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I. Introduction 
The problem of reaching agreement among remote processes is one of the most 
fundamental problems in distributed computing and is at the core of many 
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algorithms for distributed data processing, distributed file management, and fault- 
tolerant distributed applications. 

A well-known form of the problem is the “transaction commit problem,” which 
arises in distributed database systems [6, 13, 15-17, 21-241 (see also G. LeLann, 
private communication, quoted in [ 151). The problem is for all the data manager 
processes that have participated in the processing of a particular transaction to 
agree on whether to install the transaction’s results in the database or to discard 
them. The latter action might be necessary, for example, if some data managers 
were, for any reason, unable to carry out the required transaction processing. 
Whatever decision is made, all data managers must make the same decision in 
order to preserve the consistency of the database. 

Reaching the type of agreement needed for the “commit” problem is straightfor- 
ward if the participating processes and the network are completely reliable. How- 
ever, real systems are subject to a number of possible faults, such as process crashes, 
network partitioning, and lost, distorted, or duplicated messages. One can even 
consider more Byzantine types of failure [5, 7, 8, 11, 14, 18, 191 in which faulty 
processes might go completely haywire, perhaps even sending messages according 
to some malevolent plan. One therefore wants an agreement protocol that is as 
reliable as possible in the presence of such faults. Of course, any protocol can be 
overwhelmed by faults that are too frequent or too severe, so the best that one can 
hope for is a protocol that is tolerant to a prescribed number of “expected” faults. 

In this paper, we show the surprising result that no completely asynchronous 
consensus protocol can tolerate even a single unannounced process death. We do 
not consider Byzantine failures, and we assume that the message system is reliable- 
it delivers all messages correctly and exactly once. Nevertheless, even with these 
assumptions, the stopping of a single process at an inopportune time can cause any 
distributed commit protocol to fail to reach agreement. Thus, this important 
problem has no robust solution without further assumptions about the computing 
environment or still greater restrictions on the kind of failures to be tolerated! 

Crucial to our proof is that processing is completely asynchronous; that is, we 
make no assumptions about the relative speeds of processes or about the delay 
time in delivering a message. We also assume that processes do not have access to 
synchronized clocks, so algorithms based on time-outs, for example, cannot be 
used. (In particular, the solutions in [6] are not applicable.) Finally, we do not 
postulate the ability to detect the death of a process, so it is impossible for one 
process to tell whether another has died (stopped entirely) or is just running very 
slowly. 

Our impossibility result applies to even a very weak form of the consensus 
problem. Assume that every process starts with an initial value in (0, 11. A nonfaulty 
process decides on a value in (0, 1) by entering an appropriate decision state. All 
nonfaulty processes that make a decision are required to choose the same value. 
For the purpose of the impossibility proof, we require only that some process 
eventually make a decision. (Of course, any algorithm of interest would require 
that all nonfaulty processes make a decision.) The trivial solution in which, say, 0 
is always chosen is ruled out by stipulating that both 0 and 1 are possible decision 
values, although perhaps for different initial conligurations. 

Our system model is rather strong so as to make our impossibility proof as widely 
applicable as possible. Processes are modeled as automata (with possibly infinitely 
many states) that communicate by means of messages. In one atomic step, a process 
can attempt to receive a message, perform local computation on the basis of 
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whether or not a message was delivered to it (and if so, which one), and send an 
arbitrary but finite set of messages to other processes. In particular, an “atomic 
broadcast” capability is assumed, so a process can send the same message in one 
step to all other processes with the knowledge that if any nonfaulty process receives 
the message, then all the nonfaulty processes will. Every message is eventually 
delivered as long as the destination process makes infinitely many attempts to 
receive, but messages can be delayed, arbitrarily long, and delivered out of order. 

The asynchronous commit protocols in current use all seem to have a “window 
of vulnerability”- an interval of time during the execution of the algorithm in 
which the delay or inaccessibility of a single process can cause the entire algorithm 
to wait indefinitely. It follows from our impossibility result that every commit 
protocol has such a “window,” confirming a widely believed tenet in the folklore. 

2. Consensus Protocols 
A consensus protocol P is an asynchronous system of N processes (N I 2). 
Each process p has a one-bit input register x,, an output register yp with values in 
(b, 0, 11, and an unbounded amount of internal storage. The values in the input 
and output registers, together with the program counter and internal storage, 
comprise the internal state. Initial states prescribe fixed starting values for all but 
the input register; in particular, the output register starts with value b. The states 
in which the output register has value 0 or 1 are distinguished as being decision 
states. p acts deterministically according to a transition function. The transition 
function cannot change the value of the output register once the process has 
reached a decision state; that is, the output register is “write-once.” The entire 
system P is specified by the transition functions associated with each of the processes 
and the initial values of the input registers. 

Processes communicate by sending each other messages. A message is a pair 
(p, m), where p is the name of the destination process and m is a “message value” 
from a fixed universe M. The message system maintains a multiset, called the 
message buffer, of messages that have been sent but not yet delivered. It supports 
two abstract operations: 
send(p, m): Places (p, m) in the message buffer; 
receive(p): Deletes some message (p, m) from the buffer and returns m, in which 

case we say (p, m) is delivered, or returns the special null marker 0 
and leaves the buffer unchanged. 

Thus, the message system acts nondeterministically, subject only to the condition 
that if receive( p) is performed infinitely many times, then every message (p, m) in 
the message buffer is eventually delivered. In particular, the message system is 
allowed to return 0 a finite number of times in response to receive(p), even though 
a message (p, m) is present in the buffer. 

A configuration of the system consists of the internal state of each process, 
together with the contents of the message buffer. An initial configuration is one in 
which each process starts at an initial state and the message buffer is empty. 

A step takes one configuration to another and consists of a primitive step by a 
single process p. Let C be a configuration. The step occurs in two phases. First, 
receive(p) is performed on the message buffer in C to obtain a value m E M u 
(0). Then, depending on p’s internal state in C and on m, p enters a new internal 
state and sends a finite set of messages to other processes. Since processes are 
deterministic, the step is completely determined by the pair e = (p, m), which we 
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FIGURE 1 

call an event. (This “event” should be thought of as the receipt of m by p.) e(C) 
denotes the resulting configuration, and we say that e can be applied to C. Note 
that the event (p, 0) can always be applied to C, so it is always possible for a 
process to take another step. 

A schedule from C is a finite or infinite sequence u of events that can be applied, 
in turn, starting from C. The associated sequence of steps is called a run. If u is 
finite, we let a(C) denote the resulting configuration, which is said to be reachable 
from C. A configuration reachable from some initial configuration is said to be 
accessible. Hereafter, all configurations mentioned are assumed to be accessible. 

The following lemma expresses a “commutativity” property of schedules. 
LEMMA 1. Suppose that from some configuration C, the schedules ul, (~2 lead 

to configurations C1, C2, respectively. If the sets of processes taking steps in c1 and 
02, respectively, are disjoint, then u2 can be applied to Cl and (~1 can be applied to 
C2, and both lead to the same configuration C,. (See Figure 1.) 

PROOF. The result follows at once from the system definition, since u1 and u2 
do not interact. Cl 

A configuration C has decision value v if some process p is in a decision state 
with y,, = v. A consensus protocol is partially correct if it satisfies two conditions: 
(1) No accessible configuration has more than one decision value. 
(2) For each v E (0, I), some accessible configuration has decision value v. 

A process p is nonfaulty in a run provided that it takes infinitely many steps, and 
it is faulty otherwise. A run is admissible provided that at most one process is 
faulty and that all messages sent to nonfaulty processes are eventually received. 

A run is a deciding run provided that some process reaches a decision state in 
that run. A consensus protocol P is totally correct in spite of onefault if it is partially 
correct, and every admissible run is a deciding run. Our main theorem shows that 
every partially correct protocol for the consensus problem has some admissible run 
that is not a deciding run. 

3. Main Result 
THEOREM 1. No consensus protocol is totally correct in spite of one fault. 
PROOF. Assume to the contrary that P is a consensus protocol that is totally 

correct in spite of one fault. We prove a sequence of lemmas which eventually lead 
to a contradiction. 
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The basic idea is to show circumstances under which the protocol remains 
forever indecisive. This involves two steps. First, we argue that there is some initial 
configuration in which the decision is not already predetermined. Second, we 
construct an admissible run that avoids ever taking a step that would commit the 
system to a particular decision. 

Let C be a configuration and let V be the set of decision values of configurations 
reachable from C. C is bivalent if 1 1/l = 2. C is univalent if 1 VI = 1, let us say 
0-valent or I-valent according to the corresponding decision value. By the total 
correctness of P, and the fact that there are always admissible runs, Vf 0. Cl 

LEMMA 2. P has a bivalent initial configuration. 
PROOF. Assume not. Then P must have both 0-valent and 1-valent initial 

configurations by the assumed partial correctness. Let us call two initial configu- 
rations adjacent if they differ only in the initial value x, of a single process p. Any 
two initial configurations are joined by a chain of initial configurations, each 
adjacent to the next. Hence, there must exist a 0-valent initial configuration CO 
adjacent to a 1-valent initial configuration Ci. Let p be the process in whose initial 
value they differ. 

Now consider some admissible deciding run from CO in which process p takes 
no steps, and let u be the associated schedule. Then u can be applied to C, also, 
and corresponding configurations in the two runs are identical except for the 
internal state of process p. It is easily shown that both runs eventually reach the 
same decision value. If the value is 1, then Co is bivalent; otherwise, Ci is bivalent. 
Either case contradicts the assumed nonexistence of a bivalent initial configura- 
tion. Cl 

LEMMA 3. Let C be a bivalent configuration of P, and let e = (p, m) be an event 
that is applicable to C. Let %? be the set of configurations reachable from C without 
applying e, and let 9 = e(g) = (e(E) I E E %? and e is applicable to E). Then, 9 
contains a bivalent configuration. 

PROOF. Since e is applicable to C, then by definition of ‘Z and the fact that 
messages can be delayed arbitrarily, e is applicable to every E E %?7. 

Now assume that 9 contains no bivalent configurations, so every configuration 
D E 9 is univalent. We proceed to derive a contradiction. 

Let Ei be an i-valent configuration reachable from C, i = 0, 1. (Ei exists since C 
is bivalent.) If Ei E %Y’, let Fi = e(Ei) E g. Otherwise, e was applied in reaching Ei, 
and so there exists Fi E .9 from which Ei is reachable. In either case, Fi is i-valent 
since Fi is not bivalent (since Fi E B and 5& contains no bivalent configurations) 
and one of Ei and Fi is reachable from the other. Since Fi E 9, i = 0, 1, B contains 
both 0-valent and 1 -valent configurations. 

Call two configurations neighbors if one results from the other in a single step. 
By an easy induction, there exist neighbors Co, Ci E %5’ such that Di = e(Ci) is 
i-valent, i = 0, 1. Without loss of generality, C, = e’(Co) where e’ = (p’, m’). 

Case 1. Ifp’ # p, then D1 = e’(&,) by Lemma 1. This is impossible, since any 
successor of a 0-valent configuration is 0-valent. (See Figure 2.) 

Case 2. If p’ = p, then consider any finite deciding run from Co in which p 
takes no steps. 

Let u be the corresponding schedule, and let A = a(C,,). By Lemma 1, u is 
applicable to Di, and it leads to an i-valent configuration Ei = a(Di), i = 0, 1. Also 
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FIGURE 2 

FIGURE 3 

by Lemma 1, e(A) = & and e(e’(A)) = E,. (See Figure 3.) Hence, A is bivalent. 
But this is impossible since the run to A is deciding (by assumption), so A must be 
univalent. 

In each case, we reached a contradiction, so .&2 contains a bivalent configura- 
tion. 0 

Any deciding run from a bivalent initial configuration goes to a univalent 
configuration, so there must be some single step that goes from a bivalent to a 
univalent configuration. Such a step determines the eventual decision value. We 
now show that it is always possible to run the system in a way that avoids such 
steps, leading to an admissible nondeciding run. 

The run is constructed in stages, starting from an initial configuration. We ensure 
that the run is admissible in the following way. A queue of processes is maintained, 
initially in an arbitrary order, and the message buffer in a configuration is ordered 
according to the time the messages were sent, earliest first. Each stage consists of 
one or more process steps. The stage ends with the first process in the process 
queue taking a step in which, if its message queue was not empty at the start of the 
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stage, its earliest message is received. This process is then moved to the back of the 
process queue. In any infinite sequence of such stages every process takes infinitely 
many steps and receives every message sent to it. The run is therefore admissible. 
Our problem, of course, is to do this in such a way as to avoid a decision ever 
being reached. 

Let Co be a bivalent initial configuration whose existence is assured by Lemma 
2. Execution begins in CO, and we ensure that every stage begins from a bivalent 
configuration. Suppose then that configuration C is bivalent and that process p 
heads the priority queue. Let m be the earliest message to p in C’s message buffer, 
if any, and 0 otherwise. Let e = (p, m). By Lemma 3, there is a bivalent 
configuration C’ reachable from C by a schedule in which e is the last event 
applied. The corresponding sequence of steps defines the stage. 

Since each stage ends in a bivalent configuration, every stage in the construction 
of the infinite schedule succeeds. The resulting run is admissible, and no decision 
is ever reached. It follows that P is not totally correct. Cl 

4. Initially Dead Processes 
In this section, we exhibit a protocol that solves the consensus problem for N 
processes as long as a majority of the processes are nonfaulty and no process dies 
during the execution of the protocol. No process knows in advance, however, 
which of the processes are initially dead and which are not. 

The protocol works in two stages. During the first stage, the processes construct 
a directed graph G with a node corresponding to each process. Every process 
broadcasts a message containing its process number and then listens for messages 
from L - 1 other processes, where L = I(N + 1)/21. G has an edge from i to j iffj 
receives a message from i. Thus, G has indegree L - 1. 

In the second stage, the processes construct G+ (the transitive closure of G) in 
the sense that upon completion of this stage, each process k knows about all of the 
edges (j, k) incident on k in G+ as well as the initial values of all suchj. 

To carry out this stage, each process broadcasts to all other processes its process 
number and initial value together with the names of the L - 1 processes it heard 
from during the first stage. It then waits until it has received a stage 2 message 
from every ancestor in G that it knows about. Initially, it knows only about the 
L- 1 processes from which it heard directly during the first stage, but it learns 
about additional ancestors from the stage 2 messages that it receives. Waiting 
continues until such time as all currently known-about processes have been heard 
from. 

At this point, each process knows all of its own ancestors and the edges of G 
incident on them. Using this information, it computes all of the edges of G+ 
incident on each of its ancestors. It then determines which of its ancestors belong 
to an initial clique of G+, that is, a clique with no incoming edges. To do this, it 
uses the fact that a node k is in an initial clique iff k is itself an ancestor of every 
node j that is an ancestor of k. Since every node in G+ has at ieast L - ‘1 
predecessors, there can be only one initial clique; it has cardinality at least L, and 
every process that completes the second stage knows exactly the set of processes 
comprising it. 

Finally, each process makes a decision based on the initial values of the processes 
in the initial clique using any agreed-upon rule. Since all processes know the initial 
values of all members of the initial clique, they all reach the same decision. 

The correctness of this protocol proves the following theorem. 
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THEOREM 2. There is a partially correct consensus protocol in which all non- 

faulty processes always reach a decision, provided no processes die during its 
execution and a strict majority of the processes are alive initially. 

5. Conclusion 
We have shown that a natural and important problem of fault-tolerant cooperative 
computing cannot be solved in a totally asynchronous model of computation. 
These results do not show that such problems cannot be “solved” in practice; 
rather, they point up the need for more refined models of distributed computing 
that better reflect realistic assumptions about processor and communication tim- 
ings, and for less stringent requirements on the solution to such problems. (For 
example, termination might be required only with probability 1.) Subsequent to 
the original announcement of these results [ 121, progress has been made along both 
of these lines [ 1-4, 9, 10, 20, 251. 
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