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Abstract

This presentation covers the basics of parallel computing.
Beginning with a brief overview and some concepts and terminology
associated with parallel computing, the topics of parallel memory
architectures and programming models are then explored. These
topics are followed by a discussion on a number of issues related to
designing parallel programs. The last portion of the presentation is
spent examining how to parallelize several di�erent types of serial
programs.

Level/Prerequisites: None
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What is Parallel Computing?

Serial computation

Traditionally, software has been written for serial computation:

To be run on a single computer having a single Central
Processing Unit (CPU);

A problem is broken into a discrete series of instructions.

Instructions are executed one after another.

Only one instruction may execute at any moment in time.
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Parallel computing

In the simplest sense, parallel computing is the simultaneous use
of multiple compute resources to solve a computational problem.

To be run using multiple CPUs

A problem is broken into discrete parts that can be solved
concurrently

Each part is further broken down to a series of instructions

Instructions from each part execute simultaneously on di�erent
CPUs
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Environment

The compute resources can include:

A single computer with multiple processors;

An arbitrary number of computers connected by a network;

A combination of both.

The computational problem usually demonstrates characteristics
such as the ability to be:

Broken apart into discrete pieces of work that can be solved
simultaneously;

Execute multiple program instructions at any moment in time;

Solved in less time with multiple compute resources than with
a single compute resource.
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Parallelism?

Parallel computing is an evolution of serial computing that
attempts to emulate what has always been the state of a�airs in
the natural world: many complex, interrelated events
happening at the same time, yet within a sequence.

Some examples:

Planetary and galactic orbits
Weather and ocean patterns
Tectonic plate drift
Rush hour tra�c in LA
Automobile assembly line
Daily operations within a business
Building a shopping mall
Ordering a hamburger at the drive through.
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What for?

Traditionally, parallel computing has been considered to be "the
high end of computing" and has been motivated by numerical
simulations of complex systems and "Grand Challenge Problems"
such as:

weather and climate

chemical and nuclear reactions

biological, human genome

geological, seismic activity

mechanical devices - from prosthetics to spacecraft

electronic circuits

manufacturing processes
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What for? (2)

Today, commercial applications are providing an equal or greater
driving force in the development of faster computers. These
applications require the processing of large amounts of data in
sophisticated ways. Example applications include:

parallel databases, data mining

oil exploration

web search engines, web based business services

computer-aided diagnosis in medicine

management of national and multi-national corporations

advanced graphics and virtual reality, particularly in the
entertainment industry

networked video and multi-media technologies

collaborative work environments
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Why Use Parallel Computing?

The primary reasons for using parallel computing:

Save time - wall clock time

Solve larger problems

Provide concurrency (do multiple things at the same time)

Other reasons might include:

Taking advantage of non-local resources - using available
compute resources on a wide area network, or even the
Internet when local compute resources are scarce.
Cost savings - using multiple "cheap" computing resources
instead of paying for time on a supercomputer.
Overcoming memory constraints - single computers have very
�nite memory resources. For large problems, using the
memories of multiple computers may overcome this obstacle.
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Limits to serial computing - both physical and practical
reasons pose signi�cant constraints to simply building ever
faster serial computers:

Transmission speeds - the speed of a serial computer is directly
dependent upon how fast data can move through hardware.
Absolute limits are the speed of light (30 cm/nanosecond) and
the transmission limit of copper wire (9 cm/nanosecond).
Increasing speeds necessitate increasing proximity of processing
elements.
Limits to miniaturization - processor technology is allowing an
increasing number of transistors to be placed on a chip.
However, even with molecular or atomic-level components, a
limit will be reached on how small components can be.
Economic limitations - it is increasingly expensive to make a
single processor faster. Using a larger number of moderately
fast commodity processors to achieve the same (or better)
performance is less expensive.
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The future: during the past 10 years, the trends indicated by
ever faster networks, distributed systems, and multi-processor
computer architectures (even at the desktop level) clearly show
that parallelism is the future of computing.
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Who and What?

Top500.org1 provides statistics on parallel computing users - the
charts below are just a sample.

1See URL http://top500.org
Blaise Barney, Livermore Computing <blaiseb@llnl.gov> Introduction to Parallel Computing



Overview
Concepts and Terminology

Parallel Computer Memory Architectures
Parallel Programming Models
Designing Parallel Programs

Blaise Barney, Livermore Computing <blaiseb@llnl.gov> Introduction to Parallel Computing



Overview
Concepts and Terminology

Parallel Computer Memory Architectures
Parallel Programming Models
Designing Parallel Programs

Blaise Barney, Livermore Computing <blaiseb@llnl.gov> Introduction to Parallel Computing



Overview
Concepts and Terminology

Parallel Computer Memory Architectures
Parallel Programming Models
Designing Parallel Programs

von Neumann Architecture

For over 40 years, virtually all computers have followed a
common machine model known as the von Neumann
computer. Named after the Hungarian mathematician John
von Neumann.

A von Neumann computer uses the stored-program concept.
The CPU executes a stored program that speci�es a sequence
of read and write operations on the memory.
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Basic design:

Memory is used to store both program and data instructions

Program instructions are coded data which tell the computer
to do something

Data is simply information to be used by the program

A central processing unit (CPU) gets instructions and/or data
from memory, decodes the instructions and then sequentially
performs them.
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Flynn's Classical Taxonomy

There are di�erent ways to classify parallel computers. One of
the more widely used classi�cations, in use since 1966, is called
Flynn's Taxonomy.
Flynn's taxonomy distinguishes multi-processor computer
architectures according to how they can be classi�ed along the
two independent dimensions of Instruction and Data. Each
of these dimensions can have only one of two possible states:
Single or Multiple.

Here are the 4 possible classi�cations according to Flynn:

S I S D S I M D
Single Instruction, Single Data Single Instruction, Multiple Data

M I S D M I M D
Multiple Instruction, Single Data Multiple Instruction, Multiple Data
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Single Instruction, Single Data (SISD)

A serial (non-parallel) computer

Single instruction: only one instruction stream is being acted
on by the CPU during any one clock cycle

Single data: only one data stream is being used as input
during any one clock cycle

Deterministic execution

This is the oldest and until recently, the most prevalent form
of computer

Examples: most PCs, single CPU workstations and mainframes
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SISD
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Single Instruction, Multiple Data (SIMD)

A type of parallel computer

Single instruction: All processing units execute the same
instruction at any given clock cycle

Multiple data: Each processing unit can operate on a di�erent
data element

This type of machine typically has an instruction dispatcher, a
very high-bandwidth internal network, and a very large array of
very small-capacity instruction units.

Best suited for specialized problems characterized by a high
degree of regularity,such as image processing.

Synchronous (lockstep) and deterministic execution

Two varieties: Processor Arrays and Vector Pipelines
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Examples of SIMD:

Processor Arrays: Connection Machine CM-2, Maspar MP-1,
P-2
Vector Pipelines: IBM 9000, Cray C90, Fujitsu VP, NEC SX-2,
Hitachi S820
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Multiple Instruction, Single Data (MISD)

A single data stream is fed into multiple processing units.

Each processing unit operates on the data independently via
independent instruction streams.

Few actual examples of this class of parallel computer have
ever existed. One is the experimental Carnegie-Mellon C.mmp
computer (1971).

Some conceivable uses might be:

multiple frequency �lters operating on a single signal stream
multiple cryptography algorithms attempting to crack a single
coded message.
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MISD
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Multiple Instruction, Multiple Data (MIMD)

Currently, the most common type of parallel computer. Most
modern computers fall into this category.

Multiple Instruction: every processor may be executing a
di�erent instruction stream

Multiple Data: every processor may be working with a
di�erent data stream

Execution can be synchronous or asynchronous, deterministic
or non-deterministic

Examples: most current supercomputers, networked parallel
computer "grids" and multi-processor SMP computers -
including some types of PCs.
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MIMD
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Some General Parallel Terminology

Like everything else, parallel computing has its own "jargon". Some
of the more commonly used terms associated with parallel
computing are listed below. Most of these will be discussed in more
detail later.

Task A logically discrete section of computational work. A
task is typically a program or program-like set of
instructions that is executed by a processor.

Parallel Task A task that can be executed by multiple processors
safely (yields correct results)
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Serial Execution Execution of a program sequentially, one
statement at a time. In the simplest sense, this is
what happens on a one processor machine. However,
virtually all parallel tasks will have sections of a
parallel program that must be executed serially.

Parallel Execution Execution of a program by more than one
task, with each task being able to execute the same
or di�erent statement at the same moment in time.
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Shared Memory From a strictly hardware point of view, describes
a computer architecture where all processors have
direct (usually bus based) access to common physical
memory. In a programming sense, it describes a
model where parallel tasks all have the same
"picture" of memory and can directly address and
access the same logical memory locations regardless
of where the physical memory actually exists.

Distributed Memory In hardware, refers to network based
memory access for physical memory that is not
common. As a programming model, tasks can only
logically "see" local machine memory and must use
communications to access memory on other machines
where other tasks are executing.
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Communications Parallel tasks typically need to exchange data.
There are several ways this can be accomplished, such
as through a shared memory bus or over a network,
however the actual event of data exchange is
commonly referred to as communications regardless
of the method employed.

Synchronization The coordination of parallel tasks in real time,
very often associated with communications. Often
implemented by establishing a synchronization point
within an application where a task may not proceed
further until another task(s) reaches the same or
logically equivalent point.
Synchronization usually involves waiting by at least
one task, and can therefore cause a parallel
application's wall clock execution time to increase.
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Granularity In parallel computing, granularity is a qualitative
measure of the ratio of computation to
communication.

Coarse: relatively large amounts of
computational work are done between
communication events
Fine: relatively small amounts of computational
work are done between communication events
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Observed Speedup Observed speedup of a code which has been
parallelized, de�ned as:

wall-clock time of serial execution

wall-clock time of parallel execution

One of the simplest and most widely used indicators
for a parallel program's performance.

Parallel Overhead The amount of time required to coordinate
parallel tasks, as opposed to doing useful work.
Parallel overhead can include factors such as:

Task start-up time
Synchronizations
Data communications
Software overhead imposed by parallel compilers,
libraries, tools, operating system, etc.
Task termination time
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Massively Parallel Refers to the hardware that comprises a given
parallel system - having many processors. The
meaning of many keeps increasing, but currently
BG/L pushes this number to 6 digits.

Scalability Refers to a parallel system's (hardware and/or
software) ability to demonstrate a proportionate
increase in parallel speedup with the addition of more
processors. Factors that contribute to scalability
include:

Hardware - particularly memory-cpu bandwidths
and network communications
Application algorithm
Parallel overhead related
Characteristics of your speci�c application and
coding
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Shared Memory
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General Characteristics:

Shared memory parallel computers vary widely, but generally
have in common the ability for all processors to access all
memory as global address space.

Multiple processors can operate independently but share the
same memory resources.

Changes in a memory location e�ected by one processor are
visible to all other processors.

Shared memory machines can be divided into two main classes
based upon memory access times: UMA and NUMA.

Blaise Barney, Livermore Computing <blaiseb@llnl.gov> Introduction to Parallel Computing



Overview
Concepts and Terminology

Parallel Computer Memory Architectures
Parallel Programming Models
Designing Parallel Programs

UMA/NUMA

Uniform Memory Access (UMA):

Most commonly represented today by Symmetric
Multiprocessor (SMP) machines

Identical processors

Equal access and access times to memory

Sometimes called CC-UMA - Cache Coherent UMA. Cache
coherent means if one processor updates a location in shared
memory, all the other processors know about the update.
Cache coherency is accomplished at the hardware level.
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UMA/NUMA (2)

Non-Uniform Memory Access (NUMA):

Often made by physically linking two or more SMPs

One SMP can directly access memory of another SMP

Not all processors have equal access time to all memories

Memory access across link is slower

If cache coherency is maintained, then may also be called
CC-NUMA - Cache Coherent NUMA
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Shared Memory (...)

Advantages:

Global address space provides a user-friendly programming
perspective to memory
Data sharing between tasks is both fast and uniform due to
the proximity of memory to CPUs

Disadvantages:

Primary disadvantage is the lack of scalability between
memory and CPUs. Adding more CPUs can geometrically
increases tra�c on the shared memory-CPU path, and for
cache coherent systems, geometrically increase tra�c
associated with cache/memory management.
Programmer responsibility for synchronization constructs
that insure "correct" access of global memory.
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Distributed Memory

General Characteristics:

Like shared memory systems, distributed memory systems vary
widely but share a common characteristic. Distributed memory
systems require a communication network to connect
inter-processor memory.
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General Characteristics (...):

Processors have their own local memory. Memory addresses in
one processor do not map to another processor, so there is no
concept of global address space across all processors.

Because each processor has its own local memory, it operates
independently. Changes it makes to its local memory have no
e�ect on the memory of other processors. Hence, the concept
of cache coherency does not apply.

When a processor needs access to data in another processor, it
is usually the task of the programmer to explicitly de�ne how
and when data is communicated. Synchronization between
tasks is likewise the programmer's responsibility.

The network "fabric" used for data transfer varies widely,
though it can can be as simple as Ethernet.
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Distributed Memory (...)

Advantages:

Memory is scalable with number of processors. Increase the
number of processors and the size of memory increases
proportionately.

Each processor can rapidly access its own memory without
interference and without the overhead incurred with trying to
maintain cache coherency.

Cost e�ectiveness: can use commodity, o�-the-shelf
processors and networking.

Blaise Barney, Livermore Computing <blaiseb@llnl.gov> Introduction to Parallel Computing



Overview
Concepts and Terminology

Parallel Computer Memory Architectures
Parallel Programming Models
Designing Parallel Programs

Distributed Memory (...)

Disadvantages:

The programmer is responsible for many of the details
associated with data communication between processors.

It may be di�cult to map existing data structures, based
on global memory, to this memory organization.

Non-uniform memory access (NUMA) times
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Hybrid Distributed-Shared Memory
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Comparison of Shared and Distributed Memory Architectures

Architecture CC-UMA CC-NUMA Distributed

Examples SMPs,
DEC/Compaq,
SGI Challenge,
IBM POWER3

SGI Origin,
Sequent, IBM
POWER4 (MCM),
DEC/Compaq

Cray T3E, Mas-
par, IBM SP2

CommunicationsMPI, Threads,
OpenMP,
shmem

MPI, Threads,
OpenMP,
shmem

MPI

Scalability to 10s of proc. to 100s of proc. to 1000s of proc.

Draw Backs Memory-CPU
bandwidth

Memory-CPU
bandwidth,
Non-uniform
access times

System adm.,
Programming is
hard to develop
and maintain

Software
Availability

many 1000s
ISVs

many 1000s
ISVs

100s ISVs
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Hybrid Distributed-Shared Memory (...)

The largest and fastest computers in the world today employ
both shared and distributed memory architectures.
The shared memory component is usually a cache coherent
SMP machine. Processors on a given SMP can address that
machine's memory as global.
The distributed memory component is the networking of
multiple SMPs. SMPs know only about their own memory -
not the memory on another SMP. Therefore, network
communications are required to move data from one SMP to
another.
Current trends seem to indicate that this type of memory
architecture will continue to prevail and increase at the high
end of computing for the foreseeable future.
Advantages and Disadvantages: whatever is common to both
shared and distributed memory architectures.
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Overview

There are several parallel programming models in common use:

Shared Memory

Threads

Message Passing

Data Parallel

Hybrid

Parallel programming models exist as an abstraction above
hardware and memory architectures.
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These models are NOT speci�c to a particular type of machine or
memory architecture. In fact, these models can (theoretically) be
implemented on any underlying hardware. Two examples:

1 Shared memory model on a distributed memory machine:
Kendall Square Research (KSR) ALLCACHE approach.
Machine memory was physically distributed, but appeared to
the user as a single shared memory (global address space).
Generically, this approach is referred to as "virtual shared
memory".

2 Message passing model on a shared memory machine:
MPI on SGI Origin. The SGI Origin employed the CC-NUMA
type of shared memory architecture, where every task has
direct access to global memory. However, the ability to send
and receive messages with MPI, as is commonly done over
a network of distributed memory machines, is is very
commonly used.
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Which model to use is often a combination of what is available and
personal choice. There is no "best" model, although there certainly
are better implementations of some models over others.
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Shared Memory Model

In the shared-memory programming model, tasks share a
common address space, which they read and write
asynchronously.

Various mechanisms such as locks / semaphores may be used
to control access to the shared memory.

An advantage of this model from the programmer's point of
view is that the notion of data "ownership" is lacking, so there
is no need to specify explicitly the communication of data
between tasks. Program development can often be simpli�ed.

An important disadvantage in terms of performance is that it
becomes more di�cult to understand and manage data locality.
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Implementations

On shared memory platforms, the native compilers translate
user program variables into actual memory addresses, which
are global.

No common distributed memory platform implementations
currently exist. However, as mentioned previously in the
Overview section, the KSR ALLCACHE approach provided a
shared memory view of data even though the physical memory
of the machine was distributed.
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Threads Model
In the threads model of parallel programming, a single process can
have multiple, concurrent execution paths.

An analogy to describe threads is the concept of a single program
that includes a number of subroutines.
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The main program a.out is scheduled to run by the native OS.
It performs some serial work, and then creates tasks (threads)
that can be scheduled and run by the OS concurrently.
Each thread has local data, but also, shares the entire
resources of a.out. Each thread also bene�ts from a global
memory view because it shares the memory space of a.out.
A thread's work may best be described as a subroutine within
the main program. Any thread can execute any subroutine at
the same time as other threads.
Threads communicate with each other through global memory
This requires synchronization constructs to insure that more
than one thread is not updating the same global address at
any time.
Threads can come and go, but a.out remains present to
provide the necessary shared resources until the application has
completed.
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Threads are commonly associated with shared memory
architectures and operating systems.
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Implementations

From a programming perspective, threads implementations
commonly comprise:

A library of subroutines that are called from within parallel
source code

A set of compiler directives imbedded in either serial or parallel
source code

In both cases, the programmer is responsible for determining
all parallelism.
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Threaded implementations are not new in computing.
Historically, hardware vendors have implemented their own
proprietary versions of threads. These implementations di�ered
substantially from each other making it di�cult for programmers to
develop portable threaded applications.

Unrelated standardization e�orts have resulted in two very
di�erent implementations of threads: POSIX Threads and
OpenMP.
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POSIX Threads

Library based; requires parallel coding

Speci�ed by the IEEE POSIX 1003.1c standard (1995).

C Language only

Commonly referred to as Pthreads.

Most hardware vendors now o�er Pthreads in addition to their
proprietary threads implementations.

Very explicit parallelism; requires signi�cant programmer
attention to detail.
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OpenMP

Compiler directive based; can use serial code

Jointly de�ned and endorsed by a group of major computer
hardware and software vendors. The OpenMP Fortran API was
released October 28, 1997. The C/C++ API was released in
late 1998.

Portable / multi-platform, including Unix and Windows NT
platforms

Available in C/C++ and Fortran implementations

Can be very easy and simple to use - provides for "incremental
parallelism"
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Microsoft has its own implementation for threads, which is not
related to the UNIX POSIX standard or OpenMP.
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Message Passing Model

The message passing model has the following characteristics:

A set of tasks that use their own local memory during
computation.

Tasks exchange data through communications by sending and
receiving messages.

Data transfer usually requires cooperative operations to be
performed by each process. For example, a send operation
must have a matching receive operation.
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Implementations

From a programming perspective, message passing
implementations commonly comprise a library of subroutines
that are imbedded in source code. The programmer is
responsible for determining all parallelism.

Historically, a variety of message passing libraries have been
available since the 1980s. These implementations di�ered
substantially from each other making it di�cult for
programmers to develop portable applications.

In 1992, thei MPI Forum was formed with the primary goal of
establishing a standard interface for message passing
implementations.
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Part 1 of the Message Passing Interface (MPI) was
released in 1994. Part 2 (MPI-2) was released in 1996. Both
MPI speci�cations are available on the web at
www.mcs.anl.gov/Projects/mpi/standard.html

MPI is now the "de facto" industry standard for message
passing, replacing virtually all other message passing
implementations used for production work. Most, if not all of
the popular parallel computing platforms o�er at least one
implementation of MPI. A few o�er a full implementation of
MPI-2.

For shared memory architectures, MPI implementations usually
don't use a network for task communications. Instead, they
use shared memory (memory copies) for performance reasons.
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Data Parallel Model

The data parallel model demonstrates the following characteristics:

Most of the parallel work focuses on performing operations on
a data set. The data set is typically organized into a common
structure, such as an array or cube.

A set of tasks work collectively on the same data
structure, however, each task works on a di�erent partition of
the same data structure.

Tasks perform the same operation on their partition of
work, for example, "add 4 to every array element".
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On shared memory architectures, all tasks may have access to the
data structure through global memory.

On distributed memory architectures the data structure is split up
and resides as "chunks" in the loc al memory of each task.

Blaise Barney, Livermore Computing <blaiseb@llnl.gov> Introduction to Parallel Computing



Overview
Concepts and Terminology

Parallel Computer Memory Architectures
Parallel Programming Models
Designing Parallel Programs

Implementations

Programming with the data parallel model is usually
accomplished by writing a program with data parallel
constructs.

Fortran 90 and 95 (F90, F95): ISO/ANSI standard
extensions to Fortran 77.

Contains everything that is in Fortran 77
New source code format; additions to character set
Additions to program structure and commands
Variable additions - methods and arguments
Pointers and dynamic memory allocation added
Array processing (arrays treated as objects) added
Recursive and new intrinsic functions added
Many other new features

Implementations are available for most common parallel
platforms.
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High Performance Fortran (HPF): Extensions to Fortran 90
to support data parallel programming.

Contains everything in Fortran 90
Directives to tell compiler how to distribute data added
Assertions that can improve optimization of generated code
added
Data parallel constructs added (now part of Fortran 95)

Implementations are available for most common parallel
platforms.
Compiler Directives: Allow the programmer to specify the
distribution and alignment of data. Fortran implementations
are available for most common parallel platforms.
Distributed memory implementations of this model usually
have the compiler convert the program into standard
code with calls to a message passing library (MPI
usually) to distribute the data to all the processes. All
message passing is done invisibly to the programmer.
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Other Models

Other parallel programming models besides those previously
mentioned certainly exist, and will continue to evolve along with
the ever changing world of computer hardware and software. Only
three of the more common ones are mentioned here.
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Hybrid

Two or more parallel programming models are combined:

Currently, a common example of a hybrid model is the
combination of the message passing model (MPI) with
either the threads model (POSIX threads) or the shared
memory model (OpenMP). This hybrid model lends itself well
to the increasingly common hardware environment of
networked SMP machines.

Another common example of a hybrid model is combining
data parallel with message passing. As mentioned in the
data parallel model section previously, data parallel
implementations (F90, HPF) on distributed memory
architectures actually use message passing to transmit data
between tasks, transparently to the programmer.
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Single Program Multiple Data (SPMD)

SPMD is actually a "high level" programming model that can
be built upon any combination of the previously mentioned parallel
programming models.

A single program is executed by all tasks simultaneously.

At any moment in time, tasks can be executing the same or
di�erent instructions within the same program.

SPMD programs usually have switches to execute only part of
the program.

All tasks may use di�erent data
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Multiple Program Multiple Data (MPMD)

Like SPMD, MPMD is actually a "high level" programming model
that can be built upon any combination of the previously
mentioned parallel programming models.

MPMD applications typically have multiple executable object �les
(programs). While the application is being run in parallel, each task
can be executing the same or di�erent program as other tasks.
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Automatic vs. Manual Parallelization

Designing and developing parallel programs has characteristically
been a very manual process. The programmer is typically
responsible for both identifying and actually implementing
parallelism.

Very often, manually developing parallel codes is a time consuming,
complex, error-prone and iterative process.

For a number of years now, various tools have been available to
assist the programmer with converting serial programs into parallel
programs. The most common type of tool used to automatically
parallelize a serial program is a parallelizing compiler or
pre-processor.
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A parallelizing compiler generally works in two di�erent ways:

Fully Automatic

The compiler analyzes the source code and identi�es
opportunities for parallelism.
The analysis includes identifying inhibitors to parallelism and
possibly a cost weighting on whether or not the parallelism
would actually improve performance.
Loops (do, for) loops are the most frequent target for
automatic parallelization.

Programmer Directed

Using "compiler directives" or possibly compiler �ags, the
programmer explicitly tells the compiler how to parallelize the
code.
May be able to be used in conjunction with some degree of
automatic parallelization also.
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Automatic parallelization

If you are beginning with an existing serial code and have time or
budget constraints, then automatic parallelization may be the
answer. However, there are several important caveats that apply to
automatic parallelization:

Wrong results may be produced

Performance may actually degrade

Much less �exible than manual parallelization

Limited to a subset (mostly loops) of code

May actually not parallelize code if the analysis suggests there
are inhibitors or the code is too complex

Most automatic parallelization tools are for Fortran
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The remainder of this section applies to the manual method of
developing parallel codes.
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Understand the Problem and the Program

Undoubtedly, the �rst step in developing parallel software is to �rst
understand the problem that you wish to solve in parallel. If you
are starting with a serial program, this necessitates understanding
the existing code also.

Before spending time in an attempt to develop a parallel solution
for a problem, determine whether or not the problem is one
that can actually be parallelized.
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Example of Parallelizable Problem

Calculate the potential energy for each of several thousand
independent conformations of a molecule. When done, �nd the
minimum energy conformation.

This problem is able to be solved in parallel. Each of the molecular
conformations is independently determinable.

The calculation of the minimum energy conformation is also a
parallelizable problem.
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Example of a Non-parallelizable Problem

Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of
the formula:

F (k + 2) = F (k + 1) + F (k)

This is a non-parallelizable problem because the calculation of the
Fibonacci sequence as shown would entail dependent calculations
rather than independent ones.

The calculation of the k + 2 value uses those of both k + 1 and k.
These three terms cannot be calculated independently and
therefore, not in parallel.
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Hotspots

Identify the program's hotspots:

Know where most of the real work is being done. The majority
of scienti�c and technical programs usually accomplish most of
their work in a few places.

Pro�lers and performance analysis tools can help here

Focus on parallelizing the hotspots and ignore those sections
of the program that account for little CPU usage.
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Bottlenecks

Identify bottlenecks in the program

Are there areas that are disproportionately slow, or cause
parallelizable work to halt or be deferred? For example, I/O is
usually something that slows a program down.

May be possible to restructure the program or use a di�erent
algorithm to reduce or eliminate unnecessary slow areas
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Inhibitors

Identify inhibitors to parallelism. One common class of inhibitor is
data dependence, as demonstrated by the Fibonacci sequence
above.

Think di�erent

Investigate other algorithms if possible. This may be the single
most important consideration when designing a parallel application.
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Partitioning

One of the �rst steps in designing a parallel program is to break the
problem into discrete "chunks" of work that can be distributed to
multiple tasks. This is known as decomposition or partitioning.

There are two basic ways to partition computational work among
parallel tasks: domain decomposition and functional
decomposition.
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Domain Decomposition

In this type of partitioning, the data associated with a problem is
decomposed. Each parallel task then works on a portion of of the
data.
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There are di�erent ways to partition data:
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Functional Decomposition

In this approach, the focus is on the computation that is to be
performed rather than on the data manipulated by the computation.
The problem is decomposed according to the work that must be
done. Each task then performs a portion of the overall work.
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Functional decomposition lends itself well to problems that can be
split into di�erent tasks. For example:

Ecosystem Modeling Each program calculates the population of a
given group, where each group's growth depends on that of its
neighbors. As time progresses, each process calculates its current
state, then exchanges information with the neighbor populations.
All tasks then progress to calculate the state at the next time step.
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Signal Processing An audio signal data set is passed through four
distinct computational �lters. Each �lter is a separate process. The
�rst segment of data must pass through the �rst �lter before
progressing to the second. When it does, the second segment of
data passes through the �rst �lter. By the time the fourth segment
of data is in the �rst �lter, all four tasks are busy.
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Climate Modeling Each model component can be thought of as a
separate task. Arrows represent exchanges of data between
components during computation: the atmosphere model generates
wind velocity data that are used by the ocean model, the ocean
model generates sea surface temperature data that are used by the
atmosphere model, and so on.
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Combining domain decomposition and functional decomposition is
common and natural.
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Communications
Who Needs Communications?

The need for communications between tasks depends upon your
problem:

You DO need communications

Most parallel applications are not quite so simple, and do require
tasks to share data with each other.

For example, a 2-D heat di�usion problem
requires a task to know the temperatures
calculated by the tasks that have neighbor-
ing data. Changes to neighboring data has
a direct e�ect on that task's data.
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You DON'T need communications

Some types of problems can be decomposed and executed in
parallel with virtually no need for tasks to share data.

These types of problems are often called embarrassingly
parallel because they are so straight-forward. Very little
inter-task communication is required.

−→
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Factors to Consider

Cost of communications

Inter-task communication virtually always implies overhead.

Machine cycles and resources that could be used for
computation are instead used to package and transmit data.

Communications frequently require some type of
synchronization between tasks, which can result in tasks
spending time "waiting" instead of doing work.

Competing communication tra�c can saturate the available
network bandwidth, further aggravating performance problems.
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Factors to Consider (2)

Latency vs. Bandwidth

latency is the time it takes to send a minimal (0 byte)
message from point A to point B. Commonly expressed as
microseconds.

bandwidth is the amount of data that can be communicated
per unit of time. Commonly expressed as megabytes/sec.

Sending many small messages can cause latency to dominate
communication overheads. Often it is more e�cient to
package small messages into a larger message, thus increasing
the e�ective communications bandwidth.

Blaise Barney, Livermore Computing <blaiseb@llnl.gov> Introduction to Parallel Computing



Overview
Concepts and Terminology

Parallel Computer Memory Architectures
Parallel Programming Models
Designing Parallel Programs

Factors to Consider (3)

Visibility of communications

With the Message Passing Model, communications are explicit
and generally quite visible and under the control of the
programmer.

With the Data Parallel Model, communications often occur
transparently to the programmer, particularly on distributed
memory architectures. The programmer may not even be able
to know exactly how inter-task communications are being
accomplished.
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Factors to Consider (4)

Synchronous vs. asynchronous communications

Synchronous communications require some type of
"handshaking" between tasks that are sharing data.

Synchronous communications are often referred to as
blocking communications since other work must wait until the
communications have completed.

Asynchronous communications allow tasks to transfer data
independently from one another.

Asynchronous communications are often referred to as
non-blocking communications since other work can be done
while the communications are taking place.

Interleaving computation with communication is the single
greatest bene�t for using asynchronous communications.
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Factors to Consider (5)

Scope of communications

Knowing which tasks must communicate with each other is
critical during the design stage of a parallel code. Both of the
two scopings described below can be implemented
synchronously or asynchronously.

Point-to-point - involves two tasks with one task acting as
the sender/producer of data, and the other acting as the
receiver/consumer.

Collective - involves data sharing between more than two
tasks, which are often speci�ed as being members in a
common group, or collective. Some common variations (there
are more):
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Factors to Consider (6)

E�ciency of communications

Very often, the programmer will have a choice with regard to
factors that can a�ect communications performance. Only a
few are mentioned here.

Which implementation for a given model should be used?
Using the Message Passing Model as an example, one MPI
implementation may be faster on a given hardware platform
than another.

What type of communication operations should be used? As
mentioned previously, asynchronous communication operations
can improve overall program performance.

Network media - some platforms may o�er more than one
network for communications. Which one is best?
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Factors to Consider (7)

Overhead and Complexity
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Factors to Consider (8)

Realize that this is only a partial list of things to consider!!!
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Synchronization

Types of Synchronization

Barrier

Lock / semaphore

Synchronous communication operations
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Barrier

Usually implies that all tasks are involved

Each task performs its work until it reaches the barrier. It then
stops, or "blocks".

When the last task reaches the barrier, all tasks are
synchronized.

What happens from here varies. Often, a serial section of work
must be done. In other cases, the tasks are automatically
released to continue their work.
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Lock / semaphore

Can involve any number of tasks

Typically used to serialize (protect) access to global data or a
section of code. Only one task at a time may use (own) the
lock / semaphore / �ag.

The �rst task to acquire the lock "sets" it. This task can then
safely (serially) access the protected data or code.

Other tasks can attempt to acquire the lock but must wait
until the task that owns the lock releases it.

Can be blocking or non-blocking
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Synchronous communication operations

Involves only those tasks executing a communication operation

When a task performs a communication operation, some form
of coordination is required with the other task(s) participating
in the communication. For example, before a task can perform
a send operation, it must �rst receive an acknowledgment
from the receiving task that it is OK to send.

Discussed previously in the Communications section.
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Data Dependencies

De�nition:

A dependence exists between program statements when the
order of statement execution a�ects the results of the program.

A data dependence results from multiple use of the same
location(s) in storage by di�erent tasks.

Dependencies are important to parallel programming because
they are one of the primary inhibitors to parallelism.

Blaise Barney, Livermore Computing <blaiseb@llnl.gov> Introduction to Parallel Computing



Overview
Concepts and Terminology

Parallel Computer Memory Architectures
Parallel Programming Models
Designing Parallel Programs

Examples of Data Dependencies

Loop carried data dependence
DO 500 J = MYSTART,MYEND

A(J) = A(J-1) * 2.0

500 CONTINUE

The value of A(J-1) must be computed before the value of A(J),
therefore A(J) exhibits a data dependency on A(J-1). Parallelism is
inhibited.

If Task 2 has A(J) and task 1 has A(J-1), computing the correct
value of A(J) necessitates:

Distributed memory architecture - task 2 must obtain the value
of A(J-1) from task 1 after task 1 �nishes its computation

Shared memory architecture - task 2 must read A(J-1) after
task 1 updates it

Blaise Barney, Livermore Computing <blaiseb@llnl.gov> Introduction to Parallel Computing



Overview
Concepts and Terminology

Parallel Computer Memory Architectures
Parallel Programming Models
Designing Parallel Programs

Examples of Data Dependencies (2)

Loop independent data dependence

task 1 task 2

------ ------

X = 2 X = 4

. .

. .

Y = X*2 Y = X*3

As with the previous example, paral-
lelism is inhibited. The value of Y is
dependent on:

Distributed memory architecture
- if or when the value of X is
communicated between the
tasks.

Shared memory architecture -
which task last stores the value
of X.
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Although all data dependencies are important to identify when
designing parallel programs, loop carried dependencies are
particularly important since loops are possibly the most
common target of parallelization e�orts.
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How to Handle Data Dependencies

Distributed memory architectures - communicate required data
at synchronization points.

Shared memory architectures - synchronize read/write
operations between tasks.
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Load Balancing

Load balancing refers to the practice of distributing work
among tasks so that all tasks are kept busy all of the time. It
can be considered a minimization of task idle time.

Load balancing is important to parallel programs for
performance reasons. For example, if all tasks are subject to a
barrier synchronization point, the slowest task will determine
the overall
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How to Achieve Load Balance

Equally partition the work each task receives

For array/matrix operations where each task performs similar
work, evenly distribute the data set among the tasks.

For loop iterations where the work done in each iteration is
similar, evenly distribute the iterations across the tasks.

If a heterogeneous mix of machines with varying performance
characteristics are being used, be sure to use some type of
performance analysis tool to detect any load imbalances.
Adjust work accordingly.
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How to Achieve Load Balance (2)

Use dynamic work assignment

Certain classes of problems result in load imbalances even if
data is evenly distributed among tasks:

Sparse arrays - some tasks will have actual data to work on
while others have mostly "zeros".
Adaptive grid methods - some tasks may need to re�ne their
mesh while others don't.

When the amount of work each task will perform is
intentionally variable, or is unable to be predicted, it may be
helpful to use a scheduler - task pool approach. As each
task �nishes its work, it queues to get a new piece of work.

It may become necessary to design an algorithm which detects
and handles load imbalances as they occur dynamically within
the code.
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Granularity

Computation / Communication Ratio

In parallel computing, granularity is a qualitative measure of
the ratio of computation to communication.

Periods of computation are typically separated from periods of
communication by synchronization events.
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Coarse-grain Parallelism

Relatively large amounts of computational
work are done between
communication/synchronization events

High computation to communication ratio

Implies more opportunity for performance
increase

Harder to load balance e�ciently
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Fine-grain Parallelism

Relatively small amounts of computational
work are done between communication
events

Low computation to communication ratio

Facilitates load balancing

Implies high communication overhead and
less opportunity for performance
enhancement

If granularity is too �ne it is possible that the
overhead required for communications and
synchronization between tasks takes longer
than the computation.
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Which is Best?

The most e�cient granularity is dependent on the algorithm
and the hardware environment in which it runs.

In most cases the overhead associated with communications
and synchronization is high relative to execution speed so it is
advantageous to have coarse granularity.

Fine-grain parallelism can help reduce overheads due to load
imbalance.
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I/O

The Bad News

I/O operations are generally regarded as inhibitors to
parallelism

Parallel I/O systems are immature or not available for all
platforms

In an environment where all tasks see the same �lespace, write
operations will result in �le overwriting

Read operations will be a�ected by the �leserver's ability to
handle multiple read requests at the same time

I/O that must be conducted over the network (NFS,
non-local) can cause severe bottlenecks
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The Good News

Some parallel �le systems are available. For example:

GPFS: General Parallel File System for AIX (IBM)
Lustre: for Linux clusters (Cluster File Systems, Inc.)
PVFS/PVFS2: Parallel Virtual File System for Linux clusters
(Clemson/Argonne/Ohio State/others)
PanFS: Panasas ActiveScale File System for Linux clusters
(Panasas, Inc.)
HP SFS: HP StorageWorks Scalable File Share. Lustre based
parallel �le system (Global File System for Linux) product from
HP

The parallel I/O programming interface speci�cation for MPI
has been available since 1996 as part of MPI-2. Vendor and
"free" implementations are now commonly available.
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Some options

If you have access to a parallel �le system, investigate using it.

Rule #1: Reduce overall I/O as much as possible

Con�ne I/O to speci�c serial portions of the job, and then use
parallel communications to distribute data to parallel tasks.
For example, Task 1 could read an input �le and then
communicate required data to other tasks.

For distributed memory systems with shared �lespace, perform
I/O in local, non-shared �lespace. For example, each processor
may have /tmp �lespace which can used.

Create unique �lenames for each tasks' input/output �le(s)
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Limits and Costs of Parallel Programming

Amdahl's Law

Amdahl's Law states that potential program speedup is de�ned
by the fraction of code (P) that can be parallelized (S beeing the
serial fraction):

speedup =
1

1− P
=

1

S

If none of the code can be parallelized, P = 0 and the speedup = 1
(no speedup). If all of the code is parallelized, P = 1 and the
speedup is in�nite (in theory).

If 50% of the code can be parallelized, maximum speedup = 2,
meaning the code will run twice as fast.
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Introducing the number of processors performing the parallel
fraction of work, the relationship can be modeled by:

speedup =
1

P

N
+ S

where P = parallel fraction, N = number of processors and S =
serial fraction.
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It soon becomes obvious that there are limits to the scalability of
parallelism. For example, at P = .50, .90 and .99 (50%, 90% and
99% of the code is parallelizable):

speedup

--------------------------------

N P = .50 P = .90 P = .99

----- ------- ------- -------

10 1.82 5.26 9.17

100 1.98 9.17 50.25

1000 1.99 9.91 90.99

10000 1.99 9.91 99.02
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However, certain problems demonstrate increased performance by
increasing the problem size. For example:

2D Grid Calculations 85 seconds 85%

Serial fraction 15 seconds 15%

We can increase the problem size by doubling the grid dimensions
and halving the time step. This results in four times the number of
grid points and twice the number of time steps. The timings then
look like:

2D Grid Calculations 680 seconds 97.84%

Serial fraction 15 seconds 2.16%
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Problems that increase the percentage of parallel time with their
size are more scalable than problems with a �xed percentage of
parallel time.
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Complexity

In general, parallel applications are much more complex than
corresponding serial applications, perhaps an order of magnitude.
Not only do you have multiple instruction streams executing at the
same time, but you also have data �owing between them.
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The costs of complexity are measured in programmer time in
virtually every aspect of the software development cycle:

Design

Coding

Debugging

Tuning

Maintenance

Adhering to "good" software development practices is essential
when when working with parallel applications - especially if
somebody besides you will have to work with the software.

Blaise Barney, Livermore Computing <blaiseb@llnl.gov> Introduction to Parallel Computing



Overview
Concepts and Terminology

Parallel Computer Memory Architectures
Parallel Programming Models
Designing Parallel Programs

Portability

Thanks to standardization in several APIs, such as MPI, POSIX
threads, HPF and OpenMP, portability issues with parallel
programs are not as serious as in years past. However...

All of the usual portability issues associated with serial programs
apply to parallel programs. For example, if you use vendor
"enhancements" to Fortran, C or C++, portability will be a
problem.

Even though standards exist for several APIs, implementations will
di�er in a number of details, sometimes to the point of requiring
code modi�cations in order to e�ect portability.
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Operating systems can play a key role in code portability issues.

Hardware architectures are characteristically highly variable and can
a�ect portability.
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Resource Requirements

The primary intent of parallel programming is to decrease execution
wall clock time, however in order to accomplish this, more CPU
time is required. For example, a parallel code that runs in 1 hour
on 8 processors actually uses 8 hours of CPU time.

The amount of memory required can be greater for parallel codes
than serial codes, due to the need to replicate data and for
overheads associated with parallel support libraries and subsystems.

For short running parallel programs, there can actually be a
decrease in performance compared to a similar serial
implementation. The overhead costs associated with setting up
the parallel environment, task creation, communications and task
termination can comprise a signi�cant portion of the total
execution time for short runs.
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Scalability

The ability of a parallel program's performance to scale is a result
of a number of interrelated factors. Simply adding more machines
is rarely the answer.

The algorithm may have inherent limits to scalability. At some
point, adding more resources causes performance to
decrease. Most parallel solutions demonstrate this characteristic at
some point.
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Hardware factors play a signi�cant role in scalability. Examples:

Memory-cpu bus bandwidth on an SMP machine

Communications network bandwidth

Amount of memory available on any given machine or set of
machines

Processor clock speed

Parallel support libraries and subsystems software can limit
scalability independent of your application.
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