
Concensus for Asynchronous Systems

Etienne Renault

2 octobre 2020

https://www.lrde.epita.fr/~renault/teaching/algorep/

Etienne Renault algorep 2 octobre 2020 1 / 9

https://www.lrde.epita.fr/~renault/teaching/algorep/


FLP 1

Abstract of the paper
The consensus problem involves an asynchronous system of
processes,some of which may be unreliable. The problem is for the
reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of
nontermination, even with only one faulty process.

Impossibility Result
No completely asynchronous consensus protocol can tolerate even a

single unannounced process death.

1. Impossibility of Distributed Consensuswith One Faulty Process, 1985,
Fischer, Lynch and Paterson

Etienne Renault algorep 2 octobre 2020 2 / 9



FLP 1

Abstract of the paper
The consensus problem involves an asynchronous system of
processes,some of which may be unreliable. The problem is for the
reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of
nontermination, even with only one faulty process.

Impossibility Result
No completely asynchronous consensus protocol can tolerate even a

single unannounced process death.

1. Impossibility of Distributed Consensuswith One Faulty Process, 1985,
Fischer, Lynch and Paterson

Etienne Renault algorep 2 octobre 2020 2 / 9



Problem Description

Every process starts with an initial value in {0, 1} ;

Agreement : A nonfaulty process decides on a value, and enters
a decision state

Termination : All nonfaulty processes are required to choose
the same value

Every message is eventually delivered as long as the destination
makes infinitely many attempts to receive, but messages can be
delayed arbitrarily long and delivered out of order

The result of the consensus algorithm is predetermined only by the
initial configuration.

Etienne Renault algorep 2 octobre 2020 3 / 9



Problem Description

Every process starts with an initial value in {0, 1} ;

Agreement : A nonfaulty process decides on a value, and enters
a decision state

Termination : All nonfaulty processes are required to choose
the same value

Every message is eventually delivered as long as the destination
makes infinitely many attempts to receive, but messages can be
delayed arbitrarily long and delivered out of order

The result of the consensus algorithm is predetermined only by the
initial configuration.

Etienne Renault algorep 2 octobre 2020 3 / 9



Problem Description

Every process starts with an initial value in {0, 1} ;

Agreement : A nonfaulty process decides on a value, and enters
a decision state

Termination : All nonfaulty processes are required to choose
the same value

Every message is eventually delivered as long as the destination
makes infinitely many attempts to receive, but messages can be
delayed arbitrarily long and delivered out of order

The result of the consensus algorithm is predetermined only by the
initial configuration.

Etienne Renault algorep 2 octobre 2020 3 / 9



Problem Description

Every process starts with an initial value in {0, 1} ;

Agreement : A nonfaulty process decides on a value, and enters
a decision state

Termination : All nonfaulty processes are required to choose
the same value

Every message is eventually delivered as long as the destination
makes infinitely many attempts to receive, but messages can be
delayed arbitrarily long and delivered out of order

The result of the consensus algorithm is predetermined only by the
initial configuration.

Etienne Renault algorep 2 octobre 2020 3 / 9



Problem Description

Every process starts with an initial value in {0, 1} ;

Agreement : A nonfaulty process decides on a value, and enters
a decision state

Termination : All nonfaulty processes are required to choose
the same value

Every message is eventually delivered as long as the destination
makes infinitely many attempts to receive, but messages can be
delayed arbitrarily long and delivered out of order

The result of the consensus algorithm is predetermined only by the
initial configuration.

Etienne Renault algorep 2 octobre 2020 3 / 9



Configurations

A configuration is defined as the internal state of all of the processes
with the contents of the message buffer.

0-valent configuration can only lead to choose 0

1-valent configuration can only lead to choose 1

bi-valent configuration can lead to choose 0 or 1

Etienne Renault algorep 2 octobre 2020 4 / 9



Proof.

Show circumstances under which the protocol
remains forever indecisive

Intuition
If you delay a message that is pending any amount from one event to
arbitrarily many, there will be one configuration in which you receive
that message and end up in a bivalent state.

We need two Lemma :
1 There is some initial configuration in which the decision is not

predetermined, but in fact arrived as a result of the sequence of
steps taken and the occurrence of any failure

2 If you delay a message that is pending any amount from one
event to arbitrarily many, there will be one configuration in
which you receive that message and end up in a bivalent state.

Etienne Renault algorep 2 octobre 2020 5 / 9



Proof.

Show circumstances under which the protocol
remains forever indecisive

Intuition
If you delay a message that is pending any amount from one event to
arbitrarily many, there will be one configuration in which you receive
that message and end up in a bivalent state.

We need two Lemma :
1 There is some initial configuration in which the decision is not

predetermined, but in fact arrived as a result of the sequence of
steps taken and the occurrence of any failure

2 If you delay a message that is pending any amount from one
event to arbitrarily many, there will be one configuration in
which you receive that message and end up in a bivalent state.

Etienne Renault algorep 2 octobre 2020 5 / 9



Proof.

Show circumstances under which the protocol
remains forever indecisive

Intuition
If you delay a message that is pending any amount from one event to
arbitrarily many, there will be one configuration in which you receive
that message and end up in a bivalent state.

We need two Lemma :
1 There is some initial configuration in which the decision is not

predetermined, but in fact arrived as a result of the sequence of
steps taken and the occurrence of any failure

2 If you delay a message that is pending any amount from one
event to arbitrarily many, there will be one configuration in
which you receive that message and end up in a bivalent state.

Etienne Renault algorep 2 octobre 2020 5 / 9



Proof.

Show circumstances under which the protocol
remains forever indecisive

Intuition
If you delay a message that is pending any amount from one event to
arbitrarily many, there will be one configuration in which you receive
that message and end up in a bivalent state.

We need two Lemma :
1 There is some initial configuration in which the decision is not

predetermined, but in fact arrived as a result of the sequence of
steps taken and the occurrence of any failure

2 If you delay a message that is pending any amount from one
event to arbitrarily many, there will be one configuration in
which you receive that message and end up in a bivalent state.
Etienne Renault algorep 2 octobre 2020 5 / 9



First Lemma 1/2

Theorem
The protocol P has a bivalent initial configuration

Proof.

Suppose that the opposite was true that all initial configurations
have predetermined executions

Each configuration is uniquely determined by the set of initial
values in the processes

Suppose that we have one configuration that is 0-valent (C0)
and one that is 1-valent (C1)

From C0 there must be a run that decides 0 even if p fails
initially

Etienne Renault algorep 2 octobre 2020 6 / 9



First Lemma 1/2

Theorem
The protocol P has a bivalent initial configuration

Proof.

Suppose that the opposite was true that all initial configurations
have predetermined executions

Each configuration is uniquely determined by the set of initial
values in the processes

Suppose that we have one configuration that is 0-valent (C0)
and one that is 1-valent (C1)

From C0 there must be a run that decides 0 even if p fails
initially

Etienne Renault algorep 2 octobre 2020 6 / 9



First Lemma 1/2

Theorem
The protocol P has a bivalent initial configuration

Proof.

Suppose that the opposite was true that all initial configurations
have predetermined executions

Each configuration is uniquely determined by the set of initial
values in the processes

Suppose that we have one configuration that is 0-valent (C0)
and one that is 1-valent (C1)

From C0 there must be a run that decides 0 even if p fails
initially

Etienne Renault algorep 2 octobre 2020 6 / 9



First Lemma 1/2

Theorem
The protocol P has a bivalent initial configuration

Proof.

Suppose that the opposite was true that all initial configurations
have predetermined executions

Each configuration is uniquely determined by the set of initial
values in the processes

Suppose that we have one configuration that is 0-valent (C0)
and one that is 1-valent (C1)

From C0 there must be a run that decides 0 even if p fails
initially

Etienne Renault algorep 2 octobre 2020 6 / 9



First Lemma 2/2

Proof cont’d.

Therefore p neither sends nor receives any messages, so its initial
value cannot be observed by the rest of the processors.

One of whom must eventually decide 0

This run can also be made from C1.

So one process must eventually decide 1

This contradicts our assumption that the result of the consensus
algorithm is predetermined only by the initial configuration.

Etienne Renault algorep 2 octobre 2020 7 / 9



First Lemma 2/2

Proof cont’d.

Therefore p neither sends nor receives any messages, so its initial
value cannot be observed by the rest of the processors.

One of whom must eventually decide 0

This run can also be made from C1.

So one process must eventually decide 1

This contradicts our assumption that the result of the consensus
algorithm is predetermined only by the initial configuration.

Etienne Renault algorep 2 octobre 2020 7 / 9



First Lemma 2/2

Proof cont’d.

Therefore p neither sends nor receives any messages, so its initial
value cannot be observed by the rest of the processors.

One of whom must eventually decide 0

This run can also be made from C1.

So one process must eventually decide 1

This contradicts our assumption that the result of the consensus
algorithm is predetermined only by the initial configuration.

Etienne Renault algorep 2 octobre 2020 7 / 9



First Lemma 2/2

Proof cont’d.

Therefore p neither sends nor receives any messages, so its initial
value cannot be observed by the rest of the processors.

One of whom must eventually decide 0

This run can also be made from C1.

So one process must eventually decide 1

This contradicts our assumption that the result of the consensus
algorithm is predetermined only by the initial configuration.

Etienne Renault algorep 2 octobre 2020 7 / 9



First Lemma 2/2

Proof cont’d.

Therefore p neither sends nor receives any messages, so its initial
value cannot be observed by the rest of the processors.

One of whom must eventually decide 0

This run can also be made from C1.

So one process must eventually decide 1

This contradicts our assumption that the result of the consensus
algorithm is predetermined only by the initial configuration.

Etienne Renault algorep 2 octobre 2020 7 / 9



Second Lemma 1/2

Let C be a configuration and e some event applicable to C.

Let C be the set of configurations reachable from C without
applying e

Let D be the set of configurations resulting from applying e to
configurations in C

Theorem
D contains a bivalent configuration.

Proof.

Assume that D contains no bivalent configurations.

If D is univalent, then C should be univalent since any
configuration in C can reach a configuration in D
By Contraction D contains a bivalent configuration.

Etienne Renault algorep 2 octobre 2020 8 / 9



Second Lemma 1/2

Let C be a configuration and e some event applicable to C.

Let C be the set of configurations reachable from C without
applying e

Let D be the set of configurations resulting from applying e to
configurations in C

Theorem
D contains a bivalent configuration.

Proof.

Assume that D contains no bivalent configurations.

If D is univalent, then C should be univalent since any
configuration in C can reach a configuration in D
By Contraction D contains a bivalent configuration.

Etienne Renault algorep 2 octobre 2020 8 / 9



Second Lemma 1/2

Let C be a configuration and e some event applicable to C.

Let C be the set of configurations reachable from C without
applying e

Let D be the set of configurations resulting from applying e to
configurations in C

Theorem
D contains a bivalent configuration.

Proof.

Assume that D contains no bivalent configurations.

If D is univalent, then C should be univalent since any
configuration in C can reach a configuration in D
By Contraction D contains a bivalent configuration.

Etienne Renault algorep 2 octobre 2020 8 / 9



Second Lemma 1/2

Let C be a configuration and e some event applicable to C.

Let C be the set of configurations reachable from C without
applying e

Let D be the set of configurations resulting from applying e to
configurations in C

Theorem
D contains a bivalent configuration.

Proof.

Assume that D contains no bivalent configurations.

If D is univalent, then C should be univalent since any
configuration in C can reach a configuration in D
By Contraction D contains a bivalent configuration.

Etienne Renault algorep 2 octobre 2020 8 / 9



Altogether

Start from a bivalent initial configuration C0

To make the run admissible, place the processes in the system in
a queue and have them receive messages in queue order, being
placed at the back of the queue when they are done. This
ensures that every message is eventually delivered.

Let e be the earliest message to the first processor in the queue,
possibly null

Then by the second lemma we can reach a bivalent configuration
C1 reachable from C0 where e is the last message received.

Similarly, we can reach another bivalent configuration C2 from
C1 by the same argument. And this may continue for ever.

Etienne Renault algorep 2 octobre 2020 9 / 9



Altogether

Start from a bivalent initial configuration C0

To make the run admissible, place the processes in the system in
a queue and have them receive messages in queue order, being
placed at the back of the queue when they are done. This
ensures that every message is eventually delivered.

Let e be the earliest message to the first processor in the queue,
possibly null

Then by the second lemma we can reach a bivalent configuration
C1 reachable from C0 where e is the last message received.

Similarly, we can reach another bivalent configuration C2 from
C1 by the same argument. And this may continue for ever.

Etienne Renault algorep 2 octobre 2020 9 / 9



Altogether

Start from a bivalent initial configuration C0

To make the run admissible, place the processes in the system in
a queue and have them receive messages in queue order, being
placed at the back of the queue when they are done. This
ensures that every message is eventually delivered.

Let e be the earliest message to the first processor in the queue,
possibly null

Then by the second lemma we can reach a bivalent configuration
C1 reachable from C0 where e is the last message received.

Similarly, we can reach another bivalent configuration C2 from
C1 by the same argument. And this may continue for ever.

Etienne Renault algorep 2 octobre 2020 9 / 9



Altogether

Start from a bivalent initial configuration C0

To make the run admissible, place the processes in the system in
a queue and have them receive messages in queue order, being
placed at the back of the queue when they are done. This
ensures that every message is eventually delivered.

Let e be the earliest message to the first processor in the queue,
possibly null

Then by the second lemma we can reach a bivalent configuration
C1 reachable from C0 where e is the last message received.

Similarly, we can reach another bivalent configuration C2 from
C1 by the same argument. And this may continue for ever.

Etienne Renault algorep 2 octobre 2020 9 / 9



Altogether

Start from a bivalent initial configuration C0

To make the run admissible, place the processes in the system in
a queue and have them receive messages in queue order, being
placed at the back of the queue when they are done. This
ensures that every message is eventually delivered.

Let e be the earliest message to the first processor in the queue,
possibly null

Then by the second lemma we can reach a bivalent configuration
C1 reachable from C0 where e is the last message received.

Similarly, we can reach another bivalent configuration C2 from
C1 by the same argument. And this may continue for ever.

Etienne Renault algorep 2 octobre 2020 9 / 9


