
Names, Scopes, and Bindings

Akim Demaille Étienne Renault Roland Levillain
first.last@lrde.epita.fr

EPITA — École Pour l’Informatique et les Techniques Avancées

January 22, 2016

Names, Scopes, and Bindings

1 Bindings

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 2 / 55

Bindings

1 Bindings
Names
Scopes
Binding Time

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 3 / 55

Names

1 Bindings
Names
Scopes
Binding Time

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 4 / 55

Names, Identifiers, Symbols

Name (Identifiers, Symbols)
reference
address
value
To refer to some entities: variable, type, function, namespace,
constant, control structure (e.g., named next, continue in Perl), etc.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 5 / 55

Identifiers

usually alphanumeric and underscore, letter first, without white spaces.
ALGOL 60, FORTRAN ignore white spaces.
limitation on the length

6 characters for the original FORTRAN (Fortran 90: 31),
ISO C: 31
no limit for most others.

case insensitive in Modula-2 and Ada.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 6 / 55

Names, Objects, and Bindings [Edwards, 2003]

Object 2

Object 3

Object 1

Object 4

Name 1

Name 2

Name 3

Name 4

binding

binding

binding

binding

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 7 / 55

Names, Objects, and Bindings

When are objects created and destroyed?
Lifetimes (deferred to a later lecture).
When are names created and destroyed?
Scopes.
When are bindings created and destroyed?
Binding times.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 8 / 55

Names, Objects, and Bindings

When are objects created and destroyed?
Lifetimes (deferred to a later lecture).
When are names created and destroyed?
Scopes.
When are bindings created and destroyed?
Binding times.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 8 / 55

Names, Objects, and Bindings

When are objects created and destroyed?
Lifetimes (deferred to a later lecture).
When are names created and destroyed?
Scopes.
When are bindings created and destroyed?
Binding times.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 8 / 55

Scopes

1 Bindings
Names
Scopes
Binding Time

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 9 / 55

Scopes [Edwards, 2003]

When are names created, visible, and destroyed?

Scope
The textual region in the source in which the binding is
active.

Static Scoping
The scope can be computed at compile-time.

Dynamic Scoping
The scope depends on runtime conditions such as the
function calls.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 10 / 55

Scopes [Edwards, 2003]

When are names created, visible, and destroyed?

Scope
The textual region in the source in which the binding is
active.

Static Scoping
The scope can be computed at compile-time.

Dynamic Scoping
The scope depends on runtime conditions such as the
function calls.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 10 / 55

Scopes [Edwards, 2003]

When are names created, visible, and destroyed?

Scope
The textual region in the source in which the binding is
active.

Static Scoping
The scope can be computed at compile-time.

Dynamic Scoping
The scope depends on runtime conditions such as the
function calls.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 10 / 55

Why Scopes?

Scopes are the first form of structure/modularity
No scopes in assembly
No scopes in MFS
(First generation of the Macintosh File System)
Without scopes, names have a global influence
With scopes, the programmer can focus on local influences
Scopes in correct programs with unique identifiers are “useless”
C++ namespaces are “pure scopes”

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 55

Why Scopes?

Scopes are the first form of structure/modularity
No scopes in assembly
No scopes in MFS
(First generation of the Macintosh File System)
Without scopes, names have a global influence
With scopes, the programmer can focus on local influences
Scopes in correct programs with unique identifiers are “useless”
C++ namespaces are “pure scopes”

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 55

Why Scopes?

Scopes are the first form of structure/modularity
No scopes in assembly
No scopes in MFS
(First generation of the Macintosh File System)
Without scopes, names have a global influence
With scopes, the programmer can focus on local influences
Scopes in correct programs with unique identifiers are “useless”
C++ namespaces are “pure scopes”

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 55

Why Scopes?

Scopes are the first form of structure/modularity
No scopes in assembly
No scopes in MFS
(First generation of the Macintosh File System)
Without scopes, names have a global influence
With scopes, the programmer can focus on local influences
Scopes in correct programs with unique identifiers are “useless”
C++ namespaces are “pure scopes”

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 55

Why Scopes?

Scopes are the first form of structure/modularity
No scopes in assembly
No scopes in MFS
(First generation of the Macintosh File System)
Without scopes, names have a global influence
With scopes, the programmer can focus on local influences
Scopes in correct programs with unique identifiers are “useless”
C++ namespaces are “pure scopes”

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 55

Why Scopes?

Scopes are the first form of structure/modularity
No scopes in assembly
No scopes in MFS
(First generation of the Macintosh File System)
Without scopes, names have a global influence
With scopes, the programmer can focus on local influences
Scopes in correct programs with unique identifiers are “useless”
C++ namespaces are “pure scopes”

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 55

Why Scopes?

Scopes are the first form of structure/modularity
No scopes in assembly
No scopes in MFS
(First generation of the Macintosh File System)
Without scopes, names have a global influence
With scopes, the programmer can focus on local influences
Scopes in correct programs with unique identifiers are “useless”
C++ namespaces are “pure scopes”

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 55

Declaration

Blocks determine scopes.
local variables
non local variables
global variables

int global;

int outer(void)
{

int local, non_local;

int inner(void)
{

return global + non_local;
}

return inner();
}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 12 / 55

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).
Enables static binding.
Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 55

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).
Enables static binding.
Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 55

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).
Enables static binding.
Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 55

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).
Enables static binding.
Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 55

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).
Enables static binding.
Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 55

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).
Enables static binding.
Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 55

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).
Enables static binding.
Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 55

Dynamic Scoping

In most scripting/interpreted languages (Perl (local), Shell Script,
TEX etc.) but also in Lisp (as opposed to Scheme).

Dynamic Scoping in TeX
% \x, \y undefined.
{

% \x, \y undefined.
\def \x 1
% \x defined, \y undefined.
\ifnum \a < 42

\def \y 51
\fi
% \x defined, \y may be defined.

}
% \x, \y undefined.

Prevents static typing
An identifier may refer to different values, with different types.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 14 / 55

Dynamic Scoping

In most scripting/interpreted languages (Perl (local), Shell Script,
TEX etc.) but also in Lisp (as opposed to Scheme).

Dynamic Scoping in TeX
% \x, \y undefined.
{

% \x, \y undefined.
\def \x 1
% \x defined, \y undefined.
\ifnum \a < 42

\def \y 51
\fi
% \x defined, \y may be defined.

}
% \x, \y undefined.

Prevents static typing
An identifier may refer to different values, with different types.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 14 / 55

Dynamic Scoping

In most scripting/interpreted languages (Perl (local), Shell Script,
TEX etc.) but also in Lisp (as opposed to Scheme).

Dynamic Scoping in TeX
% \x, \y undefined.
{

% \x, \y undefined.
\def \x 1
% \x defined, \y undefined.
\ifnum \a < 42

\def \y 51
\fi
% \x defined, \y may be defined.

}
% \x, \y undefined.

Prevents static typing
An identifier may refer to different values, with different types.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 14 / 55

Scopes in Tiger

Many different t, including several “variables”.

t time
let

type t = { h: int, t: t }
function t (h: int, t: t) : t =

t { h = h, t = t }
var t := t (12, nil)
var t := t (12, t)

in
t.t = t

end

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 15 / 55

Scopes [Appel, 1998]

ML
structure M = struct

structure E = struct
val a = 5;

end
structure N = struct

val b = 10;
val a = E.a + b;

end
structure D = struct

val d = E.a + N.a;
end

end

Java (fwd declaration allowed)
package M;
class E {

static int a = 5;
}
class N {

static int b = 10;
static int a = E.a + b;

}
class D {

static int d = E.a + N.a;
}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 16 / 55

Scopes [Appel, 1998]

structure M = struct
structure E = struct

val a = 5;
end
structure N = struct

val b = 10;
val a = E.a + b;

end
structure D = struct

val d = E.a + N.a;
end

end

σ0 = Prelude
σ1 = {a : int}
σ2 = {E : σ1}
σ3 = {b : int, a : int}
σ4 = {N : σ3}
σ5 = {d : int}
σ6 = {D : σ5}
σ7 = σ2 + σ4 + σ6

σ0 + σ2 ` N : σ3 (ML)
σ0 + σ2 + σ4 ` N : σ3 (Java)

σ0 + σ2 + σ4 + σ6 ` M : σ7

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 17 / 55

Lifetime (or extent)

Lifetime is a different matter, related to the execution (as opposed to
visibility).
Extent bound to lifetime of block tend to promote global variables
(Pascal).
Static local variables as in C (static), ALGOL 60 own, PL/I.
Initialization?
Modules tend to replace this block related feature.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 18 / 55

Lifetime (or extent)

Lifetime is a different matter, related to the execution (as opposed to
visibility).
Extent bound to lifetime of block tend to promote global variables
(Pascal).
Static local variables as in C (static), ALGOL 60 own, PL/I.
Initialization?
Modules tend to replace this block related feature.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 18 / 55

Lifetime (or extent)

Lifetime is a different matter, related to the execution (as opposed to
visibility).
Extent bound to lifetime of block tend to promote global variables
(Pascal).
Static local variables as in C (static), ALGOL 60 own, PL/I.
Initialization?
Modules tend to replace this block related feature.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 18 / 55

Lifetime (or extent)

Lifetime is a different matter, related to the execution (as opposed to
visibility).
Extent bound to lifetime of block tend to promote global variables
(Pascal).
Static local variables as in C (static), ALGOL 60 own, PL/I.
Initialization?
Modules tend to replace this block related feature.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 18 / 55

Lifetime (or extent)

Lifetime is a different matter, related to the execution (as opposed to
visibility).
Extent bound to lifetime of block tend to promote global variables
(Pascal).
Static local variables as in C (static), ALGOL 60 own, PL/I.
Initialization?
Modules tend to replace this block related feature.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 18 / 55

Binding Time

1 Bindings
Names
Scopes
Binding Time

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 19 / 55

Binding Time [Edwards, 2003]

When a binding from a name to an object is made.

Binding Time Examples
language design if
language implementation data width
program writing foo, bar
compilation static objects, code
linkage relative addresses
loading shared objects
execution heap objects

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 20 / 55

Binding Time: the moving IN

Roughly, flexibility and efficiency
are mutually exclusive
depend on binding time.

The Moving IN
binding-time

early ---------------------------------> late

INflexibility flexibility
efficiency INefficiency

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 21 / 55

Binding Time: the moving IN

Roughly, flexibility and efficiency
are mutually exclusive
depend on binding time.

The Moving IN
binding-time

early ---------------------------------> late

INflexibility flexibility
efficiency INefficiency

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 21 / 55

Binding Time: the moving IN

Roughly, flexibility and efficiency
are mutually exclusive
depend on binding time.

The Moving IN
binding-time

early ---------------------------------> late

INflexibility flexibility
efficiency INefficiency

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 21 / 55

Dynamic Binding: virtual in C++

Dynamic dispatch is roughly runtime overloading.

Dynamic Dispatch in C++

struct Shape
{

virtual void draw() const = 0;
};

struct Square : public Shape
{

virtual void draw() const override {};
};

struct Circle : public Shape
{

virtual void draw() const override {};
};

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 22 / 55

Dynamic Binding: virtual in C++

Dynamic Dispatch in C++

#include <vector>
#include "shapes.hh"

using shapes_type = std::vector<Shape*>;

int main()
{

auto ss = shapes_type{new Circle, new Square};

for (auto s: ss)
// Inclusion polymorphism.
s->draw();

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 23 / 55

Late Code Binding: eval

Most interpreted
languages support eval
(explicit or not): runtime
code evaluation.
Enables language
extensions.

try/catch in Perl
sub try (&@) {

my ($try, $catch) = @_;
eval { &$try }; # Explicit eval.
if ($@) {

local $_ = $@;
&$catch;

}
}
sub catch (&) {

$_[0]; # implicit eval.
}

try {
die "phooey";

} catch {
/phooey/ and print "unphooey\n";

};
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 24 / 55

Late Code Binding: eval

Most interpreted
languages support eval
(explicit or not): runtime
code evaluation.
Enables language
extensions.

try/catch in Perl
sub try (&@) {

my ($try, $catch) = @_;
eval { &$try }; # Explicit eval.
if ($@) {

local $_ = $@;
&$catch;

}
}
sub catch (&) {

$_[0]; # implicit eval.
}

try {
die "phooey";

} catch {
/phooey/ and print "unphooey\n";

};
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 24 / 55

Late Code Binding: eval

Most interpreted
languages support eval
(explicit or not): runtime
code evaluation.
Enables language
extensions.

try/catch in Perl
sub try (&@) {

my ($try, $catch) = @_;
eval { &$try }; # Explicit eval.
if ($@) {

local $_ = $@;
&$catch;

}
}
sub catch (&) {

$_[0]; # implicit eval.
}

try {
die "phooey";

} catch {
/phooey/ and print "unphooey\n";

};
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 24 / 55

Late Code Binding: eval

Most interpreted
languages support eval
(explicit or not): runtime
code evaluation.
Enables language
extensions.

try/catch in Perl
sub try (&@) {

my ($try, $catch) = @_;
eval { &$try }; # Explicit eval.
if ($@) {

local $_ = $@;
&$catch;

}
}
sub catch (&) {

$_[0]; # implicit eval.
}

try {
die "phooey";

} catch {
/phooey/ and print "unphooey\n";

};
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 24 / 55

Binding Times in Tiger [Edwards, 2003]

Design Keywords
Program Identifiers
Compile Function code, frames, types

Execution Records, arrays addresses

Little dynamic behavior

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 25 / 55

Symbol Tables

1 Bindings

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 26 / 55

Visiting an ast

For statically scoped languages
many traversals check uses against definitions
most traversals need a form of memory (binding, type, escapes,
inlining, translation, etc.)
this memory is related to scopes
we need some reversible memory (do/undo)

Similarly for narrow compilers without ast

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 27 / 55

Visiting an ast

For statically scoped languages
many traversals check uses against definitions
most traversals need a form of memory (binding, type, escapes,
inlining, translation, etc.)
this memory is related to scopes
we need some reversible memory (do/undo)

Similarly for narrow compilers without ast

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 27 / 55

Visiting an ast

For statically scoped languages
many traversals check uses against definitions
most traversals need a form of memory (binding, type, escapes,
inlining, translation, etc.)
this memory is related to scopes
we need some reversible memory (do/undo)

Similarly for narrow compilers without ast

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 27 / 55

Visiting an ast

For statically scoped languages
many traversals check uses against definitions
most traversals need a form of memory (binding, type, escapes,
inlining, translation, etc.)
this memory is related to scopes
we need some reversible memory (do/undo)

Similarly for narrow compilers without ast

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 27 / 55

Visiting an ast

For statically scoped languages
many traversals check uses against definitions
most traversals need a form of memory (binding, type, escapes,
inlining, translation, etc.)
this memory is related to scopes
we need some reversible memory (do/undo)

Similarly for narrow compilers without ast

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 27 / 55

Symbol Tables: Scopes

Handle scopes?
not needed if all the names are
unique
or if there exists a unique
identifier
required otherwise

Handle scopes explicitly?
yes: the tables support undo:
scoped symbol tables
no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 55

Symbol Tables: Scopes

Handle scopes?
not needed if all the names are
unique
or if there exists a unique
identifier
required otherwise

Handle scopes explicitly?
yes: the tables support undo:
scoped symbol tables
no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 55

Symbol Tables: Scopes

Handle scopes?
not needed if all the names are
unique
or if there exists a unique
identifier
required otherwise

Handle scopes explicitly?
yes: the tables support undo:
scoped symbol tables
no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 55

Symbol Tables: Scopes

Handle scopes?
not needed if all the names are
unique
or if there exists a unique
identifier
required otherwise

Handle scopes explicitly?
yes: the tables support undo:
scoped symbol tables
no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 55

Symbol Tables: Scopes

Handle scopes?
not needed if all the names are
unique
or if there exists a unique
identifier
required otherwise

Handle scopes explicitly?
yes: the tables support undo:
scoped symbol tables
no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 55

Symbol Tables: Scopes

Handle scopes?
not needed if all the names are
unique
or if there exists a unique
identifier
required otherwise

Handle scopes explicitly?
yes: the tables support undo:
scoped symbol tables
no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 55

(Non Scoped) Symbol Tables

An associative array
put

get

Implementation
a list
a tree
a hash
...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 55

(Non Scoped) Symbol Tables

An associative array
put

get

Implementation
a list
a tree
a hash
...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 55

(Non Scoped) Symbol Tables

An associative array
put

get

Implementation
a list
a tree
a hash
...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 55

(Non Scoped) Symbol Tables

An associative array
put

get

Implementation
a list
a tree
a hash
...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 55

(Non Scoped) Symbol Tables

An associative array
put

get

Implementation
a list
a tree
a hash
...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 55

(Non Scoped) Symbol Tables

An associative array
put

get

Implementation
a list
a tree
a hash
...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 55

(Non Scoped) Symbol Tables

An associative array
put

get

Implementation
a list
a tree
a hash
...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 55

(Non Scoped) Symbol Tables

An associative array
put

get

Implementation
a list
a tree
a hash
...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 55

Scoped Symbol Table: symbol::Table

class Table
template <typename Entry_T>
class Table
{
public:

Table();

auto put(symbol key, Entry_T& val) -> void;
auto get(symbol key) const -> Entry_T*;

auto scope_begin() -> void;
auto scope_end() -> void;

auto print(std::ostream& ostr) const -> void;
};

Not very C++...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 30 / 55

Scoped Symbol Table Implementations

Mixing Stacks and Associative Arrays
Copying, or not copying?
Functional (Non Destructive) Versions
Mongrels

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 31 / 55

Scoped Symbol Table Implementations

Mixing Stacks and Associative Arrays
Copying, or not copying?
Functional (Non Destructive) Versions
Mongrels

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 31 / 55

Scoped Symbol Table Implementations

Mixing Stacks and Associative Arrays
Copying, or not copying?
Functional (Non Destructive) Versions
Mongrels

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 31 / 55

Scoped Symbol Table Implementations

Mixing Stacks and Associative Arrays
Copying, or not copying?
Functional (Non Destructive) Versions
Mongrels

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 31 / 55

Memory Management

When do you deallocate associated data?
scope end deallocate everything since the latest scope_begin
pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation
by hand thanks God for Valgrind

and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 55

Memory Management

When do you deallocate associated data?
scope end deallocate everything since the latest scope_begin
pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation
by hand thanks God for Valgrind

and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 55

Memory Management

When do you deallocate associated data?
scope end deallocate everything since the latest scope_begin
pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation
by hand thanks God for Valgrind

and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 55

Memory Management

When do you deallocate associated data?
scope end deallocate everything since the latest scope_begin
pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation
by hand thanks God for Valgrind

and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 55

Memory Management

When do you deallocate associated data?
scope end deallocate everything since the latest scope_begin
pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation
by hand thanks God for Valgrind and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 55

Memory Management

When do you deallocate associated data?
scope end deallocate everything since the latest scope_begin
pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation
by hand thanks God for Valgrind and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 55

Memory Management

When do you deallocate associated data?
scope end deallocate everything since the latest scope_begin
pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation
by hand thanks God for Valgrind and Paracetamol

never tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 55

Memory Management: Deallocate on scope exit

But then...

Twice foo
let var foo := 42

var foo := 51
in foo end

Two lets
let var foo := 42 in
let var foo := 51
in foo end end

but then again...

Escaping type
let type rec = {}
in rec {} end <> nil

Segmentation violation...

Courtesy of Arnaud Fabre.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 55

Memory Management: Deallocate on scope exit

But then...

Twice foo
let var foo := 42

var foo := 51
in foo end

Two lets
let var foo := 42 in
let var foo := 51
in foo end end

but then again...

Escaping type
let type rec = {}
in rec {} end <> nil

Segmentation violation...

Courtesy of Arnaud Fabre.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 55

Memory Management: Deallocate on scope exit

But then...

Twice foo
let var foo := 42

var foo := 51
in foo end

Two lets
let var foo := 42 in
let var foo := 51
in foo end end

but then again...

Escaping type
let type rec = {}
in rec {} end <> nil

Segmentation violation...

Courtesy of Arnaud Fabre.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 55

Memory Management: Deallocate on scope exit

But then...

Twice foo
let var foo := 42

var foo := 51
in foo end

Two lets
let var foo := 42 in
let var foo := 51
in foo end end

but then again...

Escaping type
let type rec = {}
in rec {} end <> nil

Segmentation violation...
Courtesy of Arnaud Fabre.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 55

Memory Management: Deallocate with the AST

annotate each node of ast
annotate each scoping node with a symbol table and link them
leave tables outside

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 34 / 55

Memory Management: Deallocate with the AST

annotate each node of ast
annotate each scoping node with a symbol table and link them
leave tables outside

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 34 / 55

Memory Management: Deallocate with the AST

annotate each node of ast
annotate each scoping node with a symbol table and link them
leave tables outside

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 34 / 55

Factoring Scope Handling

no scope handling needed if names are unique
so use regular associative containers
but how can you guarantee unique names
do you need to make names uniques?

Bind the names/Label by definition address

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 35 / 55

Factoring Scope Handling

no scope handling needed if names are unique
so use regular associative containers
but how can you guarantee unique names
do you need to make names uniques?

Bind the names/Label by definition address

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 35 / 55

Factoring Scope Handling

no scope handling needed if names are unique
so use regular associative containers
but how can you guarantee unique names
do you need to make names uniques?

Bind the names/Label by definition address

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 35 / 55

Factoring Scope Handling

no scope handling needed if names are unique
so use regular associative containers
but how can you guarantee unique names
do you need to make names uniques?

Bind the names/Label by definition address

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 35 / 55

Factoring Scope Handling

no scope handling needed if names are unique
so use regular associative containers
but how can you guarantee unique names
do you need to make names uniques?

Bind the names/Label by definition address

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 35 / 55

Binder

annotates uses with links to their definitions
uses scoped symbol tables
or regular containers and recursion
checks multiple definitions
checks missing definitions
and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 55

Binder

annotates uses with links to their definitions
uses scoped symbol tables
or regular containers and recursion
checks multiple definitions
checks missing definitions
and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 55

Binder

annotates uses with links to their definitions
uses scoped symbol tables
or regular containers and recursion
checks multiple definitions
checks missing definitions
and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 55

Binder

annotates uses with links to their definitions
uses scoped symbol tables
or regular containers and recursion
checks multiple definitions
checks missing definitions
and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 55

Binder

annotates uses with links to their definitions
uses scoped symbol tables
or regular containers and recursion
checks multiple definitions
checks missing definitions
and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 55

Binder

annotates uses with links to their definitions
uses scoped symbol tables
or regular containers and recursion
checks multiple definitions
checks missing definitions
and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 55

Binder

annotates uses with links to their definitions
uses scoped symbol tables
or regular containers and recursion
checks multiple definitions
checks missing definitions
and also binds... breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 55

Complications

1 Bindings

2 Symbol Tables

3 Complications
Overloading
Non Local Variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 37 / 55

Overloading

1 Bindings

2 Symbol Tables

3 Complications
Overloading
Non Local Variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 38 / 55

Overloading

Overloading: Homonyms
Several entities bearing the same name,
but statically distinguishable, e.g., by
their arity, type etc.

Aliasing: Synonyms
One entity bearing several names.

// foo is overloaded.
int foo(int);
int foo(float);

// x and y are aliases.
int x;
int& y = x;

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 39 / 55

Operator Overloading

Overloading is meant to simplify the user’s life. Since FORTRAN!

Overloading in Caml
1 + 2;;
- : int = 3
1.0 + 2.0;;
Characters 0-3:

1.0 + 2.0;;
^^^

This expression has type float but is here used with type int
1.0 +. 2.0;;
- : float = 3.

Thank God, C was invented to improve Caml:
int a = 1 + 2;;
float b = 1.0 + 2.0;;

Of course this is unfair: Caml has type inference.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 40 / 55

Operator Overloading

Overloading is meant to simplify the user’s life. Since FORTRAN!

Overloading in Caml
1 + 2;;
- : int = 3
1.0 + 2.0;;
Characters 0-3:

1.0 + 2.0;;
^^^

This expression has type float but is here used with type int
1.0 +. 2.0;;
- : float = 3.

Thank God, C was invented to improve Caml:
int a = 1 + 2;;
float b = 1.0 + 2.0;;

Of course this is unfair: Caml has type inference.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 40 / 55

Operator Overloading

Overloading is meant to simplify the user’s life. Since FORTRAN!

Overloading in Caml
1 + 2;;
- : int = 3
1.0 + 2.0;;
Characters 0-3:

1.0 + 2.0;;
^^^

This expression has type float but is here used with type int
1.0 +. 2.0;;
- : float = 3.

Thank God, C was invented to improve Caml:
int a = 1 + 2;;
float b = 1.0 + 2.0;;
Of course this is unfair: Caml has type inference.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 40 / 55

Function Overloading

Usually based on the arguments
(Ada, C++, Java...; not C, ALGOL 60, Fortran...).

ALGOL 60
integer I;
real X;
...
PUTSTRING("results are: "); PUTINT(I); PUTREAL(X);

Ada [ARM, 1983]
I : INTEGER;
X : REAL;
...
PUT("results are: "); PUT(I); PUT(X);

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 41 / 55

Overloading is Syntactic Sugar

Overloaded
#include <string>

void foo(int);
void foo(char);
void foo(const char*);
void foo(std::string);

int
main ()
{

foo(0);
foo(’0’);
foo("0");
foo(std::string("0"));

}

Un-overloaded
#include <string>

void foo_int(int);
void foo_char(char);
void foo_char_p(const char*);
void foo_std_string(std::string);

int
main ()
{

foo_int(0);
foo_char(’0’);
foo_char_p("0");
foo_std_string(std::string("0"));

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 42 / 55

Overloading is Syntactic Sugar

Overloaded
#include <string>

void foo(int);
void foo(char);
void foo(const char*);
void foo(std::string);

int
main ()
{

foo(0);
foo(’0’);
foo("0");
foo(std::string("0"));

}

Un-overloaded
#include <string>

void foo_int(int);
void foo_char(char);
void foo_char_p(const char*);
void foo_std_string(std::string);

int
main ()
{

foo_int(0);
foo_char(’0’);
foo_char_p("0");
foo_std_string(std::string("0"));

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 42 / 55

Overloading is Syntactic Sugar

Usually solved by renaming/mangling.
g++-2.95, como

f__Fi -> int f(int);
f__FPc -> int f(char*);

g++-3.2, icc
_Z1fi -> int f(int);
_Z1fPc -> int f(char*);

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 43 / 55

Overloading in Tiger

Ordering <, <=, >, and >=
overloaded for pairs of integers, or strings.

Identity = and <>
overloaded for (type coherent) pairs of integers, strings,
arrays or records.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 44 / 55

Non Local Variables

1 Bindings

2 Symbol Tables

3 Complications
Overloading
Non Local Variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 45 / 55

Lambda Shifting

With nested functions
int global;

int outer(void)
{

int local, non_local;

int inner(void)
{

return
global + non_local;

}

return inner();
}

Without
int global;

int outer_inner_(int* non_local)
{

return global + *non_local;
}

int outer(void)
{

int local, non_local;
return outer_inner_(&non_local);

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 46 / 55

Lambda Shifting

With nested functions
int global;

int outer(void)
{

int local, non_local;

int inner(void)
{

return
global + non_local;

}

return inner();
}

Without
int global;

int outer_inner_(int* non_local)
{

return global + *non_local;
}

int outer(void)
{

int local, non_local;
return outer_inner_(&non_local);

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 46 / 55

Non Local Variables

let
function outer(): int =

let
non-local var outer := 0

in
let

function inner() : int =
let

var inner := 1
in

inner + outer
end

in
inner()

end
end

in
outer ()

end
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 47 / 55

Non Non Local Variables

let

let
local var outer := 0

in
let

let
var inner := 1

in
inner + outer

end
in

end
end

in

end
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 48 / 55

Non Non Local Variables

let
function outer(): int =

let
local var outer := 0

in
let

let
var inner := 1

in
inner + outer

end
in

end
end

in
outer()

end
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 49 / 55

The Escapes and Functional Programming

let
function add(non-local a: int, b: int) : int =

let
function add_a(x: int) : int = a + x

in
add_a(b)

end
in

print_int(add(1, 2));
print("\n")

end

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 50 / 55

Closures

let
function add_gen(non-local a: int) : int -> int =

let
function add_a(x: int) : int = a + x

in
add_a

end
incr = add_gen(1);

in
print_int(incr(2));
print("\n");

end

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 51 / 55

The Escapes & Recursion

let
function one(input : int) =

let
function two() =

(print("two: "); print_int(input);
print("\n");
one(input))

in
if input > 0 then

(input := input - 1;
two(); print("one: ");
print_int(input); print("\n"))

end
in

one (3)
end

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 52 / 55

Escaping Variables/Arguments

Technically escaping means “cannot be stored in a register”.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 53 / 55

Escaping Variables/Arguments

Technically escaping means “cannot be stored in a register”.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 53 / 55

Escaping Variables/Arguments

Technically escaping means “cannot be stored in a register”.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 53 / 55

Escaping Variables/Arguments

Technically escaping means “cannot be stored in a register”.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 53 / 55

Escaping Variables/Arguments

Technically escaping means “cannot be stored in a register”.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 53 / 55

Escaping Variables/Arguments

Technically escaping means “cannot be stored in a register”.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 53 / 55

Escaping Variables/Arguments

Technically escaping means “cannot be stored in a register”.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 53 / 55

Annotating the ast

being non local means having non local uses
obviously non local variables need to be accessible from inner functions
to simplify the compiler, it is easier to leave them on the stack
hence the translation to intermediate representation needs to know
which variables are non local from their definitions
therefore a preleminary pass should flag non local variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 55

Annotating the ast

being non local means having non local uses
obviously non local variables need to be accessible from inner functions
to simplify the compiler, it is easier to leave them on the stack
hence the translation to intermediate representation needs to know
which variables are non local from their definitions
therefore a preleminary pass should flag non local variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 55

Annotating the ast

being non local means having non local uses
obviously non local variables need to be accessible from inner functions
to simplify the compiler, it is easier to leave them on the stack
hence the translation to intermediate representation needs to know
which variables are non local from their definitions
therefore a preleminary pass should flag non local variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 55

Annotating the ast

being non local means having non local uses
obviously non local variables need to be accessible from inner functions
to simplify the compiler, it is easier to leave them on the stack
hence the translation to intermediate representation needs to know
which variables are non local from their definitions
therefore a preleminary pass should flag non local variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 55

Annotating the ast

being non local means having non local uses
obviously non local variables need to be accessible from inner functions
to simplify the compiler, it is easier to leave them on the stack
hence the translation to intermediate representation needs to know
which variables are non local from their definitions
therefore a preleminary pass should flag non local variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 55

Bibliography I

Appel, A. W. (1998).
Modern Compiler Implementation in C, Java, ML.
Cambridge University Press.

ARM (1983).
Ada Reference Manual.

Edwards, S. (2003).
COMS W4115 Programming Languages and Translators.
http://www.cs.columbia.edu/~sedwards/classes/2003/w4115/.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 55 / 55

http://www.cs.columbia.edu/~sedwards/classes/2003/w4115/

	Bindings
	Names
	Scopes
	Binding Time

	Symbol Tables
	Complications
	Overloading
	Non Local Variables

