
Raft: A consensus algorithm for replicated logs

Etienne Renault

2 octobre 2020

https://www.lrde.epita.fr/~renault/teaching/algorep/

Etienne Renault algorep 2 octobre 2020 1 / 30

https://www.lrde.epita.fr/~renault/teaching/algorep/

Raft

Goal
Replicate logs (commands) in a set of servers

Overview
Once all servers agree for a log entry, all server can run it.
⇒ All server will then compute the same value (replication)

Note. Suppose that each server run a deterministic program (state
machine)

Etienne Renault algorep 2 octobre 2020 2 / 30

Limitations and Restrictions

Progress
System makes progress as long as any majority of servers are up

Fault Tolerance
Support fail-stop and delayed-lost messages.

⇒ Not Byzantine

Etienne Renault algorep 2 octobre 2020 3 / 30

Approaches to consensus

Symmetric (leader-less)

All servers have equal roles

Client can contact any server

⇒ Paxos style

Asymmetric (leader-based)

At any given time, one server is in charge, others accepts its
decision

Clients communicate with the leader

⇒ Raft style

Etienne Renault algorep 2 octobre 2020 4 / 30

Raft Summary

1 Leader election

2 Normal operation

3 Safety and consistency

4 Neutralize old leaders

5 Client protocol

6 Configuration changes

Etienne Renault algorep 2 octobre 2020 5 / 30

A word on Raft

Raft decomposes the problem in two phases :

Normal operations :
I the leader propagates information
I More efficient than leader-less approaches

Leader changes : may leave the system in an inconsistent state
that the next leader has to cleanup.

Raft is an RPC based protocol !

Etienne Renault algorep 2 octobre 2020 6 / 30

Server State 1/2

A Raft Server can be in three different states :

Leader : Handle Client communication and log replication

Follower : Passive component, response to messages only

Candidate : used to elect a new leader.

At most 1 viable leader at a time

Etienne Renault algorep 2 octobre 2020 7 / 30

Server State 2/2

Candidate

Followerstart Leader

Timeout, start election

Timeout, new election

Rec. votes from majority

Discover server with higher term

Discover server or higher term

Etienne Renault algorep 2 octobre 2020 8 / 30

Server State 2/2

Candidate

Followerstart Leader

Timeout, start election

Timeout, new election

Rec. votes from majority

Discover server with higher term

Discover server or higher term

Etienne Renault algorep 2 octobre 2020 8 / 30

Server State 2/2

Candidate

Followerstart Leader

Timeout, start election

Timeout, new election

Rec. votes from majority

Discover server with higher term

Discover server or higher term

Etienne Renault algorep 2 octobre 2020 8 / 30

Server State 2/2

Candidate

Followerstart Leader

Timeout, start election

Timeout, new election

Rec. votes from majority

Discover server with higher term

Discover server or higher term

Etienne Renault algorep 2 octobre 2020 8 / 30

Server State 2/2

Candidate

Followerstart Leader

Timeout, start election

Timeout, new election

Rec. votes from majority

Discover server with higher term

Discover server or higher term

Etienne Renault algorep 2 octobre 2020 8 / 30

Time divided into Terms

Each term is uniquely identified

Term description :

2 phases per Term : Election / normal operations

at most one leader per term

some term have no leader

Objective ⇒ identify obsolete information

Each server maintains current term value (into disk)

Etienne Renault algorep 2 octobre 2020 9 / 30

Hearbeats

Leaders send heartbeats to maintain authority
(empty AppendEntries RPCs)

If election timeout elapses with no RPCs

Follower assumes leader has crashed

Follower starts new election

Timeouts typically 100-500ms

Etienne Renault algorep 2 octobre 2020 10 / 30

Election Basics

Increment current term

Change to Candidate state

Vote for self

Send RequestVote RPCs to all other servers, retry until either
1 Receive votes from majority of servers

F Become leader
F Send AppendEntries heartbeats to all other servers

2 Receive RPC from valid leader
F Return to follower state

3 No-one wins election (election timeout elapses) :
F Increment term, start new election

Etienne Renault algorep 2 octobre 2020 11 / 30

Properties of the election

Safety : allow at most one winner per term

Each server gives out only one vote per term (persist on disk)

Two different candidates can’t accumulate majorities in same
term

Liveness : some candidate must eventually win

Choose election timeouts randomly in [T, 2T]

One server usually times out and wins election before others
wake up

Works well if T greater broadcast time

Etienne Renault algorep 2 octobre 2020 12 / 30

How to replicate log entries ?

Each server has its own copy of the log

A log structure is divided into entries.

Entries are identified by indexes (position in log)

Entries contains :
I command for the state machine
I a term number, that corresponds to the term number where the

entry was created by the leader

An entry is committed if known and stored by a majority of server
⇒ The command can the be executed

Etienne Renault algorep 2 octobre 2020 13 / 30

Normal Operations

1 Client sends command to leader

2 Leader appends command to its log

3 Leader sends AppendEntries RPCs to followers
4 Once new entry committed :

I Leader passes command to its state machine, returns result to
client

I Leader notifies followers of committed entries in subsequent
AppendEntries RPCs

I Followers pass committed commands to their state machines

5 Crashed/slow followers ? ⇒ Leader retries RPCs until they
succeed

Performance is optimal in common case

Etienne Renault algorep 2 octobre 2020 14 / 30

Log consistency

High level of coherency between logs

1 If log entries on different servers have same index and term
⇒ They store the same command
⇒ The logs are identical in all preceding entries

2 If a given entry is committed, all preceding entries are also
committed

Etienne Renault algorep 2 octobre 2020 15 / 30

Consistency check

Each AppendEntries RPC contains index, term of entry preceding
new ones

Follower must contain matching entry ; otherwise it rejects request

Implements an induction step, ensures coherency

Etienne Renault algorep 2 octobre 2020 16 / 30

Leader Changes

At beginning of new leader’s term :
I Old leader may have left entries partially replicated
I No special steps by new leader : just start normal operation
I Leader’s log is ”the truth”
I Will eventually make follower’s logs identical to leader’s
I Multiple crashes can leave many extraneous log entries

Etienne Renault algorep 2 octobre 2020 17 / 30

Leader Changes

At beginning of new leader’s term :
I Old leader may have left entries partially replicated
I No special steps by new leader : just start normal operation
I Leader’s log is ”the truth”
I Will eventually make follower’s logs identical to leader’s
I Multiple crashes can leave many extraneous log entries

Etienne Renault algorep 2 octobre 2020 17 / 30

Safety Requirement

Once a log entry has been applied to a state machine, no other state
machine must apply a different value for that log entry

Raft safety property
If a leader has decided that a log entry is committed, that entry will

be present in the logs of all future leaders

Leaders never overwrite entries in their logs

Only entries in the leader’s log can be committed

Entries must be committed before applying to state machine

⇒ Committed implies Present in future leaders’ logs

Etienne Renault algorep 2 octobre 2020 18 / 30

Safety Requirement

Once a log entry has been applied to a state machine, no other state
machine must apply a different value for that log entry

Raft safety property
If a leader has decided that a log entry is committed, that entry will

be present in the logs of all future leaders

Leaders never overwrite entries in their logs

Only entries in the leader’s log can be committed

Entries must be committed before applying to state machine

⇒ Committed implies Present in future leaders’ logs

Etienne Renault algorep 2 octobre 2020 18 / 30

Picking the Best Leader

During elections, choose candidate with log most likely to contain all
committed entries

Candidates include log info in RequestVote RPCs
(index & term of last log entry)

Voting server V denies vote if its log is ”more complete” :
(lastTermV > lastTermC)||(lastTermV ==
lastTermC)&&(lastIndexV > lastIndexC)

Etienne Renault algorep 2 octobre 2020 19 / 30

Example 1

Leader decides entry in current term is committed
⇒ Safe : leader for term 3 must contain entry 4

Etienne Renault algorep 2 octobre 2020 20 / 30

Example 1

Leader is trying to finish committing entry from an earlier term
⇒ Entry 3 not safely committed

s5 can be elected as leader for term 5
If elected, it will overwrite entry 3 on s1, s2, and s3 !

Etienne Renault algorep 2 octobre 2020 21 / 30

The aforementionned rules must
be refined !

Etienne Renault algorep 2 octobre 2020 22 / 30

New Commitment Rules
For a leader to decide an entry is committed :

Must be stored on a majority of servers

At least one new entry from leader’s term must also be stored
on majority of servers

Once entry 4 committed s5 cannot be elected leader for term 5 and
entries 4 and 5 are safe

Etienne Renault algorep 2 octobre 2020 23 / 30

Log Inconsistencies

Leader changes can result in log inconsistencies

New leader must make follower logs consistent with its own

Delete extraneous entries

Fill in missing entries

Etienne Renault algorep 2 octobre 2020 24 / 30

Repairing Follower logs

When AppendEntries consistency check fails,
decrement nextIndex and try again

(Leader keeps nextIndex for each follower)

Etienne Renault algorep 2 octobre 2020 25 / 30

Neutralizing Old Leaders

Deposed leader may not be dead
Temporarily disconnected from network OR Other servers elect a new leader OR

Old leader becomes reconnected, attempts to commit log entries

Terms used to detect stale leaders (and candidates)
⇒ Every RPC contains term of sender

⇒ Comparison between sender’s term and receiver’s one
if mismatch notify sender !

Etienne Renault algorep 2 octobre 2020 26 / 30

Client Protocol

1 Send commands to leader
I If leader unknown, contact any server
I If contacted server not leader, it will redirect to leader

Leader does not respond until command has been logged, committed,
and executed by leader’s state machine

In case of request timeout (leader crash)

Client reissues command to some other server
Eventually redirected to new leader

Retry request with new leader

Etienne Renault algorep 2 octobre 2020 27 / 30

Client Protocol (2)

What if leader crashes after executing command, but
before responding ?
⇒ Must not execute command twice

Solution : client embeds a unique id in each command :

Server includes id in log entry

Before accepting command, leader checks its log for entry with
that id

If id found in log, ignore new command, return response from
old command

Etienne Renault algorep 2 octobre 2020 28 / 30

Configuration Changes

Cannot switch directly from one configuration to another : conflicting
majorities could arise

Raft uses a 2-phase approach :

Intermediate phase uses joint consensus (need majority of both
old and new configurations for elections, commitment)

Configuration change is just a log entry ; applied immediately on
receipt (committed or not)

Once joint consensus is committed, begin replicating log entry
for final configuration

Etienne Renault algorep 2 octobre 2020 29 / 30

Raft Summary

1 Leader election

2 Normal operation

3 Safety and consistency

4 Neutralize old leaders

5 Client protocol

6 Configuration changes

Etienne Renault algorep 2 octobre 2020 30 / 30

