
On the Verification of Temporal Properties

Patrice Godefroid
University of Lie ̀ ge, Belgium

Gerard J. Holzmann
AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

We present a new algorithm that can be used for solving the model−checking prob-
lem for linear−time temporal logic. This algorithm can be viewed as the combination of
two existing algorithms plus a new state representation technique introduced in this
paper. The new algorithm is simpler than the traditional algorithm of Tarjan to check for
maximal strongly connected components in a directed graph which is the classical algo-
rithm used for model−checking. It has the same time complexity as Tarjan’s algorithm,
but requires less memory. Our algorithm is also compatible with other important com-
plexity management techniques, such as bit−state hashing and state space caching.

Proc. IFIP, Symp. on Protocol Specification, Testing, and Verification. June 1993,
Liege, Belgium.

January 1, 1993

On the Verification of Temporal Properties

Patrice Godefroid
University of Lie ̀ ge, Belgium

Gerard J. Holzmann
AT&T Bell Laboratories

Murray Hill, New Jersey 07974

1. INTRODUCTION

Techniques for verifying both safety and liveness properties of concurrent systems with on−the−fly search
algorithms have been known for quite some time. The verification of safety properties relies only on a
search for reachable ‘‘bad states.’’ The verification of liveness properties, however, requires also search for
reachable ‘‘bad cycles.’’ Until recently, it was assumed that the validation of liveness properties required
the implementation of an algorithm for the detection of strongly connected components in the reachability
graph. Tarjan’s standard algorithm [AHU74] can perform this work at a cost that is linear in the size of the
reachability graph, and is therefore implemented in almost all verification systems that support liveness
properties.

The construction of strongly connected components, however, is not compatible with a range of validation
techniques that can be used to reduce the memory requirements of on−the−fly verification algorithms.
Examples of such techniques are state space caching techniques, as studied for instance in [GHP92], and
the bit−state hashing technique from [Hol88], which can be found in most mainstream verification tools
today.

In the last three years two new algorithms have been published that each solve one part of this problem. In
[CVWY90] an algorithm was proposed that avoids the detection of strongly connected components by per-
forming two nested depth−first searches. The algorithm can be used to check for cycles that pass through at
least one state marked as ‘‘accepting state.’’ In [Hol91] this algorithm was implemented to facilitate the
detection of so−called ‘‘acceptance cycles’’ in PROMELA validation models with the validator SPIN.

The second algorithm was first published in [Hol91] and similarly avoids the detection of strongly con-
nected components by the definition of a two−state demon automaton, that controls two separate searches,
the standard search, and a truncated search for cycles, as will be explained in more detail below. This sec-
ond algorithm can be used to check for cycles that do not pass through any states marked as ‘‘progress
states.’’ In the context of SPIN, this is used for a fast detection of so−called ‘‘non−progress cycles’’, which
are the dual of the ‘‘acceptance cycles’’ from above.

Each of these two algorithms proves that it is often not necessary to construct maximal strongly connected
components: it is almost always sufficient to show only that they exist, and to produce a single traversal of
a strongly connected component to demonstrate its existence to a user. The cost of both algorithms in time
and memory is still linear on the size of the reachability graph: it is never more than twice the cost of a
standard reachability analysis for each algorithm.

In this paper we discuss two additional improvements. First, we show how the algorithm from [CVWY90]
can be simplified by being combined with the one from [Hol91]. Next, we show that the resulting algo-
rithm can be implemented with a much smaller space complexity than thought possible, thanks to a new
state representation technique. Instead of a doubling of the memory requirements at worst, the new algo-
rithm requires no more than two bits of overhead for each state stored. Since most protocols of practical
significance require at least tens if not hundreds of bytes of memory per state stored, this does not alter the
space requirements in a significant way.

We also show that, despite its simplicity, the algorithm described here can solve the model−checking prob-
lem, that is, it can be used to verify any temporal property, and, if required, it can do so under any fairness

January 1, 1993

- 2 -

assumption. This paper focuses on the verification of temporal logic formulae, specifically the detection of
acceptance cycles in B

. .
uchi automata, though the algorithm we propose can be used also independently of

model−checking, for the detection of acceptance cycles in general.

In Section 2 and 3 we give a formal framework for the verification of temporal properties with reachability
analyses. We discuss the algorithms from [CVWY90] and [Hol91], and describe how they can be com-
bined. Section 4 continues with a discussion of the new general storage technique we propose, which is
named ‘‘hybrid storage.’’ Section 5 concludes the paper with a discussion of related work and the conclu-
sions.

2. VERIFICATION OF TEMPORAL PROPERTIES

2.1. Representing Programs

Consider a programP describing a system of several interacting concurrent processesPi . Processes can
communicate, for instance, via shared variables or via communication channels. We only assume, how-
ever, that programP describes afinite −statesystem. In other words, we assume that it is possible to com-
pute afinite −stateautomatonAP, often called a ‘‘labeled transition system,’’ that represents the behavior
of all processesPi combined. Formally,AP is a tupleAP = (ΣP ,SP ,∆P ,s0P), whereΣP is an alphabet,SP

is a finite set of states,∆P ⊆ SP × ΣP ×SP is a transition relation, ands0P ∈ SP is the initial state.AP can be
computed by simulating all possible sequences of actions the system can perform from its initial state.ΣP

is the set of actions that are present in the code of the programP, SP is the set of states that the system can
reach from its initial state, and the transitions in∆P correspond to transitions between states that the system
can perform while executing a single action.

A computationof the programP is a sequence of statesσ =s0 ,s1 , . . . such that there exists transitions
(si −1 ,ai ,si) ∈ ∆ , for all i≥1. Thus states inσ are intermediate states reached during the execution of the
sequence of actionsa1 a2

. . . by the system from its initial state.

Initially: t =1, y1 =F, y2 =F

P1

l 0: execute (noncritical section)
l 1: y1 :=T

l 2: if (y2=F) then go tol 7

l 3: if (t =1) then go tol 2

l 4: y1 :=F

l 5: loop until (t =1)
l 6: go tol 1

l 7: t: =2 (critical section)
l 8: y1 :=F

l 9: go tol 0

P2

m0: execute (noncritical section)
m1: y2 :=T

m2: if (y1=F) then go tom7

m3: if (t =2) then go tom2

m4: y2 :=F

m5: loop until (t =2)
m6: go tom1

m7: t: =1 (critical section)
m8: y2 :=F

m9: go tom0

Figure 1 – Dekker’s algorithm

Consider the well−known Dekker algorithm [Dij68] for mutual exclusion, reproduced in Figure 1. There

January 1, 1993

- 3 -

are two parallel processesP1 andP2, a shared variablet, and two private boolean variablesy1 and y2.
Each private variable can be set only by the process owning it, but can be examined by both. The variable
y1 in P1 (y2 in P2) is set toT at l 1 to signal the intention ofP1 to enter its critical section atl 7. NextP1

tests atl 2 if P2 is about to enter its critical section by checking ify2 =T. If y2 =F, P1 proceeds immedi-
ately to its critical section. Ify2 =T, there is a conflict. The conflict is resolved by using the value of vari-
ablet. If t =2, thenP1 ‘‘withdraws’’ by settingy1 to F, and waits until its turn comes (t =1). If t =1, it
waits untilP2 ‘‘withdraws’’, and then enters its critical section atl 7. While in the critical section, it sets
the variablet to 2, to indicate that next time a potential conflict should be resolved in favor ofP2, and it
setsy1 to F just before exiting the critical section. We assume thatP1 andP2 are running asynchronously
on different processors with different speeds, and that read and write instructions involving shared variables
are executed as atomic operations. The automatonAP corresponding to this concurrent program has 101
reachable states and 202 transitions.

2.2. Specifying Temporal Properties

For representing temporal properties, we use linear−time propositional temporal logic [MP92]. Linear−
time temporal logic can be used for specifying properties of infinite sequences of states. Propositions in the
logic correspond to boolean conditions on variables and process states of the program. Formulas are con-
structed over propositions using the classical boolean connectives (¬ , ∨ , ...) and the temporal operators
(always),◊ (eventually), (next) andU (until), whose semantics is defined as usual [MP92]. Formulas are
interpreted oninfinite sequencess0 s1 s2

. . . of states: given a particular infinite sequence of states, the for-
mula is either satisfied or falsified by this sequence. Informally, one has:

• p holds in statesi if p holds insi and in all successor states ofsi in the sequence on which the for-
mula is interpreted;

• ◊ p holds insi if p holds in some successor state ofsi or in si itself;

• p holds insi if p holds at the next state;

• p U q holds insi if p holds insi and in all successor states ofsi until the first state in whichq holds.

Consider the formula (p⊃ ◊ q). It expresses the property: ‘‘every state where propositionp holds coin-
cides with or is followed by a state where propositionq holds’’. All infinite sequences of states that meet
this requirement satisfy this formula.

2.3. Verification Problem

The verification problem we consider is the following. Given a concurrent programP and a linear−time
temporal logic formulaf, check that all infinite computations ofP satisfy f. This is known as themodel−
checking problem.

To solve this problem, the only assumption we need to make is that, for each formulaf in linear temporal
logic, it is possible to build aB

. .
uchi automaton Af that accepts exactly the infinite words satisfying the tem-

poral formulaf [Buc62, WVS83]. Formally, a B
. .
uchi automaton is a tupleA = (Σ,S,∆,s0 ,F), where

• Σ is an alphabet,

• S is a set of states,

• ∆ ⊆ S× Σ ×S is a transition relation,

• s0 ∈ S is the starting state, and

• F ⊆ S is a set of accepting states.

A B
. .
uchi automaton is thus a classical automaton as defined in Section 2.1, augmented with a setF of

accepting states. B
. .
uchi automata are used to define languages ofω−words, i.e., functions from the ordinal

ω to the alphabetΣ. Intuitively, a word isacceptedby a B
. .
uchi automaton if the automaton has an infinite

execution that intersects setF infinitely often.

Formally, we define arun σ of A over anω−word w =a1 a2
. . . as anω−sequenceσ =s0 ,s1 , . . . , that is,

a function fromω to S, where (si −1 ,ai ,si) ∈ ∆ , for all i≥1. A run σ =s0 ,s1 , . . . is acceptingif there is
some state inF that repeats infinitely often, i.e., for some statex∈ F there are infinitely manyi ∈ ω such that
si =x. Theω−wordw is acceptedby A if there is an accepting run ofA over theω−wordw.

January 1, 1993

- 4 -

The construction of the B
. .
uchi automatonA f from the formulaf is, in the worst case, exponential in the

length of the formula [Wol89, Tha89]. In practice, however, most formulas are short, and the worst case
behavior is rarely seen.

p

p ∨ ¬ p ¬ q

Figure 2 – B
. .
uchi automaton corresponding to ¬ ((p ⊃ ◊ q))

Figure 2 shows a B
. .
uchi automaton that accepts all the infinite words satisfying the formula¬ f with

f ≡ (p ⊃ ◊ q), i.e., all sequences of states which contain a state wherep holds and from whichq never holds
in the remainder of the sequence.

The verification procedure is the following [WVS83,VW86b]. We first build the finite−automaton on infi-
nite words for thenegation of the formulaf. The resulting automatonA¬ f accepts all sequences of states
that violatef. (Of course, ifA¬ f is provided by the user, the negation procedure can be skipped.) Then we
compute the product automatonA G =A P ×A¬ f which is the B

. .
uchi automatonA G = (Σ,S,∆,s0 ,F) with

• Σ = Σ¬ f ,

• S =S P ×S¬ f , s0 = (s0P ,s0¬ f),

• ((s,w) ,a, (u,v)) ∈ ∆ when (s,t,u) ∈ ∆ P and (w,a,v) ∈ ∆ ¬ f (i.e., each transitiont of A P is synchro-
nized with a transitiona of A¬ f),

• F =S P ×F¬ f .

This product automaton accepts all infinite computations ofP that are accepted byA¬ f , i.e., all computa-
tions that violate the formulaf. The verification is completed by checking if automatonA G accepts any
sequences. IfA G is empty, we have proven that all infinite computations ofP satisfy formulaf.

Consider Dekker’s algorithm again. Let us verify that, if one of the two processes (sayP1) wants to enter
its critical section, it eventually enters it. This property can be formalized with the formula
f ≡ ((at l1) ⊃ ◊ (at l7)). The B

. .
uchi automatonA¬ f corresponding to¬ f is presented in Figure 2. Its ini-

tial state is designated by the symbol>. It has one accepting state designated by a double circle. Maybe
surprisingly, the automatonA G corresponding to the product of Dekker’s algorithm andA¬ f is nonempty,
which means that there exists at least one infinite computation of the program violating the property. One
such computation is the following:P1 moves froml 0 to l 1 and next tol 2; thenP2 moves fromm0 up to
m5 and then loops for ever inm5. This infinite computation violates the formulaf given above sincel 1 has
been reached butl 7 is never reached.

Note that we verify properties of the infinite computations ofP. These are defined by viewingA P as a
restricted type of B

. .
uchi automaton in which the set of accepting states is the whole set of states inA P.

Thus this verification procedure does not considerfinite computations of the programP. However, if
required, it is always possible to transform finite computations into infinite ones by letting the terminating
state repeat forever [LP85].

2.4. Specifying Fairness Assumptions

It is sometimes useful in verifications to formalize specific assumptions about the context in which a con-
current program is executed. If, for instance, concurrent processes are executed on different processors, it is
customary to assume that each such processor will always make finite progress: if it has an enabled opera-
tion, it will eventually execute it. This ‘‘finite progress’’ assumption was already expressed in, for
instance, Dijkstra’s work in the late sixties [Dij68]. More recently, the classic finite progress assumption is
usually defined as a special case of a larger class of ‘‘fairness assumptions.’’ In this context, finite progress
is often defined as ‘‘weak fairness’’ [MP92,Fra86]. Other notions of fairness are used to formalize specific
properties of, for instance, process schedulers for concurrent systems. The main purpose of these assump-
tions is to exclude computations that would not be allowed by the specific type of process scheduler that is

January 1, 1993

- 5 -

assumed. The fairness assumptions then act as filters, removing classes of infinite behaviors that conflict
with the assumptions made about scheduler behavior.

Consider the previous example. We showed that the computation ‘‘P1 moves froml 0 to l 1 and next tol 2;
then P2 moves fromm0 up to m5 and then loops for ever inm5’’ violates the property ((at l1) ⊃
◊(at l7)). But, since we assumed thatP1 andP2 are running asynchronously on different processors with
different speeds, the above computation violates the finite progress (or weak fairness) assumption. Since
P1 and P2 can always execute a transition (including looping), assuming weak fairness is in this case
equivalent to assuming that every process always eventually executes a transition.

¬ P1

P1

¬ P1P1

¬ P2

P2

¬ P2P2

Figure 3 – B
. .
uchi automata corresponding to ◊ P1 and ◊ P2 respectively

It is beyond the scope of this paper to discuss the various notions of fairness that have been studied (see for
instance [MP92,Fra86]). It can shown that fairness assumptions can be modeled by temporal logic formu-
las [LP85], or by B

. .
uchi automata [ACW90].

For the previous example, the assumption ‘‘every process always eventually executes a transition’’ can be
formalized by the formula ‘‘ ◊ P1 ∧ ◊P2’’, where P i denotes the fact that the current transition of the pro-
gram is performed by the processi. Another possibility is to add in the program two more processes corre-
sponding to the two B

. .
uchi automata presented in Figure 3.

The verification procedure of a formulaf remains very similar in the presence of fairness assumptions. If
fairness assumptions are modeled by a formulaf ′, the verification problem amounts to checking that all
infinite computations of the programP satisfy the formulaf ′ ⊃ f, which can be done with the procedure dis-
cussed in the previous section. If fairness assumptions are modeled by several B

. .
uchi automataA fair , each

synchronized with theprogram,1 the productA G =A P ×A fair ×A¬ f is computed in a different way than
defined in the previous section, since this time several automata have nontrivial acceptance conditions (e.g.,
see Chapter 4 of [Tha89]), but also here the verification problem reduces to checking the emptiness ofA G.

Consider Dekker’s algorithm and formula (◊ P1 ∧ ◊P2) ⊃ ((at l1) ⊃ ◊ (at l7)). The B
. .
uchi automaton

A¬ f corresponding to this formula has 16 states and 92 transitions. The product automatonA G is now
empty, which means that this formula is satisfied by the program.

Note that assuming fairness is often ill−advised in formal verifications. If the fairness ‘‘filter’’ is too
restrictive, erroneous computations might be eliminated and thus missed during a verification. The result of
the verification becomes conditional on the validity of the fairness assumptions. If, for instance, the sched-
uler on a system is changed, the proof of correctness of an application protocol that relied on the properties
of that scheduler immediately becomes invalid. A verification that does not rely on fairness assumptions is
therefore always stronger than one that does. In principle, furthermore, it is the obligation of the user to
also prove formally that the fairness assumptions made are indeed valid for a given scheduler. In practice,
this can be very hard, and it is often impossible.

We conclude, though, that the problem of proving that the programP satisfies the formulaf, with or with-
out assuming some notion of fairness, can be reduced to the problem of checking the emptiness of the
B

. .
uchi automatonA G. Note that computingA G and checking its emptiness can be done at the same time.

1. Another possibility is to specify acceptance sets for each process directly in the program, thus to define the program itself
as being the product of B

. .
uchi automata [ACW90,GW91a].

January 1, 1993

- 6 -

3. CHECKING EMPTINESS OF BUCHI AUTOMATA

3.1. Previous Work

To check if the B
. .
uchi automatonA G is nonempty, one has to check if there exists a cycle inA G (viewed as

a graph) that contains an accepting state and that is reachable from the initial states0. Note that it is not
necessary to consider all possible cycles inA G; it is sufficient to check ifA G contains at lest one maximal
(non−trivial) strongly connected component that is reachable from the initial state and that includes a state
from setF.

Searching for maximal strongly connected components inA G can be done with the Tarjan algorithm
[AHU74, Tar72]. This algorithm is based on a depth−first search inA G with additional computations at
each state ofA G that is encountered during the search. (See [AHU74] for a complete presentation of this
algorithm.) The algorithm visits alln reachable states ofA G no more than once. Its time complexity is
therefore still linear in the size ofA G. It requires the storage of all reachable states in a randomly accessed
memory. Moreover, for each state the value of a variabledfnumber, which labels the reachable states in
the order they are visited, must be stored as well. The Tarjan algorithm also requires the use of an addi-
tional stack.

Since this algorithm requires access to explicit state information, such as the value ofdfnumber, to ensure
its correctness, it is not compatible with techniques that do not guarantee the preservation of this informa-
tion. The bit−state hashing technique, for instance, collapses the representation of states and their associ-
ated information into one or two bits of memory [Hol88]. State space caching techniques may even remove
previously visited states completely from memory [GHP92]. Hence, given a fixed amount of memory, the
size of the problems that can be analyzed with Tarjan’s algorithm is unavoidably smaller than those that can
be handled with these two techniques.

This observation triggered the development of an algorithm for checking B
. .
uchi automata emptiness

[CVWY90] which is compatible with the bit−state hashing method and the state space caching discipline.
In [CVWY90], checking emptiness of B

. .
uchi automata is reduced to a set of reachability problems. This is

justified by the fact that a B
. .
uchi automaton is nonempty if and only if it has some statex ∈ F that is both

reachable from the initial state and reachable from itself.

The algorithm in [CVWY90] consists of two successive depth−first searches (DFS’s). The purpose of the
first DFS is to determine the accepting states ofF that are reachable froms0. It orders them in postorder as
x1 ,

. . . ,xk, wherex1 is the reachable accepting state that was first backtracked during the search, andxk is
the last such state. These accepting states are entered into a FIFO queue. The aim of the second DFS is to
check if any of the accepting states in the queue is accessible from itself. The second DFS starts onx1. If
x1 is reached during the search, a cycle that passes throughx1 has been detected and an error (i.e., a viola-
tion of the property being checked) is reported. A new DFS is then initiated fromx2, and so on until allk
accepting states have been checked. Due to the postorder ordering, it is possible to show that the states vis-
ited during theith search cannot be revisited during the followingjth searches,i < j. Consequently, thek
searches can be performed by using only one single hash table to store the states that have been visited. In
other words, all searches from thex i ∈ F together correspond at most to one unique second DFS inA G.

In the worst case, this algorithm visits all reachable states ofA G twice: once in each phase of the search. Its
time complexity is still linear in the size ofA G. It requires the storage of alln reachable states in a ran-
domly accessed memory. In case of error, the states in the stack of the second search correspond to a
‘‘bad’’ cycle through an accepting statex i . However, a counter−example, with the complete error path
starting from the initial state, can not be produced. It is then necessary to perform a third search to find a
path starting from the initial state, leading to the statex i .

In [CVWY90], a second version of this algorithm is also presented. This algorithm does away with the
additional queue by using a second stack and a second hash table. The basic idea behind it is to perform the
above two DFS’s in an interleaved way, rather than sequentially. Each time an accepting state is ‘‘back-
tracked’’ in the first search, that search phase is suspended and a second search explores whether the
accepting state is reachable from itself. If this is not the case, the algorithm resumes the first search to look
for other accepting states. This version of the algorithm requires twice as much space than the first one. Its
advantage is, however, that if an error is detected, a complete counter−example can immediately be

January 1, 1993

- 7 -

extracted from the two stacks.

3.2. Algorithm

In this section, we build upon the work of [CVWY90] and present an improved version of their second
algorithm. The improved version does not require a second stack or a second hash table. To accomplish
this, we use an algorithm presented in [Hol91] which solves a related problem: the detection of non−
progress cycles. A non−progress cycle is a cycle that does not contain any states marked as ‘‘progress−
states.’’ The algorithm from [Hol91] inspects two distinct state spaces, the regular one and a second one
where transitions from progress states are disabled. It switches from one state space to the other by means
of a two−state ‘‘demon’’ which is added to the system. The state of the demon process always determines
in which state space the search currently operates. Below, we combine the ideas from [CVWY90] and
[Hol91] to obtain a new algorithm for checking emptiness of B

. .
uchi automata.

Let us add a two−statedemon process to the system being verified, as in [Hol91]:

Initially: magic =0

Demon
d0: magic =1
d1:

The state of this demon process defines in which ‘‘mode’’ the search operates. The initial state of the
demon process isd0, with variablemagic equal to 0. The second, and final, state of the demon isd1,
immediately after the assignment, withmagic equal to 1. We assume that the demon process can switch
from its initial state to its final state only when the system is in an accepting state and only after all other
enabled transitions have been explored. Once it has switched, the demon process can not go back.

The effect is that whenmagic is zero, a normal depth−first search is performed, corresponding to the first
DFS of above. Whenmagic is one, the second phase of the search is entered, with a check if an accepting
statex is reachable from itself.

January 1, 1993

- 8 -

1 Initialize: Stack is empty; H is empty;
2 Search()
3 { enter s0 in H;
4 push (s0) onto Stack;
5 DFS();
6 }
7 DFS()
8 { s = top(Stack);
9 for all t enabled in s
10 { s ′ = succ(s) after t; /* execution of t */
11 if s ′ . magic =1∧ x = s ′ { halt and return ‘‘Error’’ }
12 if s ′ is NOT in H
13 { enter s ′ in H;
14 push (s ′) onto Stack;
15 DFS();
16 }
17 }
18 if s. magic =0∧ s ∈ F
19 { s ′ = s with magic =1; /* execution of Demon */
20 if s ′ is NOT in H
21 { x = s;
22 enter s ′ in H;
23 push (s ′) onto Stack;
24 DFS();
25 }
26 }
27 pop s from Stack
28 }

Figure 4 – ‘‘Magic’’ Search

A description of the new algorithm is given in Figure 4. It consists of a simple modification of a classical
depth−first search. If the lines number 11 and from 18 to 26 are removed, the code of a classical DFS
remains. One bitmagic is added to the representation of each state ofA G to store the current state of the
demon process.s . magic denotes the value ofmagic in states. If magic =0, the search is performed as
usual. When an accepting states ∈ F is backtracked (line 18), thenmagic is set to 1 (line 19) and a second
search is initiated (line 20) to determine if this accepting state, whose description is stored in an additional
variablex (line 21), is reachable from itself. If this is the case, this is detected in line 11 and an error is
reported.

The correctness proof of the algorithm is straightforward.

THEOREM – If there exists a strongly connected component with at least one acceptance state, at least
one cycle through this component will always be reported.

Proof – Consider a strongly connected component (SCC) with at least one accepting state. The first
accepting stateS from this SCC entered into themagic =1 part of the state space becomes the root of a new
search subtree. IfS is reachable from itself, it is part of its own reachable subtree and will be detected on
line 11. There is only one case where the path leading back toS in this subtree can be truncated: when the
subtree contains states previously visited, and present inH. Such intermediate states inH must have been
reached from another accepting state, and since they are both reachable fromS and S is assumed to be
reachable from them, they must be part of the same SCC asS. Therefore,S could not have been the first
accepting state of the SCC considered, which contradicts the assumption.

The two successive or nested searches of the previous section are combined in this new algorithm, and they
are performed using one single stack and one single hash table thanks to the demon process. The algorithm
is quite straightforward to implement. Moreover, if an error is detected, the states in the current stack cor-
respond to a complete infinite computation violating the property being checked and can be exhibited to the

January 1, 1993

- 9 -

user immediately as a counter−example. The time complexity remains unchanged: it is linear in the size of
A G. One additional bit corresponding to the value ofmagic has to be stored in the hash table attached to
each reachable state, which slightly increases the memory requirements. In practice, this overhead is negli-
gable due to the fact that the number of bits necessary to store one state is usually much larger than one bit
(often hundreds or thousands of bits are necessary to represent each state).

In the worst case, however, the algorithm will still store alln reachable states ofA G with the two different
possible values ofmagic. This is twice as much as the number of states that needs to be stored with
Tarjan’s algorithm, or with the first version of the algorithm from [CVWY90] (it is the same as for the sec-
ond version). It is possible to overcome also this problem by using a newhybrid storage technique, which
will be introduced in the next section.

4. HYBRID STORAGE

4.1. Storage Techniques

During the search inA G performed by the new algorithm, all states visited are stored in memory. There are
various ways in which thesen reachable states ofA G could be stored.

Assume the states ofA G have names from a name spaceU. Its cardinality U corresponds to the product
of the number of all possible values for all individual process states, all local and global variables, and all
message channel contents. Since U is the number of possible names for a state, at least log U bits are
necessary to represent each of these states unambiguously. Hence storingn reachable states requires at
leastMEMclassic =n log U bits of memory. This is the classical storage technique used in conventional
reachability analysis algorithms, which we may call alogarithmic storage technique.

We now consider an alternative storage technique, which we will call alinear storage technique.

Define a one−to−one correspondence between the elements of the name spaceU and the elements of an
arrayA of bits, whose size must therefore be at least U. Initially, all bits ofA are set to 0. If theith state
in U is encountered during the exploration ofA G, the ith bit in A is set to 1. With this storage technique,
the memoryMEMlinear required by the state−space exploration algorithm isMEMlinear = U and is indepen-
dent of the numbern of reachable states.

For a particularU, one can determine the critical ‘‘density’’d crit for which both storage methods require

the same amount of memory by statingMEMclassic =MEMlinear or d crit :
 U
n_ ___ =

log U
1_ _____ Consequently, if

n > U / log U, the linear storage discipline is preferable, else the logarithmic storage requires less mem-
ory. In other words, the linear storage technique is only suitable for ‘‘high density’’ state spaces. Most
protocol state spaces are usually far below the critical density for which linear storage pays off. U is typi-
cally many orders of magnitude larger than the number of reachable statesn in A G. Moreover, the name
space U is usually so large that the linear storage technique would require an astronomic amount of mem-
ory. Typically a few hundred bytes are required to store one state; thus U can be much greater than 21000

bits, much more than available on today’s computers. The applicability of the linear storage discipline is
therefore limited to special cases. The algorithm from Figure 4 offers just such a special case.

4.2. Hybrid Storage

We first discuss a storage technique, that is a combination of logarithmic and linear storage, and which is
therefore calledhybrid storage.

We assume each state ofA G can be unambiguously identified by a pattern of precisely logU bits. We
divide the representation of each states into two partss1 ands2 of length, respectively, logU1 and logU2.
One has logU = logU1 + logU2. Each states of A G corresponds thus to one unique pair (s1 ,s2). Call s1

the head ofs ands2 the tail ofs. Next let us collect states that have the same head intogroups. States in a
same group have the same head and only differ by their tail. During the exploration ofA G, we now store
groups of states in memory, rather than individual states as with the logarithmic storage technique. Each
group consists of a heads1 of length logU1 plus a bit−array of lengthU2 to store the tails of the states of
that group.

With this hybrid storage technique, groups of (logU1) +U2 bits are stored to memorize the states ofA G

January 1, 1993

- 10 -

that have already been visited, instead of states of logU bits (i.e. logU1 + logU2) with the logarithmic stor-
age method. The overhead isU2 − logU2 bits per group stored, but clearly the number of groups stored can
be smaller then the number of individual states.

The overall amount of memory MEMhybrid required with this storage technique is
MEMhybrid = (n −m) (logU1 +U2) wherem is the number of head matchings during the search, i.e., the
number of states which have the same head as another state previously encountered during the search.

For a particularU, and a given partitionU1−−U2, one can determine the critical proportionm crit / n of head
matchings from which the hybrid storage technique pays off by settingMEMclassic =MEMhybrid. One

obtains:
n

m crit_ ____=
(log U − logU2 +U2)

(U2 − logU2)_ ___________________If m >m crit , hybrid storage requires less memory than logarithmic

storage and is thus preferable.

Assume log U =1000 andU2 =2. Thenm crit / n =1/1001. Therefore, if more than one state among 1001
states has the same head of length 999 as another state previously encountered during the search, then
hybrid storage is preferable to the logarithmic storage.

4.3. Application to the Verification of Temporal Properties

Clearly, the hybrid storage method pays off when we can identify a part of the state description with an
high density, and place it in linear storage. Consider the algorithm from Figure 4. SinceA G is a product of
automata, we can divide them into two groupsA G1 andA G2 such thatA G =A G1 ×A G2, and use hybrid stor-
age with this partition. Automata that likely have the highest density of coverage can be grouped inA G2,
i.e., the ‘‘tail’’ using linear storage.

A good choice is then to takeA G1 =A P ×A¬ f and use the two−states demon processA demon asA G2. Instead
of representing the current state of the demon process by 1 bitmagic with logarithmic storage, we now
storen groups of (logU) +2 bits, with the last two extra bits representing the linear storage area, indicating
if the state ofA G1 has been visited with eithermagic =0, or withmagic =1, or with both values ofmagic.

Consider the example from the end of Section 4.2: assume that the system being checked by the algorithm
of Figure 4 is such that a state ofA P ×A¬ f requires 125 bytes, 1000 bits, to be represented. The memory
overhead due to the storage of the state of the demon process is limited to 2 bits per reachable state in
A P ×A¬ f . For this example, if more than 1 in 1001 states is visited in both search modes (the expected
case), the hybrid storage requires less memory than the logarithmic one. IfA G itself is a strongle connected
graph and contains at least one accepting state, alln reachable states are guaranteed to be visited in both
search modes. The overall memory requirement when using hybrid storage will then ben×(1000+2) bits,
compared to 2×n(1000+1) bits for the classical, logarithmic storage technique.

Another possibility would be to includeA¬ f in A G2, usingA G1 =A P andA G2 =A¬ f ×A demon. If additional
automataA fair are used, they can also be included inA G2.

Experimental results with this storage technique are presented in the Table below.A P is the state−graph
corresponding to Dekker’s algorithm,A¬ f is the B

. .
uchi automaton shown in Figure 2, andA¬ (f ′ ⊃ f) is the

B
. .
uchi automaton that corresponds to the negation of the formula (◊ P1 ∧ ◊ P2) ⊃ ((at l 1) ⊃ ◊ (at l7)).

The Table compares logarithmic storage with hybrid storage applied to the algorithm from Figure 4. The
number of stored states (resp. groups) is given by #states (#groups). The size of each state (resp. group) is
given by state (group), with B representing bytes, andb bits. The column titledMemory gives the total
memory required by the algorithm to store all states reached during the verification of each property. To
compute this total, all sizes were rounded up to integer numbers of bytes (20B+2b becomes 21B), before
being multiplied by the number of states. The first row in the Table gives the memory requirements of a
simple exploration ofA P alone, i.e., without being combined with a property. The second row corresponds
to the verification of the formulaf. With logarithmic storage, two bits are added to the representation of
each state ofA P: one bit to represent the state ofA¬ f (which has two states; see Figure 2) and one (magic)
bit to represent the state of the demon. The third row corresponds to the verification of the formula
¬ (f ′ ⊃ f). Since the automatonA¬ (f ′ ⊃ f) contains 16 states, 5 bits are added with logarithmic storage: 4
bits forA¬ (f ′ ⊃ f) , plus one bit for the demon process.

Partition Logarithmic Storage Hybrid Storage

January 1, 1993

- 11 -

_ ___ __
A G1 A G2 #states state Memory #groups group Memory_ __
A P 101 20B 2020B 101 20 2020B
A P A¬ f ×A demon 243 20B+2b 5103B 101 20B+4b 2121B
A P A¬ (f ′ ⊃ f) ×A demon 670 20B+5b 14070B 101 20B+32b 2424B_ __

TABLE – Comparison between logarithmic and hybrid storage

The hybrid storage technique requires less memory for both formula.

Note that the hybrid storage method is quite different from, and orthogonal to, other techniques, such as the
state compression scheme from [HGP92]. The techniques can easily be combined to increase the reduction
still further.

5. COMPARISON WITH OTHER WORK AND CONCLUSIONS

We have presented a new algorithm for checking the emptiness of B
. .
uchi automata with the following fea-

tures:

• The algorithm can solve the model−checking problem for linear−time temporal logic, i.e., it can be
used for the verification of any temporal property under any fairness assumption.

• Using a hybrid storage technique, its memory requirements are close to that of a conventional state
space exploration of the program alone, almost eliminating the memory overhead required to verify a
temporal property.

• The algorithm is compatible with techniques that can be used to increase the scope of automated vali-
dations, such as bit−state hashing and state space caching techniques.

• The algorithm can generate complete counter−examples, in each case where the program can violate
a temporal property.

• The algorithm has a simple proof of correctness, and can be implemented as a relatively minor modi-
fication of a standard depth−first search.

On each of these points, the new algorithm compares favorably with all previously known algorithms,
including [Tar72], [LP85], [CVWY90], and [Hol91].

The algorithm from Figure 4 has been added to the SPIN protocol validation tool in mid 1992 (though as
yet without the hybrid storage method), replacing an earlier algorithm based on [CVWY90]. Non−
commercial users can obtain the SPIN system via anonymous ftp from research.att.com from the
/netlib/spin directory.

The importance of the devlopment of efficient algorithms for the verification of temporal logic formulae
will need no justification. As one example of the growing importance of this field, we can mention the
recently completed pilot verification project at AT&T, which was named NewCoRe. One of the main goals
of the NewCoRe project was to demonstrate the feasibility of formal verification based on temporal logic in
an industrial environment. Over a period of two years (April 1990 to April 1992) a team of 4 people
worked on the formal verification of the ISDN/ISUP code for the 5ESS ® Switch, in parallel with a ‘‘main-
stream’’ team of 20 to 25 people that was developing a conventional design. The verification team mod-
eled high level requirements into hundreds of temporal logic formulae, and performed a total of 10,000 for-
mal validations (at a sustained rate of over 400 automated validations per month). The main tool used in
these validations was a new version of the validation tool SDLVALID [HP89], extended with algorithms
for proving liveness properties that are similar to the ones discussed in this paper. As a result of this effort,
the NewCoRe team was able to trap and prevent hundreds of sometimes quite subtle high level design
errors, clearly demonstrating that temporal logic verification is today not only feasible, even for fairly
large−scale industrial applications, but also extremely effective.

Acknowledgements

The work of the first author was done in part while visiting AT&T Bell Laboratories.

January 1, 1993

- 12 -

6. REFERENCES

[ACW90] S.Aggarwal, C.Courcoubetis, and P.Wolper, ‘Adding liveness properties to coupled finite−state
machines.’ACM Transactions on Programming Languages and Systems, 12(2):303−339, 1990.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman,The Design and Analysis of Computer Algorithms,
Addison Wesley, Reading, 1974.

[B
. .
u62] J.R. B

. .
uchi, ‘On a decision method in restricted second order arithmetic,’ In:Proc. Intern. Congr.

Logic, Method and Philos. Sci., 1960, pp. 1−12, Stanford, Stanford University Press, 1962.

[CVWY90] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis, ‘Memory efficient algorithms for
the verification of temporal properties,’ In:Proc. 2nd Workshop on Computer Aided Verification, LNCS
531, pp. 233−242, June 1990.

[Dij68] E.W. Dijkstra, ‘Cooperating Sequential Processes,’ In:Programming Languages, F. Genuys (Ed.),
Academic Press, New York.

[Fra86] N. Francez,Fairness, Springer Verlag, 1986.

[GHP92] P. Godefroid, G.J. Holzmann, and D. Pirottin, ‘State space caching revisited,’ In:Proc. 4th
Workshop on Computer Aided Verification, Montreal, June 1992.

[GW91] P. Godefroid, and P. Wolper, ‘A partial approach to model checking,’ In:Proc. 6th IEEE Symp.
on Logic in Computer Science, pp. 406−415, Amsterdam, July 1991.

[HGP92] G.J. Holzmann, P. Godefroid, and D. Pirottin, ‘Coverage preserving reduction strategies for
reachability analysis,’ In:Proc. 12th Int. Symp. on Protocol Specification, Testing, and Verification,
Florida, June 1992.

[Hol88] G.J. Holzmann, ‘An improved protocol reachability analysis technique,’Software, Practice and
Experience, 18(2):137−161, 1988.

[Hol91] G.J. Holzmann,Design and Validation of Computer Protocols, Prentice Hall, 1992.

[HP89] G.J. Holzmann, and J. Patti, ‘Validating SDL specifications: an experiment,’ In:Proc. 9th Int.
Symp. on Protocol Specification, Testing, and Verification, North−Holland Publ, June 1989.

[LP85] O. Lichtenstein, and A. Pnueli, ‘Checking that finite state concurrent programs satisfy their linear
specification,’ In:Proc. 12th ACM Symp. on Principles of Programming Languages, pp. 97−107, New
Orleans, Jan. 1985.

[MP92] Z. Manna, and A. Pnueli,The Temporal Logic of Reactive and Concurrent Systems: Specification,
Springer Verlag, Berlin, 1992.

[Tar72] R. E. Tarjan, ‘Depth first search and linear graph algorithms,’SIAM J. Computing, 1:2, pp. 146−
160, 1972.

[Tha89] A. Thayse, et al.,From Modal Logic to Deductive Databases: Introducing a Logic Based
Approach to Artificial Intelligence, Wiley, 1989.

[VW86] M.Y. Vardi, and P. Wolper, ‘An automata−theoretic approach to automatic program verification,’
In: Proc. Symp. on Logic in Computer Science, pp. 322−331., Cambridge, June 1986.

[Wol89] P. Wolper, ‘On the relation of programs and computations to models of temporal logic.’ In:Proc.
Temporal Logic in Specification, LNCS 398, pp. 75−123, 1989.

[WVS83] P. Wolper, M.Y. Vardi, and A.P. Sistla, ‘Reasoning about infinite computation paths,’ In:Proc.
24th IEEE Symp. on Foundations of Computer Science, pp. 185−194, Tucson, 1983.

January 1, 1993

