiator process along with its
snapshot and forwards all white messages, it receives henceforth,
to the initiator

Snapshot collection terminates when the initiator has received∑
cpti number of forwarded white messages

Etienne Renault algorep 2 octobre 2020 26 / 27



Example

Etienne Renault algorep 2 octobre 2020 27 / 27


	Global States and Cuts
	Snapshot for FIFO channels
	Snapshot for non-FIFO channels
	Lai Yang Algorithm
	Mattern's Algorithm


