
eXtended Reactive Modules

Benoit Sigoure

Technical Report no0620, July 2006
revision 1083

Abstract: Reactive Modules is a formal model used to represent synchronous and asynchronous com-
ponents of a system. PRISM is a widely used probabilistic model-checker. It introduced the PRISM lan-
guage, highly based on the Reactive Modules formalism. This language quickly reaches its limit when it
comes to large models.

eXtended Reactive Modules (XRM) is an extension of the PRISM language. It comes with a compiler
that translate XRM modules in PRISM modules, thus providing a comprehensive and reliable solution for
people willing to write large models.

Résumé: Reactive Modules est un modèle formel utilisé pour décrire les éléments synchrones et asyn-
chrones d’un système. PRISM est un outil de model-checking probabiliste. Il a introduit le langage PRISM,
grandement basé sur le formalisme de Reactive Modules. Ce langage atteinte vite ses limites lorsqu’il
s’agit de décrire des modèles conséquants.

eXtended Reactive Modules est une extension du langage PRISM. Il est fournit avec un compilateur qui
traduit les modules XRM en modules PRISM, fournissant ainsi une solution fiable et complète pour les
gens ayant besoin de décrire des systèmes conséquants.

Keywords
eXtended Reactive Modules, Reactive Modules, PRISM, XRM, Model checking, Stratego

Laboratoire de Recherche et Développement de l’Epita
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 53 14 59 47 – Fax. +33 1 53 14 59 22
benoit.sigoure@lrde.epita.fr – http://www.lrde.epita.fr/

benoit.sigoure@lrde.epita.fr
http://www.lrde.epita.fr/

2

Copying this document

Copyright c© 2006 LRDE.
Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

Contents

1 Introduction 5

2 Installation 6
2.1 Requirements . 6
2.2 Using Nix . 6
2.3 Without Nix . 6
2.4 Installing XRM . 7
2.5 Tools provided with XRM . 7

3 Using xrm-front 8
3.1 Common options . 8
3.2 Return value . 8

4 The XRM language 9
4.1 Foreword . 9
4.2 XRM Modules . 10
4.3 XRM Expressions . 10
4.4 XRM Arrays . 10
4.5 XRM Meta-code . 12

4.5.1 XRM For loops . 12
4.5.2 XRM Meta-If Statements . 13

4.6 XRM builtins . 14
4.7 XRM Parameterized formulas . 15
4.8 XRM Keywords . 15

5 XRM and Property Files 16

6 Forthcoming features and known bugs 17
6.1 Forthcoming features . 17
6.2 Known bugs . 18

7 Internal Documentation 19
7.1 Introduction . 19
7.2 General design . 19

7.2.1 The build system . 20
7.2.2 Creating tools with XTC . 20

7.3 xrm-front’s pipeline . 21
7.3.1 First stage: remove the XRM sugar . 21

CONTENTS 4

7.3.2 Second stage: collect various declarations 21
7.3.3 Third stage: check meta-vars . 22
7.3.4 Fourth stage: evaluate meta-code . 22
7.3.5 Fifth stage: desugar array declarations . 22
7.3.6 Sixth stage: AST normalisation . 23
7.3.7 Seventh stage: type-checking . 23
7.3.8 Eighth stage: Add generated modules . 23
7.3.9 Ninth stage: Remove array accesses . 23
7.3.10 Tenth stage: Re-order the content of the modules 23

8 Conclusion 24

9 Bibliography 25

Chapter 1

Introduction

Reactive Modules is a formal model used to represent synchronous and asynchronous compo-
nents of a system. It has never really been used as a practical computer language but it is a
formalism used to describe systems. PRISM is a tool widely used in probabilistic model check-
ing. It features the PRISM language which is highly based on the Reactive Modules formalism.
This language has been found to have several limitations when it comes to large systems con-
taining tens or hundreds of modules. It does not enable to easily parameterize the model so
that it can be checked with different parameters. This comes from the fact that this language
was simply designed to describe systems, not to actually program them.

The goal of eXtended Reactive Modules is to provide a comprehensive solution to these prob-
lems by adding syntactic extensions to the PRISM language. XRM comes with a set of tools
which enable the programmer to work with the extended version of the PRISM language. The
main tool, xrm-front, will compile an XRM source file (written in the extended language) in
a PRISM source file (the base language, used by the tools PRISM and APMC).

In this document, we will describe how to use the XRM package, and what are the syntactic
extensions featured. We assume that the reader is comfortable with model checking, with the
Reactive Modules formalism and especially with the PRISM language. If not, please read (?)
or (PRISM’s Manual).

Chapter 2

Installation

2.1 Requirements

• Stratego/XT 0.17M1 (at least revision 15278 committed Mon, 29 May 2006) because of
libstratego-gpp (added in Stratego/XT 0.17M1 rev 15278).

• A C99 compiler (such as GCC).

• ATerm 2.4.2 or newer.

• SDF2-Bundle 2.3.4 or newer.

• GNU make.

2.2 Using Nix

Nix is a package management system that ensures safe and complete installation of packages.
You can get Nix from (Nix) (pick up the latest unstable release). Download nix-X.YYpreZZZZ
not nixpkgs-X.YYpreZZZZ. Once Nix is installed, use the following commands (you might
need to be root depending on how you installed nix):

$ nix-channel --add \
http://nix.cs.uu.nl/dist/stratego/channels-v3/strategoxt-unstable
$ nix-channel --add \
http://nix.cs.uu.nl/dist/nix/channels-v3/nixpkgs-unstable
$ nix-channel --update
$ nix-env --install aterm sdf2-bundle strategoxt

There you are! Add the following line to your .bashrc/.zshrc:

[-r /nix/etc/profile.d/nix.sh] && source /nix/etc/profile.d/nix.sh

That’s it!

2.3 Without Nix

Install ATerm, SDF2 Bundle and Stratego/XT from (Str) Additional install instructions can be
found there.

7 Installation

2.4 Installing XRM

1. Uncompress the tarball: gunzip -c xrm-version.tar.gz | tar -xf -

2. Use the following command to setup a build-tree:

$ cd xrm-version && mkdir _build && cd _build

3. Invoke configure to generate the Makefiles. If you use Nix, simply use ‘../configure’
If you don’t use Nix, use ‘../configure PKG_CONFIG_PATH=<P>’ where ‘<P>’
stands for the path(s) to the directory(ies) where the .pc files of your Stratego/XT in-
stallation were installed. eg:

/usr/lib/pkgconfig/aterm.pc
/usr/lib/pkgconfig/sdf2-bundle.pc
/usr/lib/pkgconfig/stratego*.pc

4. Then simply type ‘make all check’ then ‘make install’.

5. NOTE: If you see many warnings/errors from SdfChecker during compilation, don’t
worry, it is normal (unless it actually stops the build).

2.5 Tools provided with XRM

• xrm-front: The front-end provided by XRM will take as input an XRM source code and
will transform it into a standard PRISM source code.

• parse-prism: Parses a PRISM source code and yield an AST in ATerms.

• parse-xrm, parse-pctl, parse-xpctl: Ditto with XRM/PCTL/XPCTL source code.

• pp-prism: Pretty prints (“unparses”) a PRISM AST as PRISM source code.

• pp-xrm, pp-pctl, pp-xpctl: Ditto with XRM/PCTL/XPCTL source code.

Chapter 3

Using xrm-front

xrm-front is the main tool of the XRM package. It transforms a source written in XRM into a
standard PRISM source.

3.1 Common options

The options can be reviewed by invoking xrm-front with the --help argument. Common
options include:
-i | --input Specify the input file.
-o | --output Specify the output file.
-D | --desugar Desugar the generated PRISM code.
--verbose notice Keep you informed about stages of the pipeline.
-A | --pp-aterm Pretty print output with pp-aterm.
-p | --pctl The input file is an eXtended PCTL file.

3.2 Return value

xrm-front will return 0 if it succeeds and non zero if an error occured. Possible return values
are:

• 1: rewriting failed (eg: it might be a bug in xrm-front)

• 2: error with meta-vars (eg: undefined meta-var, redefined meta-var)

• 3: arithmetic error when evaluating code (eg: division/modulo by 0)

• 4: invalid call to a builtin (eg: rand(1,2,3))

• 5: errors related with arrays (eg: subscript is not a positive integer)

• 6: invalid call to a parameterized formula (eg: not enough arguments)

• 42: internal compiler error (please send a bug report)

• 51: not yet implemented

Chapter 4

The XRM language

4.1 Foreword

The specification of the base language is documented in PRISM’s manual (a copy is available in
the prism/ directory).

The XRM language is fully PRISM compliant and only offers extension to the base language.
Many people used to overcome the limitations of the PRISM language by generating PRISM

code using scripts (Shell scripts, M4 scripts, etc...) (2). They came to this kind of solution because
they needed to generate large systems which is almost impossible to do by hand. Indeed, most
of the time, a system is made of several identical modules which are interacting with each
other. Traditionally, this is done using module renaming. Nevertheless, it is still impossible to
easily parameterize the number of modules in the system. Moreover when a module is slightly
different than the others, it is impossible to use module renaming. Thus, PRISM files are usually
highly redundant and hard to write by hand. That is why it is so common to generate PRISM
code using scripts.

However, scripts are generally not aware of the PRISM code they are generating. It is easy
to generate invalid code. In this case, one has to find where is the error in the script and fix it.
The advantage of using a compiler such as xrm-front becomes clear: a compiler doesn’t carry
around strings, it works with an AST (Abstract Syntax Tree) generated by a parser itself guided
by a grammar. Most error will be detected and reported at parse time or compile time, making
the developing process more reliable.

Since the main concern is about code generation, XRM enables a form of meta-programming.
For instance, the number of modules in a system could be stored in a variable and a for loop
could be used to generate them. For loops don’t exist in PRISM. In order to transform an XRM
for loop in a standard PRISM code, we have to unroll the loop, which leads to code generation
(meta-programming).

We will now see what are the syntactic extensions featured by XRM and how to use them.

4.2 XRM Modules 10

4.2 XRM Modules

Within XRM modules, it is not mandatory to specify declarations before commands. They can
be freely intertwined in any particular order (whereas in plain PRISM, declarations must come
first and then commands will follow). The following module is valid in XRM:

module OutOfOrder
[] x=0 −> (x ’ = 1) ; / / command
x : [0 . . 1] i n i t 0 ; / / d e c l a r a t i o n

endmodule

The last step of xrm-front’s pipeline is to group all declarations together at the beginning
of the module so that the module will be valid standard PRISM.

4.3 XRM Expressions

1. XRM has arrays. Array accesses (or subscripted arrays, eg: x[3]) are expressions.

2. XRM introduces two operators: << and >> which have the same semantics as in C. They
are desugared using calls to the builtin pow.

3. It is possible to disambiguate a double value from an integer by prefixing the literal value
with either d or D or f or F, eg:

const double p = 1D; / / same as 1 . 0

This is mainly used internally for concrete syntax.

4.4 XRM Arrays

1. Array accesses can be found (nearly) everywhere a simple variable identifier is allowed in
PRISM.

2. It is possible to declare an array of variables instead of a several variables. Everywhere a
variable declaration was allowed in PRISM, an array declaration is allowed in XRM.

3. Arrays are declared with ranges, eg:

x [0 . . 4] : [0 . . 1] i n i t 0 ;

will declare an array of 4 elements: x[0], x[1], x[2] and x[3].

4. It is possible to declare multidimensional arrays, eg:

x [0 . . 3] [0 . . 4] : [0 . . 1] i n i t 0 ;

For multidimensional arrays intermediate dimensions are not accessible (simply because
they don’t exist). So the former declaration will declare:

x [0] [0] , x [0] [1] , x [0] [2] , x [0] [3] ,
x [1] [0] , x [1] [1] , x [1] [2] , x [1] [3] ,
x [2] [0] , x [2] [1] , x [2] [2] , x [2] [3]

11 The XRM language

But in this case accessing x[0] for example doesn’t make sense. If you want to access x[0]
you have to declare it using a 1-dimension array. This array can coexist with x[][].

5. It is possible to use any kind of range to declare an array, eg:
x[2..4][0,3..5] will declare only: x[2][0], x[2][3], x[2][4], x[2][5],

x[3][0], x[3][3], x[3][4], x[3][5],
x[4][0], x[4][3], x[4][4], x[4][5]

The Cartesian product of all the dimensions of the array is used to compute the set of
variables defined.

6. Arrays can be declared in multiple parts, eg:

x [0 . . 3] : bool i n i t t rue ;
x [4 . . 7] : [1 . . 5] i n i t 2 ;

In this case, x[0] through x[3] contain boolean values whereas x[4] through x[7] contain
integer values between 1 and 5 included. Note that in this case, multiple declarations
must not overlap, eg:

x [0 . . 4] : bool i n i t t rue ;
x [4 . . 7] : [1 . . 5] i n i t 2 ; / / x [4] o v e r l a p s wi th t h e p r e v i o u s

/ / d e c l a r a t i o n !

This will be caught as an error by xrm-front.

7. Arrays can also be implicitly declared using for loops.

8. Update of values in arrays is illustrated in the following example:

[] x [N] [M]=0 −> (x [N] [M] ’ = 1) ;

Notice that the prime (’) comes after the dimensions of the array access.

9. All the subscripts in array accesses must be evaluable down to a simple positive integer
at compile time, eg:

const i n t N = 3 ;
/ / . . .
i : [0 . . 4 2] i n i t 0 ; / / d e c l a r a t i o n o f ‘ i ’ .
[] x [N+3]=0 −> . . . ; / / v a l i d : N+3 can be worked out a t c o m p i l e t ime .
[] x [i +3]=0 −> . . . ; / / i n v a l i d : t h e v a l u e o f ‘ i ’ i s dynamic and unknown

/ / a t c o m p i l e t ime .

10. NOTE: In XRM 1.0 and before, it was possible to declare arrays like in C, eg:

const i n t array [N] ;

was automatically desugared to:

const i n t array [0 . . N−1] ;

This is no longer true since XRM 1.1, one must now explicitly write const int array [0.. N−1].
Since then, const int array[N] leads to the declaration of a single variable, that is, the N th

variable of the array.

4.5 XRM Meta-code 12

4.5 XRM Meta-code

XRM introduces meta-for loops and meta-if statements in the language. These constructs are
said to be ‘meta’ because they are evaluated by xrm-front and lead to code generation.

4.5.1 XRM For loops

1. Meta-for loops can be found in only 2 places within a XRM source file:

(a) Where we could expect a module declaration.

(b) Where we could expect a declaration or a command, within a module.

This implies that meta-for loops can only be used to generate modules (or other file sec-
tions, such as formulas, globals, etc.) or commands and declarations within modules.

2. There exists 2 flavors of for loops:

(a) For loops à la Pascal

(b) For loops à la Shell

Example:

for i from 0 to 3 do . . . end / / P a s c a l− l i k e
for i from 0 to 10 step 2 do . . . end / / P a s c a l− l i k e
for i in a , 1+2 , N do . . end / / S h e l l− l i k e

In each of these 3 cases, the variable i will be considered as a meta-variable, meaning it
will only exists at the meta-level and won’t appear in the final source code.

3. The word for is a reserved keyword in XRM and cannot be used for an identifier.

4. For Pascal-like for-loops, the fields from, to and step must be evaluable down to simple
integers at compile time. The value of the field from must be less than or equal to that of
the field to.

5. For-loops are unrolled by copying the body of the loop and replacing every match of the
identifier of the meta-var by its successive values.

6. For-loops are the only way of declaring a meta-var at the moment.

7. For-loops can be used to create new modules. Since each module must have a unique
name, it will have to be suffixed by an array access using a meta-var, eg:

for i from 1 to 3 do
module dummy[i]

x [i] : [0 . . 1] i n i t 0 ;
endmodule

end

will generate 3 modules: dummy[1], dummy[2] and dummy[3]. Thus in this case you get
3 different modules, each with their own single unique variable x. If you wish to provide
each module with an array of, say 6 elements, then do the following:

13 The XRM language

for i from 1 to 3 do
module dummy[i]

x [i] [0 . . 5] : [0 . . 1] i n i t 0 ;
endmodule

end

In this case the first dimensions (i) will first be expansed by the loop unrolling, which
will equip each generated module with its own unique variable x and then the second
dimension will create an array of 6 elements for each generated module.

8. Meta-for loops can also be used to declare arrays implicitly:

module Impl ic i tArray
for i from 0 to 3 do

x [i] : [0 . . i] i n i t i ;
end

endmodule

In this case the module ImplicitArray will have a single array named x of 4 elements. This
method offers a greater control on how each element of the array is declared.

4.5.2 XRM Meta-If Statements

1. Meta-if statements can be found in only 3 places within a XRM source file:

(a) Where we could expect a module declaration.
(b) Where we could expect a declaration or a command, within a module.
(c) Where we would expect an expression.

However the latter case has a restriction that the two formers don’t have: the then-part
and the else-part of the if statements cannot contain more than one expression.

2. The syntax for meta-if statements is illustrated in the following example:

i f t rue then
module alwaysGenerated

i f 0 = 42 − 21 then
neverGenerated : [0 . . 4 2] i n i t 0 ;

e lse
alwaysGeneratedToo : [0 . . 4 2] i n i t 0 ;

end
endmodule

end

3. The condition of the meta-if statements must be evaluable at compile time. It must ei-
ther be evaluable down to true or false, or down to a simple integer/double. If that
integer/double is 0, the condition will be false, otherwise it will be true (like in C).

4. When a comparison on reals occur in the XRM-compiler, they are carried out with a preci-
sion of 10−7 which means that if the condition is reduced down to 0.00000001 (for instance)
it will be evaluated as being false because this value is 0 when used with a precision of
10−7.

4.6 XRM builtins 14

4.6 XRM builtins

XRM introduces two new builtins for generating random numbers: rand and static_rand.

1. In XRM, rand and static_rand are reserved keywords and cannot be used for identi-
fiers.

2. Both rand and static_rand take either one or two arguments which must be evaluable
down to simple integers at compile-time. If rand or static_rand is called with a single
argument, a second argument (an integer equal to zero) is added. If the single argument
is positive, the zero is added before it, otherwise it is added after it, eg:

rand (3) / / w i l l be d e s u g a r e d t o rand (0 , 3)
rand (−3) / / w i l l be d e s u g a r e d t o rand (−3 , 0)

3. static_rand(low, hi) will be transformed into a random integer ranging from ‘low’ to ‘hi’
(included). The random number is obtain with rand(3) which is seeded with the current
UNIX time-stamp when xrm-front starts.

4. NOTE: It is possible to specify a seed with xrm-front’s -s | --seed option.

5. Calls to static_rand will be evaluated after unrolling of meta-for loops to ensure that
each iteration of the loop gets its own random number. It will be evaluated earlier if
it happens to be used where a statically evaluable value is required more early in the
pipeline (eg: in meta-if statements’ condition, in the fields ‘from’, ‘to’ or ‘step’ of a meta-
for loop, etc.)

6. Bear in mind that the random numbers generated by static_rand are constant from
one run to another unless you re-generate the PRISM source (with xrm-front) each time
before running.

7. rand(low, hi) will be transformed into a new variable (each call to rand will generate a
new unique variable) which will be controlled by an external module with a single com-
mand:

module testRand module testRand
x : [0 . . 4 2] i n i t 0 ; x : [0 . . 4 2] i n i t 0 ;
[] x=0 −> x ’= rand (4 2) ; [] x=0 −> x ’= __rand_0 ;

endmodule endmodule
module __rand_0

=> __rand_0 : [0 . . 4 2] ;
[] t rue −> 1 / 4 3 : (__rand_0 ’ = 0)

+ 1 / 4 3 : (__rand_0 ’ = 1)
. . .

+ 1 / 4 3 : (__rand_0 ’ = 4 2) ;
endmodule

This is not a reliable random number generator! Depending on the type of model used
(CTMC, DTMC, MDP) the modules will not always be “scheduled” one after the other.
For instance, the module testRand could run twice in a row and thus use twice the same
“random” value.

15 The XRM language

8. TODO: The current implementation of rand will be renamed (maybe as bad_rand or
old_rand) and a new reliable implementation will be provided as a replacement. In this
implementation, the random variable won’t be hosted in a foreign module anymore, it will
be hosted directly in the module which called rand. The variable will be updated each
time it is accessed to ensure a real and constant randomness of the numbers generated.

4.7 XRM Parameterized formulas

XRM formulas have been eXtended and can now be parameterized, eg:

formula i s f r e e (i n t i) = p [i] = 0 . . 4 , 6 , 1 0 ;

1. Parameterized formulas can have 4 kinds of arguments:

(a) int (as in the example above)

(b) double

(c) bool

(d) exp

2. With the exp type, the formula behaves a bit like C’s macro-functions. We can also see that
as a “catch-all” type since no type-checking will be performed on this kind of arguments.

3. Parameterized formulas definitions will be removed in the output PRISM code. Invoking
parameterized formulas is somewhat like calling a function, eg: isfree (2) will be inlined
as p [2]=0..4,6,10;

4. Note that using the PRISM-3 calling style for builtins cannot be used for formulas, eg:
func(isfree , 2) is not supported at the moment. We might add support for this.

5. Once a parameterized formula has been defined, it can’t be redefined/undefined, just like
a normal PRISM formula.

6. Parameterized formula can also define updates, not only expressions, eg:

formula consume (i n t value) =
bat tery ’ = b a t t e r y < value ? 0 : b a t t e r y − value ;

/ / . . .
module sensor

b a t t e r y : [0 . .POWER] i n i t POWER;
/ / . . .
[] must_wake_up −> 1 : consume (WAKE_UP_COST) ;

endmodule

4.8 XRM Keywords

XRM uses the following additional reserved keywords:
for, rand, static_rand, func
They cannot be used as identifiers.

Chapter 5

XRM and Property Files

Almost all the features of the XRM language are available in eXtended Property Files. There is
an exception:

1. The rand builtin cannot be used in property files.

It is also possible to define formulas and parameterized formulas in XPCTL files.
If you wish, it is possible to specify properties directly in XRM files. You can add property

sections to your XRM files. Property sections can be found everywhere a module declaration
can be found. A property section is specified as:

proper t ies
/ / XPCTL c o d e h e r e

end

If you use property sections, you will need to pass an additional argument to xrm-front
to specify the PCTL property file where the properties must be saved. The option switch is
--p-output f or -po f (where ‘f’ is a path). However, this option is not mandatory. If you
specify property sections but omit this switch, xrm-front will discard the properties and issue
a warning about that.

Chapter 6

Forthcoming features and known
bugs

6.1 Forthcoming features

The following features are not yet implemented (or only partially implemented or broken).
They are ordered in term of the estimated time needed to successfully implement them. For a
complete list of things to be done please review the TODO file. You can also review the trac
located at (xrm)

1. More sanity checks for all declarations at different stages of the pipeline to ensure that
everything is well defined. (variables used have been declared somewhere etc.)

2. Possibility to import another module, eg: import common.pm

3. Parameterized formulas. (Pretty much like macro-functions in C)

4. Scopes for meta variables (allow redefinitions/shadowing).

5. Bound/Type checking (ensure that variables are properly used according to their type/domain
definition).

6. Conditional tests on arrays. ?= and ?!= operators for arrays. eg:

x [1 . . 3] = 0 => x_1=0 & x_2=0 & x_3=0
x [1 . . 3] ? = 0 => x_1=0 | x_2=0 | x_3=0

7. Dynamic array accesses, eg: x[i] where i is not known at compile-time.

8. Array initializations à la C:

x [0 . . 3] : [0 . . 4] i n i t { 0 , 1 , 2 } ;
const i n t array [0 . . 3] = { 0 , 1 , 2 } ;

9. Better error messages (with location of the error).

6.2 Known bugs 18

6.2 Known bugs

1. The construct system ... endsystem (for system compositions) is broken at the moment
(meaning: using it will result in a parse error). It is probably a simple problem with the
base SDF grammar. I’ve never seen a PRISM source using this construct so this has been
in the TODO list since the beginning but with a very low priority.

2. Unary operators are allowed in the base language whereas they should not (because they
are not allowed in the original PRISM parser).

3. There is nearly no warranty that the generated code will work in PRISM. Generally speak-
ing, if the input XRM source is correct, the output PRISM source will also be correct.
However, at this stage of the development, the front-end is still pretty fragile and I am
sure it is quite easy to generate invalid PRISM code without having any error reported by
xrm-front (in this case please report the bug). What we clearly need to thwart this is:

(a) Type checking.

(b) Bound checking.

4. In Property Files, paths using “bounded until” can lead to ambiguities in XPCTL. Eg:

Pmin=? [t rue U<=k (1)+1=1]

can be parsed as:

Pmin=? [t rue U<=(k (1)) (+1)=1]
/ / where k (1) i s a c a l l t o a p a r a m e t e r i z e d f o r m u l a .

-or-

Pmin=? [t rue U<=(k) (1+1)=1]
/ / which i s most l i k e l y t h e i n t e n d e d meaning .

In this case, parse-xpctl will fail with an error that is like the following:

s g l r : e r r o r : Ambiguity in your− f i l e . pc t l , l i n e L , c o l C :
Formula "U" "<=" Expression Formula −> Path { cons (" BoundedUntilLtEq ") } ;
Formula "U" "<=" Expression Formula −> Path { cons (" BoundedUntilLtEq ") } ;
Formula "U" "<=" Expression Formula −> Path { cons (" BoundedUntilLtEq ") }
./ s r c / t o o l s /parse−x p c t l : r ewr i t ing f a i l e d

In this case, add a couple of parenthesis to remove the ambiguity:

Pmin=? [t rue U<=(k) (1)+1=1]

5. Probably many other things (run make check and see the tests that fail).

For a complete list of bugs, you should review the trac located at (xrm).

Chapter 7

Internal Documentation

7.1 Introduction

This part of the documentation aims at explaining the internals of XRM, how it has been de-
veloped and how it works. This is only useful if you intend to further develop XRM or to
understand the underlying code. This could also be useful if you’re learning Stratego.

7.2 General design

This sections explains the general design used when developing XRM. The sources are located
under the src/ folder. They are divided in 5 sections:

1. src/lib: Contains strategies/code exported in libraries linked with the tools. In fact (at
this time) XRM doesn’t use any library but the code under this path should be exported
through shared and static libraries.

2. src/lib/native: Contains C code used by Stratego code (with prim). Actually this
code features several extensions used to manipulate float values in Stratego. This was
implemented in C because it wasn’t available in stratego-lib and because doing the
same work would be a pain in C. This code also provide a random number generator.

3. src/lib/<lang>/pp: Where <lang> is {pctl,prism,xpctl,xrm}. Contain the pretty-printing
strategies used by the pretty printers. These strategies are meant to be available in libraries
but at this time they are simply imported by the pretty-printers. Exporting them in li-
braries would reduce compilation time. They should rather be exported in static libraries
(if possible) because dynamic libraries have inconvenient: the .so must be installed and
available in the LD_LIBRARY_PATH (or must be installed in standard paths). Installing
one dynamic library per pretty-printer does not seem quite attractive.

4. src/sig: Contains nothing. This is where signatures for the 4 languages (pctl, prism,
xpctl, xrm) will be generated (under the build dir).

5. src/str: Contains the Stratego code used by xrm-front.

6. src/syn/<lang>: Contains the SDF grammar of the language <lang>. Each grammar
has Stratego embeddings (for concrete syntax) defined in Stratego<LANG>.sdf and

7.2 General design 20

optionally <LANG>-MetaCongruences.sdf and <LANG>-MetaVars.sdf. Renamed
version of each grammar are generated during the build so that the grammars can easily
be assimilated within other host languages later on.

7. src/tools: Contains Stratego sources for the pretty printers and parsers (which are
registered as XTC components).

7.2.1 The build system

XRM use the autotools to set up the build system. It also uses the Makefile provided by (autoxt)
and Transformers’ (3) Makefile. The configure script tries to guess the correct value for
PKG_CONFIG_PATH if it is not provided by looking for common locations where Stratego/XT is
installed by Nix. Many GNU make extensions are used by the Makefiles. Parallel builds work
and are encouraged.

7.2.2 Creating tools with XTC

XRM uses XTC-registered components. For the documentation of XTC see the chapters 28 (XTC)
and 29 (Library Building) of the Stratego/XT manual. Basically, XTC components are simply
applications or files which are registered by a program called xtc. This program creates a file
where registered components are listed (the repository).

When a component is registered in the repository, its name, version and path are saved. This
is useful so that you can develop tiny applications and call them one after the other in a pipeline.
Calling them from Stratego is made easy because the Stratego programs know where the XTC
repository is and it can query that repository to find the auxiliary tools it needs.

For instance one could register ls, grep and wc in an XTC repository. Then one could invoke
them from a Stratego program one after the other in order to simulate the command ‘ls -l |
grep rwx | wc -l‘ for instance. Note that XTC repositories are in fact ATerms and you can
display them with pp-aterm.

This is used by parsers which need to invoke sglr with the correct parse table in argument.
The parse table is generated somewhere and is registered in the XTC repository. The parser
looks up the location of the parse table through the repository and then invokes sglr with the
right path to the parse table.

However, this has a disadvantage: invoking XTC components is quite inefficient. This is
because what happens actually is that, the current term is saved in a temporary file under /tmp.
When the current term is quite large this can produce files from several hundred mega-bytes
up to several giga-bytes. Then the XTC component you invoked is called with that temporary
file as input (-i) and another new temporary file as output (-o). Once it has finished, the
current process reloads its current term from the temporary file where the XTC component sent
its output.

This leads to many i/o operations on disk which tend to be quite slow. That is why XRM tries
to avoid to use XTC for external processes as much as possible. But since we still want to be
modular, instead of using XTC components, we use external libraries. At this time XRM doesn’t
use libraries because it was easier to import the libraries required than to export them through
libraries which would then be linked with the binary. However this makes the compilation time
longer. We should really consider exporting common things in external libraries.

The --help and --about options are handled using (tool-doc). The pretty-printers di-
rectly include the strategies they need (the pretty-printing rules are written in Stratego under
src/lib/<lang>/pp). This enables them to be stand-alone. They can pretty-print without

21 Internal Documentation

using intermediate files. They also use libstratego-gpp which is quite recent. This enables
them to use abox-to-text without having to call an external XTC component and go through
intermediate temporary files.

7.3 xrm-front’s pipeline

In this section we will review the pipeline of xrm-front. We will explain the different stages
of the pipeline, how the dynamic rules are used and how the transformations are performed.

Everything begins in src/str/xrm-front.str. The first thing performed by xrm-front
is to check whether the options it was invoked with are consistent. For instance, if the user
invokes xrm-front with the flags -b (request output in binary ATerm format) and -P (request
output in pretty-printed ATerm format) the switch -P is ignored and a warning is issued. In
former version of xrm-front, there were more conflicting options.

Then xrm-front parses its input files with the correct parser. When the switch -p (or
--pctl) is provided, XRM must parse XPCTL source code whereas it parses XRM source code
by default. The parsing is performed by an external XTC component. It would be useful to use
library-based parser instead to improve performances. Then the strategy xrm-front-pipeline
is invoked.

This where the transformations begin. The real pipeline can be found in src/str/xrm-to-prism.str.

7.3.1 First stage: remove the XRM sugar

The first stage removes the XRM sugar. This is a simple innermost traversal where basic trans-
formations rules are applied to remove what is merely simple syntactic sugar.

We also use this stage to catch calls to the XRM builtin rand in property files (which is not
allowed). In XRM files, these calls are simply replaced by a variable which will be the random
variable. At this time each random variable is controlled by a separate module generated by
xrm-front. This module is stored in a DR named RandGenModules.

7.3.2 Second stage: collect various declarations

The second stage collects static const declarations, formulas and parameterized formulas.
For property files, the formulas are removed when they are collected (because they are not

allowed in standard property files).
Parameterized formulas are always removed once they are collected because they do not exist

in the base languages. These declarations are collected in dynamic rules as follows:

1. ExpandStaticConsts: id -> value

2. ExpandFormulas: id -> value

3. ExpandPFormulas: PFormulaCall(name, a*) -> e
this DR rewrites a call to the parameterized formula name (invoked with the arguments
a*) to e which is the inlined version of the formula name with its formal parameters
replaced by the parameters provided in a*.

7.3 xrm-front’s pipeline 22

7.3.3 Third stage: check meta-vars

The third stage of xrm-front is to check that meta-vars are used correctly. The whole code is
traversed using a hand-crafted traversal that collects the declarations of meta-vars (using the
appropriate scopes).

For instance, when the traversal enters a for loop, it registers the meta-var used to iterate in
the loop in a scoped DR. Several things must be evaluable down to simple integers at compile
time (such as array subscripts or the from or to of a for loop for instance. Indeed if you can’t
evaluate the latter at compile time, how can you unroll the loop if you don’t know how many
iterations it has to go through?).

Once we know what are the meta-vars (as well as static consts, formulas etc.), we can easily
check whether an expression is evaluable as a literal value at compile time. If the expression
contains only literals and identifiers known to be evaluable at compile time (such as static consts
and meta-vars for instance) then the expression itself is evaluable at compile time.

7.3.4 Fourth stage: evaluate meta-code

Then an important stage starts: the meta-code is evaluated (leading to code generation). Once
again, this stage uses a hand-made traversal and features: evaluation of static ifs, lazy evalua-
tion of operator ‘&’ and operator ‘|’ (so that the user can rely on them to prevent invalid code
from being evaluated, eg: x > 0 & a[x] to prevent an invalid array access).

For loops are unrolled. Calls to parameterized are inlined. When a call to a parameterized
formula is inlined, we must re-start the stage on the code inlined.

7.3.5 Fifth stage: desugar array declarations

The fifth stage consists of removal of array declarations, evaluation of calls to the XRM builtin
static_rand and collection of non-array local variable declarations. This is 3 different things
but they are combined together to reduce the number of traversals.

Array declarations are rewritten as declarations of lists of variables. xrm-front ensures that
array declarations are not overlapping with each other. Each array declaration is recorded in
the DR DeclaredArrays which maps an Identifier(idf) -> aa-list where aa-list
is the list of array subscript declared for that array.

When an array is declared in multiple parts, each part is added in the same entry of DeclaredArrays
(we first fetch the parts previously declared, check that they don’t overlap with the parts being
declared, and if they don’t, we concatenate them and save them back in the DR).

This part of the code might be a bit hard to read because an abstract factory is used to build
declaration lists resulting of array declarations and this is a bit hard to follow.

Hopefully the numerous comments in the file will help the reader to understand how the
rewriting is performed.

Non-array declarations are also collected in a DR named DeclaredIdentifers which
maps an identifier to some information about it (such as its type, its definition range, its ini-
tial value).

These information are gathered for the type-checking stage. Note that type information of
variables declared in arrays are not yet gathered.

23 Internal Documentation

7.3.6 Sixth stage: AST normalisation

So now, array declarations have been rewritten as declaration lists. This introduces several
unwanted nested lists in the AST which are then removed using flatten-list.

7.3.7 Seventh stage: type-checking

Then comes the type-checking stage. At this time, this stage is quite basic and only checks that
array subscripts do not lead to out of bound array accesses. We can easily do this thanks to the
DR DeclaredArrays which maps an identifier to the dimensions declared for that array. The
stage also ensures that all array accesses are made on declared arrays.

7.3.8 Eighth stage: Add generated modules

Then, we paste the module generated by the calls to the rand builtin (which were saved in the
DR RandGenModules) at the end of the file.

7.3.9 Ninth stage: Remove array accesses

Now we can remove all array accesses. This is done by flattening them, eg x[1][2][3] is rewritten
as x_1_2_3.

For property files, we also use this stage to expand all non-parameterized formulas since
their expansions were not forced by any previous stage. We must force the expansion of non-
parameterized formulas in property files because they are not allowed in the base language.

7.3.10 Tenth stage: Re-order the content of the modules

In the end, we can now re-order the content of the modules. Indeed, in XRM we allow the dec-
larations and commands to be freely intertwined whereas in PRISM declarations must always
come before the commands. This is done using a scoped DR. We traverse all the modules and
collect declarations and commands in DRs (respectively CommandList and DeclarationList).
Once we have them all we can easily re-construct the module with the declarations first, fol-
lowed by the commands.

The resulting AST is further desugared if the -D | --desugar switch was provided, then
it is pretty-printed in the format required by the command line (default: PRISM code).

Chapter 8

Conclusion

XRM succeeded in providing a comprehensive solution to the problems raised by large models.
Its use has been demonstrated in (1) where we implement a sensors network in XRM and com-
pare the implementation with that proposed in (2), which was based on Shell and M4/m4sugar.
The XRM implementation requires 105 lines of XRM code whereas 1316 lines were needed for
the Shell/M4/m4sugar implementation.

Thanks to the work performed by xrm-front, the developing process is made more reliable
and efficient.

The Stratego/XT bundles provided an ideal framework to design XRM in a modular and
extensible fashion.

Chapter 9

Bibliography

[Str] Stratego/xt continuous distribution, http://www.stratego-language.org/
Stratego/ContinuousDistribution.

[Nix] Trace – transparent configuration environments, http://www.cs.uu.nl/wiki/
Trace/Nix.

[xrm] Xrm’s trac, http://xrm.lrde.org/.

[1] (2006). Modeling of Sensor Networks Using XRM.

[autoxt] autoxt. Stratego/xt – programs and tools – autoxt, http://nix.cs.uu.nl/dist/
stratego/strategoxt-manual-unstable-latest/manual/chunk-chapter/
ref-autoxt.html.

[2] Demaille, A., Peyronnet, S., and Hérault, T. (2006). Probabilistic verification of sensor net-
works. In Proceedings of the Fourth IEEE International Conference on Computer Sciences, Research,
Innovation and Vision for the Future (RIVF), Ho Chi Minh City, Vietnam.

[Library Building] Library Building. Stratego/xt manual – library building, http:
//nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/
manual/chunk-chapter/library-building.html.

[3] LRDE — EPITA Research and Developpement Laboratory (2005). Transformers home page.
http://transformers.lrde.epita.fr.

[PRISM’s Manual] PRISM’s Manual. http://www.cs.bham.ac.uk/~dxp/prism/
manual/.

[stratego] stratego. http://www.stratego-language.org.

[tool-doc] tool-doc. Stratego/xt sources – tool doc, https://svn.cs.uu.nl:12443/
repos/StrategoXT/strategoxt/trunk/stratego-regular/xtc/tool-doc.str.

[xrm-svn] xrm-svn. https://svn.lrde.epita.fr/svn/xrm/.

[XTC] XTC. Stratego/xt manual – xtc, http://nix.cs.uu.nl/dist/stratego/
strategoxt-manual-unstable-latest/manual/chunk-chapter/xtc.html.

http://www.stratego-language.org/Stratego/ContinuousDistribution
http://www.stratego-language.org/Stratego/ContinuousDistribution
http://www.cs.uu.nl/wiki/Trace/Nix
http://www.cs.uu.nl/wiki/Trace/Nix
http://xrm.lrde.org/
http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/chunk-chapter/ref-autoxt.html
http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/chunk-chapter/ref-autoxt.html
http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/chunk-chapter/ref-autoxt.html
http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/chunk-chapter/library-building.html
http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/chunk-chapter/library-building.html
http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/chunk-chapter/library-building.html
http://transformers.lrde.epita.fr
http://www.cs.bham.ac.uk/~dxp/prism/manual/
http://www.cs.bham.ac.uk/~dxp/prism/manual/
http://www.stratego-language.org
https://svn.cs.uu.nl:12443/repos/StrategoXT/strategoxt/trunk/stratego-regular/xtc/tool-doc.str
https://svn.cs.uu.nl:12443/repos/StrategoXT/strategoxt/trunk/stratego-regular/xtc/tool-doc.str
https://svn.lrde.epita.fr/svn/xrm/
http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/chunk-chapter/xtc.html
http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/chunk-chapter/xtc.html

	1 Introduction
	2 Installation
	2.1 Requirements
	2.2 Using Nix
	2.3 Without Nix
	2.4 Installing XRM
	2.5 Tools provided with XRM

	3 Using xrm-front
	3.1 Common options
	3.2 Return value

	4 The XRM language
	4.1 Foreword
	4.2 XRM Modules
	4.3 XRM Expressions
	4.4 XRM Arrays
	4.5 XRM Meta-code
	4.5.1 XRM For loops
	4.5.2 XRM Meta-If Statements

	4.6 XRM builtins
	4.7 XRM Parameterized formulas
	4.8 XRM Keywords

	5 XRM and Property Files
	6 Forthcoming features and known bugs
	6.1 Forthcoming features
	6.2 Known bugs

	7 Internal Documentation
	7.1 Introduction
	7.2 General design
	7.2.1 The build system
	7.2.2 Creating tools with XTC

	7.3 xrm-front's pipeline
	7.3.1 First stage: remove the XRM sugar
	7.3.2 Second stage: collect various declarations
	7.3.3 Third stage: check meta-vars
	7.3.4 Fourth stage: evaluate meta-code
	7.3.5 Fifth stage: desugar array declarations
	7.3.6 Sixth stage: AST normalisation
	7.3.7 Seventh stage: type-checking
	7.3.8 Eighth stage: Add generated modules
	7.3.9 Ninth stage: Remove array accesses
	7.3.10 Tenth stage: Re-order the content of the modules

	8 Conclusion
	9 Bibliography

