
eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

eXtended Reactive Modules

Benoît Sigoure
<benoit.sigoure@lrde.epita.fr>

EPITA Research and Development Laboratory

June 14, 2006

Benoît Sigoure eXtended Reactive Modules 1 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Outline

1 Motivation
Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

2 eXtended Reactive Modules’ features
The package
xrm-front’s features

3 Summary

Benoît Sigoure eXtended Reactive Modules 2 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Outline

1 Motivation
Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

2 eXtended Reactive Modules’ features
The package
xrm-front’s features

3 Summary

Benoît Sigoure eXtended Reactive Modules 3 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Model-checking, (Reactive) Modules and PRISM

Reactive Modules is a formalism.

Used to concurrent systems.
Ideal for .

PRISM is a probabilistic model checker.

Introduces the ...
... which is based on Reactive Modules’ syntax.
Widely used.

APMC is an Approximate Probabilistic Model Checker.

Uses PRISM’s parser.
Can handle very large systems.

Benoît Sigoure eXtended Reactive Modules 4 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Model-checking, (Reactive) Modules and PRISM

Reactive Modules is a formalism.
Used to describe concurrent systems.

Ideal for .

PRISM is a probabilistic model checker.

Introduces the ...
... which is based on Reactive Modules’ syntax.
Widely used.

APMC is an Approximate Probabilistic Model Checker.

Uses PRISM’s parser.
Can handle very large systems.

Benoît Sigoure eXtended Reactive Modules 4 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Model-checking, (Reactive) Modules and PRISM

Reactive Modules is a formalism.
Used to describe concurrent systems.
Ideal for model-checking.

PRISM is a probabilistic model checker.

Introduces the ...
... which is based on Reactive Modules’ syntax.
Widely used.

APMC is an Approximate Probabilistic Model Checker.

Uses PRISM’s parser.
Can handle very large systems.

Benoît Sigoure eXtended Reactive Modules 4 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Model-checking, (Reactive) Modules and PRISM

Reactive Modules is a formalism.
Used to describe concurrent systems.
Ideal for model-checking.

PRISM is a probabilistic model checker.
Introduces the PRISM language...
... which is based on Reactive Modules’ syntax.
Widely used.

APMC is an Approximate Probabilistic Model Checker.

Uses PRISM’s parser.
Can handle very large systems.

Benoît Sigoure eXtended Reactive Modules 4 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Model-checking, (Reactive) Modules and PRISM

Reactive Modules is a formalism.
Used to describe concurrent systems.
Ideal for model-checking.

PRISM is a probabilistic model checker.
Introduces the PRISM language...
... which is based on Reactive Modules’ syntax.
Widely used.

APMC is an Approximate Probabilistic Model Checker.
Uses PRISM’s parser.
Can handle very large systems.

Benoît Sigoure eXtended Reactive Modules 4 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

The PRISM language

Main problem: describing large modules is almost impossible
using the PRISM language.

Module renaming

module process1
x1 : [0 . . 1] ;
[] (x1=x5) −> 0.5 : (x1 ’ = 0) + 0.5 : (x1 ’ = 1) ;
[] ! x1=x5 −> (x1 ’= x5) ;

endmodule

/ / Add f u r t h e r processes through renaming .
module process2 = process1 [x1=x2 , x5=x1] endmodule
module process3 = process1 [x1=x3 , x5=x2] endmodule
module process4 = process1 [x1=x4 , x5=x3] endmodule
module process5 = process1 [x1=x5 , x5=x4] endmodule

Benoît Sigoure eXtended Reactive Modules 5 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Several limitations

Imagine the previous example with 100 (or more) modules.
Would you write them by hand? Copy/paste/edit?

And if you want to run several tests with N modules,
N = {1, 2, 3, 5, 10, 15, 100, 1000} ?
And if some of the modules are different from the others?
⇒ You can’t use variable renaming.
⇒ Lots of code duplication. Error prone. Not flexible.

Benoît Sigoure eXtended Reactive Modules 6 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Several limitations

Imagine the previous example with 100 (or more) modules.
Would you write them by hand? Copy/paste/edit?
And if you want to run several tests with N modules,
N = {1, 2, 3, 5, 10, 15, 100, 1000} ?
And if some of the modules are different from the others?
⇒ You can’t use variable renaming.
⇒ Lots of code duplication. Error prone. Not flexible.

Benoît Sigoure eXtended Reactive Modules 6 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Outline

1 Motivation
Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

2 eXtended Reactive Modules’ features
The package
xrm-front’s features

3 Summary

Benoît Sigoure eXtended Reactive Modules 7 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Sensor networks

The sensor in the middle
broadcasts the alert.
Its code must be
different.

Benoît Sigoure eXtended Reactive Modules 8 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Sensor networks

The sensors on the
edges are not completely
surrounded.
Their code for sensing
alerts is different.

Benoît Sigoure eXtended Reactive Modules 8 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Possible solutions

We want to model-check sensor networks with many
different parameters.
Generate PRISM code with scripts.

Use shell/M4/Ruby/Perl/Python/<You name it> scripts.

No real standard.

Benoît Sigoure eXtended Reactive Modules 9 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Possible solutions

We want to model-check sensor networks with many
different parameters.
Generate PRISM code with scripts:

Use shell/M4/Ruby/Perl/Python/<You name it> scripts.

No real standard.

Benoît Sigoure eXtended Reactive Modules 9 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Possible solutions

We want to model-check sensor networks with many
different parameters.
Generate PRISM code with scripts:

Use shell/M4/Ruby/Perl/Python/<You name it> scripts.
⇒ You need to know a scripting language.

No real standard.

Benoît Sigoure eXtended Reactive Modules 9 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Possible solutions

We want to model-check sensor networks with many
different parameters.
Generate PRISM code with scripts:

Use shell/M4/Ruby/Perl/Python/<You name it> scripts.
⇒ You need to know a scripting language.
⇒ Bugs in your script will be hard to debug.

No real standard.

Benoît Sigoure eXtended Reactive Modules 9 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Possible solutions

We want to model-check sensor networks with many
different parameters.
Generate PRISM code with scripts:

Use shell/M4/Ruby/Perl/Python/<You name it> scripts.
⇒ You need to know a scripting language.
⇒ Bugs in your script will be hard to debug.
⇒ Your attention is distracted from your first objective.
No real standard.

Benoît Sigoure eXtended Reactive Modules 9 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

Outline

1 Motivation
Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

2 eXtended Reactive Modules’ features
The package
xrm-front’s features

3 Summary

Benoît Sigoure eXtended Reactive Modules 10 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

eXtended Reactive Modules

We feel that we need an extended version of the PRISM
language.

For loops.
If statements.
Functions to factor code in common.

We want some kind of compiler that generates PRISM
code.

Benoît Sigoure eXtended Reactive Modules 11 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

eXtended Reactive Modules

We feel that we need an extended version of the PRISM
language featuring:

For loops.
If statements.
Functions to factor code in common.

We want some kind of compiler that generates PRISM
code.

Benoît Sigoure eXtended Reactive Modules 11 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

eXtended Reactive Modules

We feel that we need an extended version of the PRISM
language featuring:

For loops.
If statements.
Functions to factor code in common.

We want some kind of compiler that generates PRISM
code.

Benoît Sigoure eXtended Reactive Modules 11 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

eXtended Reactive Modules

We feel that we need an extended version of the PRISM
language featuring:

For loops at the meta-level.
If statements at the meta-level.
Functions to factor code in common at the meta-level.

We want some kind of compiler that generates PRISM
code.
⇒ Meta-programming: code partially generated and
evaluated at compile time.
⇒ Consistency of the generated code is ensured by the
compiler.
⇒ Type-checking is possible.

Benoît Sigoure eXtended Reactive Modules 11 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Outline

1 Motivation
Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

2 eXtended Reactive Modules’ features
The package
xrm-front’s features

3 Summary

Benoît Sigoure eXtended Reactive Modules 12 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Using eXtended Reactive Modules

XRM’s tools are built with the Stratego/XT bundle.

Stratego: a language designed for program
transformations.
SDF: Syntax Definition Formalism.
Modular definitions make it easy to:

Extend grammars.
Embed a grammar into another.

SGLR: Scannerless Generalized LR parser.

Enables ambiguities.
Provides several disambiguation filters.

Benoît Sigoure eXtended Reactive Modules 13 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Using eXtended Reactive Modules

XRM’s tools are built with the Stratego/XT bundle.
Stratego: a language designed for program
transformations.

SDF: Syntax Definition Formalism.
Modular definitions make it easy to:

Extend grammars.
Embed a grammar into another.

SGLR: Scannerless Generalized LR parser.

Enables ambiguities.
Provides several disambiguation filters.

Benoît Sigoure eXtended Reactive Modules 13 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Using eXtended Reactive Modules

XRM’s tools are built with the Stratego/XT bundle.
Stratego: a language designed for program
transformations.
SDF: Syntax Definition Formalism.
Modular definitions make it easy to:

Extend grammars.
Embed a grammar into another.

SGLR: Scannerless Generalized LR parser.

Enables ambiguities.
Provides several disambiguation filters.

Benoît Sigoure eXtended Reactive Modules 13 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Using eXtended Reactive Modules

XRM’s tools are built with the Stratego/XT bundle.
Stratego: a language designed for program
transformations.
SDF: Syntax Definition Formalism.
Modular definitions make it easy to:

Extend grammars.
Embed a grammar into another.

SGLR: Scannerless Generalized LR parser.
Enables ambiguities.
Provides several disambiguation filters.

Benoît Sigoure eXtended Reactive Modules 13 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Tools for working with eXtended Reactive Modules

XRM comes with several tools:
4 parsers.

PRISM language.
XRM language (extended PRISM).
PCTL language (for specifying properties to model-check).
XPCTL language (PCTL extended with XRM embeddings).

4 pretty-printers.

xrm-front: Front-end that compiles XRM (resp. XPCTL)
files into standard PRISM (resp. PCTL) files.

Benoît Sigoure eXtended Reactive Modules 14 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Tools for working with eXtended Reactive Modules

XRM comes with several tools:
4 parsers.

PRISM language.
XRM language (extended PRISM).

PCTL language (for specifying properties to model-check).
XPCTL language (PCTL extended with XRM embeddings).

4 pretty-printers.

xrm-front: Front-end that compiles XRM (resp. XPCTL)
files into standard PRISM (resp. PCTL) files.

Benoît Sigoure eXtended Reactive Modules 14 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Tools for working with eXtended Reactive Modules

XRM comes with several tools:
4 parsers.

PRISM language.
XRM language (extended PRISM).
PCTL language (for specifying properties to model-check).
XPCTL language (PCTL extended with XRM embeddings).

4 pretty-printers.

xrm-front: Front-end that compiles XRM (resp. XPCTL)
files into standard PRISM (resp. PCTL) files.

Benoît Sigoure eXtended Reactive Modules 14 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Tools for working with eXtended Reactive Modules

XRM comes with several tools:
4 parsers.

PRISM language.
XRM language (extended PRISM).
PCTL language (for specifying properties to model-check).
XPCTL language (PCTL extended with XRM embeddings).

4 pretty-printers.
xrm-front: Front-end that compiles XRM (resp. XPCTL)
files into standard PRISM (resp. PCTL) files.

Benoît Sigoure eXtended Reactive Modules 14 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Outline

1 Motivation
Introduction: PRISM and Reactive Modules
Typical example: A sensor network
eXtended Reactive Modules’ solution

2 eXtended Reactive Modules’ features
The package
xrm-front’s features

3 Summary

Benoît Sigoure eXtended Reactive Modules 15 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Meta-programming: Meta-For loops (1/2)

Many of the real-world examples must be modelised with many
modules. Meta-For loops are one of the most useful features of
XRM when it comes to large systems.

Writing sensor networks with XRM

const i n t width = 100;
const i n t he igh t = 100;

for x from 0 to width − 1 do
for y from 0 to he igh t − 1 do

module sensor [x] [y]
s ta tus [x] [y] : [0 . . MAX_STATE] i n i t SENSE;
/ / Commands of the module go here .

endmodule
end

end

Benoît Sigoure eXtended Reactive Modules 16 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Meta-programming: Meta-For loops (1/2)

Here, x and y are declared as meta-vars (variables at the
meta-level, that won’t exist in the resulting source code).
The for loop will be unrolled by xrm-front.

Writing sensor networks with XRM

const i n t width = 100;
const i n t he igh t = 100;

for x from 0 to width − 1 do
for y from 0 to he igh t − 1 do

module sensor [x] [y]
s ta tus [x] [y] : [0 . . MAX_STATE] i n i t SENSE;
/ / Commands of the module go here .

endmodule
end

end

Benoît Sigoure eXtended Reactive Modules 16 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Meta-programming: Meta-For loops (2/2)

XRM also has shell-like meta for loops.

Shell-like meta-for loop

module xrm
x : [0 . . 1] i n i t 0;
y : [0 . . 1 0] i n i t 0;
z : [0 . . 1] i n i t 0;
for i in x, 1+2, y do

[] y= i −> y ’ = y +1;
end

endmodule

Benoît Sigoure eXtended Reactive Modules 17 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

Meta-programming: Meta-If statements

Conditional definition of a module

/ / Coordinates o f the sensor broadcast ing the a l e r t .
const i n t event_x = 5;
const i n t event_y = 5;

for x from 0 to width − 1 do
for y from 0 to he igh t − 1 do

module sensor [x] [y]
i f x = event_x & y = event_y then

/ / This node i s the node broadcast ing the a l e r t .
else

/ / Other nodes are def ined here .
end

endmodule
end

end

Benoît Sigoure eXtended Reactive Modules 18 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

XRM Arrays

Large modules require many variables.

XRM enables multi-dimensional array declarations.
Array subscripts must be evaluable down to positive
integers at compile time.

XRM Arrays

const i n t N = 4;
const i n t M = 2;
module

/ / mu l t i−dimensional " sparse " ar ray
x [0 . . 1 0] [0 , 2 , 5 . . 7] : [0 . . 1] i n i t 0;
[] x [N] [M]=0 −> (x [N] [M] ’ = 1) ;

endmodule

Benoît Sigoure eXtended Reactive Modules 19 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

XRM Arrays

Large modules require many variables.
XRM enables multi-dimensional array declarations.
Array subscripts must be evaluable down to positive
integers at compile time.

XRM Arrays

const i n t N = 4;
const i n t M = 2;
module

/ / mu l t i−dimensional " sparse " ar ray
x [0 . . 1 0] [0 , 2 , 5 . . 7] : [0 . . 1] i n i t 0;
[] x [N] [M]=0 −> (x [N] [M] ’ = 1) ;

endmodule

Benoît Sigoure eXtended Reactive Modules 19 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

XRM Arrays

Large modules require many variables.
XRM enables multi-dimensional array declarations.
Array subscripts must be evaluable down to positive
integers at compile time.

XRM Arrays

const i n t N = 4;
const i n t M = 2;
module

/ / mu l t i−dimensional " sparse " ar ray
x [0 . . 1 0] [0 , 2 , 5 . . 7] : [0 . . 1] i n i t 0;
[] x [N] [M]=0 −> (x [N] [M] ’ = 1) ;

endmodule

Benoît Sigoure eXtended Reactive Modules 19 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

XRM Builtins

For the time being, XRM features two new builtins for
generating random variables:

XRM’s builtins

module sample
x : [0 . . 5 1] i n i t 0;
[] true −> x ’= stat ic_rand (4 2) ;
[] true −> x ’= rand (4 2) ;

endmodule

Benoît Sigoure eXtended Reactive Modules 20 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

XRM Builtins

For the time being, XRM features two new builtins for
generating random variables:

Generated code

module sample
x : [0 . . 5 1] i n i t 0;
[] true −> x ’= <random value >;
[] true −> x ’= __rand_0 ;

endmodule
module __rand_0

__rand_0 : [0 . . 4 2] ;
[] true −> 1 / 4 3 : (__rand_0 ’ = 0) + 1 / 4 3 : (__rand_0 ’ = 1) +

1 / 4 3 : (__rand_0 ’ = 2) + . . .
. . . + 1 / 4 3 : (__rand_0 ’ = 4 2) ;

endmodule

Benoît Sigoure eXtended Reactive Modules 20 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

XRM Parameterized formulas

Parameterized formulas are inlined at their call site.

Code factorized with eXtended formulas

const i n t POWER = 42;

formula consume (i n t value) =
ba t te ry ’ = b a t t e r y < value ? 0 : b a t t e r y − value ;

formula must_wake_up = / / Some c o nd i t i on ;

module sensor
b a t t e r y : [0 . .POWER] i n i t POWER;
/ / . . .
[] must_wake_up −> 1: consume (WAKE_UP_COST) ;

endmodule

Benoît Sigoure eXtended Reactive Modules 21 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

eXtended PCTL and other features

PCTL stands for Probabilistic Computational Tree Logic.
It’s the language used for specifying properties to
model-check.
XPCTL = PCTL + XRM extensions.

Meta-code.
Arrays.
Parameterized formulas.

xrm-front can perform as much partial evaluation as
possible (constant propagation and constant expression
evaluation).

Benoît Sigoure eXtended Reactive Modules 22 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

eXtended PCTL and other features

PCTL stands for Probabilistic Computational Tree Logic.
It’s the language used for specifying properties to
model-check.
XPCTL = PCTL + XRM extensions.

Meta-code.
Arrays.
Parameterized formulas.

xrm-front can perform as much partial evaluation as
possible (constant propagation and constant expression
evaluation).

Benoît Sigoure eXtended Reactive Modules 22 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

eXtended Reactive Modules in action

[Demaille et al., 2006]
Implementation in Shell + M4/m4sugar:

264 lines of M4 + 247 lines of Shell script.
Generates 1316 lines of PRISM + 25 lines of PCTL.

Implementation with eXtended Reactive Modules:

87 lines of XRM + 12 lines of XPCTL.
Generates 941 lines of PRISM + 25 lines of PCTL.

Benoît Sigoure eXtended Reactive Modules 23 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

eXtended Reactive Modules in action

[Demaille et al., 2006]
Implementation in Shell + M4/m4sugar:

264 lines of M4 + 247 lines of Shell script.
Generates 1316 lines of PRISM + 25 lines of PCTL.

Implementation with eXtended Reactive Modules:

87 lines of XRM + 12 lines of XPCTL.
Generates 941 lines of PRISM + 25 lines of PCTL.

Benoît Sigoure eXtended Reactive Modules 23 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

eXtended Reactive Modules in action

[Demaille et al., 2006]
Implementation in Shell + M4/m4sugar:

264 lines of M4 + 247 lines of Shell script.

Generates 1316 lines of PRISM + 25 lines of PCTL.

Implementation with eXtended Reactive Modules:
87 lines of XRM + 12 lines of XPCTL.

Generates 941 lines of PRISM + 25 lines of PCTL.

Benoît Sigoure eXtended Reactive Modules 23 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

The package
xrm-front’s features

eXtended Reactive Modules in action

[Demaille et al., 2006]
Implementation in Shell + M4/m4sugar:

264 lines of M4 + 247 lines of Shell script.
Generates 1316 lines of PRISM + 25 lines of PCTL.

Implementation with eXtended Reactive Modules:
87 lines of XRM + 12 lines of XPCTL.
Generates 941 lines of PRISM + 25 lines of PCTL.

Benoît Sigoure eXtended Reactive Modules 23 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

In conclusion...

eXtended Reactive Modules provides a quite complete and
reliable way of performing model-checking on large
models.
Benefit from APMC’s ability to handle large systems.
XRM is quite reliable and passes 93% of the 616 tests of
its test suite.

Future work:
Type checking. Bound checking.
Non-static array accesses.
Modularity through imports.
Optimizations.
C Back-end to replace PRISM’s compiler.

Benoît Sigoure eXtended Reactive Modules 24 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

In conclusion...

eXtended Reactive Modules provides a quite complete and
reliable way of performing model-checking on large
models.
Benefit from APMC’s ability to handle large systems.
XRM is quite reliable and passes 93% of the 616 tests of
its test suite.

Future work:
Type checking. Bound checking.
Non-static array accesses.
Modularity through imports.
Optimizations.

C Back-end to replace PRISM’s compiler.

Benoît Sigoure eXtended Reactive Modules 24 / 27

eXtended Reactive Modules
Motivation

eXtended Reactive Modules’ features
Summary

In conclusion...

eXtended Reactive Modules provides a quite complete and
reliable way of performing model-checking on large
models.
Benefit from APMC’s ability to handle large systems.
XRM is quite reliable and passes 93% of the 616 tests of
its test suite.

Future work:
Type checking. Bound checking.
Non-static array accesses.
Modularity through imports.
Optimizations.
C Back-end to replace PRISM’s compiler.

Benoît Sigoure eXtended Reactive Modules 24 / 27

Appendix Bibliography

Bibliography I

Alur, R. and Henzinger, T. A. (1999).
Reactive modules.
Formal Methods in System Design.

Bravenboer, M., van Dam, A., Olmos, K., and Visser, E.
(2005).
Program transformation with scoped dynamic rewrite rules.
Technical Report UU-CS-2005-005, Institute of Information
and Computing Sciences, Utrecht University.

Benoît Sigoure eXtended Reactive Modules 25 / 27

Appendix Bibliography

Bibliography II

Demaille, A., Peyronnet, S., and Hérault, T. (2006).
Probabilistic verification of sensor networks.
In Proceedings of the Fourth IEEE International Conference
on Computer Sciences, Research, Innovation and Vision
for the Future (RIVF), Ho Chi Minh City, Vietnam.

LRDE — EPITA Research and Developpement Laboratory
(2005).
Transformers home page.
http://transformers.lrde.epita.fr.

Stratego.
http://www.stratego-language.org.

Benoît Sigoure eXtended Reactive Modules 26 / 27

http://transformers.lrde.epita.fr
http://www.stratego-language.org

Appendix Bibliography

Bibliography III

xrm-svn.
https://svn.lrde.epita.fr/svn/xrm/.

Benoît Sigoure eXtended Reactive Modules 27 / 27

https://svn.lrde.epita.fr/svn/xrm/

	eXtended Reactive Modules
	Motivation
	Introduction: PRISM and Reactive Modules
	Typical example: A sensor network
	eXtended Reactive Modules' solution

	eXtended Reactive Modules' features
	The package
	xrm-front's features

	Summary
	Appendix
	Appendix
	

