
A rationale for semantically enhanced library languages

Bjarne Stroustrup
Department of Computer Science

Texas A&M University
College station, TX-77843

and AT&T Labs – Research

bs@cs.tamu.edu

Abstract

This paper presents the rationale for a novel approach to pro-
viding expressive, teachable, maintainable, and cost-effective
special-purpose languages: A Semantically Enhanced Library
Language (a SEL language or a SELL) is a dialect created by
supersetting a language using a library and then subsetting
the result using a tool that “understands” the syntax and se-
mantics of both the underlying language and the library. The
resulting language can be about as expressive as a special-
purpose language and provide as good semantic guarantees
as a special-purpose language. However, a SELL can rely
on the tool chain and user community of a major general-
purpose programming language. The examples of SELLs
presented here (Safe C++, Parallel C++, and Real-time C++) are
based on C++ and the Pivot program analysis and transfor-
mation infrastructure. As part of the rationale, the paper dis-
cusses practical problems with various popular approaches
to providing special-purpose features, such as compiler op-
tions and preprocessors.

1 Introduction

We often need specialized languages. Researchers need to
experiment with new language features, such as concurrency
features [24], facilities for integration with databases [5], and
graphics [4] . Developers can sometimes gain a couple of or-
ders of magnitude reductions in source code size with corre-
sponding reductions in development time and defect rates,
by using such special-purpose languages in their intended
domains. Unfortunately, such special-purpose languages are
typically hard to design, tedious to implement, expensive to
maintain, and — despite their obvious utility — tend to die
young.

Using a (special-purpose) library is an obvious alternative to
a special-purpose language. However, a library cannot ex-
press or exploit semantic guarantees beyond what its host

Submitted to LCSD’05

language provides. The basic idea of Semantically Enhanced
Library Languages (SEL Languages or simply SELLs) is that
when augmented by a library, a general-purpose language
can be about as expressive as a special-purpose language
and by subsetting that extended language, a tool can provide
about as good semantic guarantees. Such guarantees can be
used to provide better code, better representations, and more
sophisticated transformations than would be possible for the
full base language. For example, we can provide support for
parallel operations on containers as a library. We can then
analyze the program to ensure that no undesirable access
to elements of those containers occurs — a task that could
be simplified by enforcing a ban of languages features that
happened to be undesirable in this context. Finally we can
perform high-level transformations (such as parallelizing) by
taking advantage of the known semantics of the libraries.

Like a library, a SELL can benefit from the extensive educa-
tional, tools, and library infrastructure of the base language.
Therefore, the cost of designing, implementing, and using
a SELL is minuscule compared with a special-purpose lan-
guage with a small user base. Examples will be based on ISO
standard C++ supported by the Pivot infrastructure for pro-
gram analysis and transformation (§5.2). The focus will be on
templates because they provide the key mechanism for stati-
cally type-safe expression of advanced ideas in C++.

What is called a “special-purpose language” here is often
called a domain-specific language (e.g. [10]). Distinctions
can be made between the two terms, but none that appear
relevant to the discussion here, so please consider those two
terms as equivalent in this context.

The organization of this paper is

1. Introduction

2. State some ideals for support of software development
and maintenance.

3. Present some of the — usually fatal — problems that
face new programming languages.

4. Discuss a few alternative approaches, such as dialects
and macro languages.

5. Focus on the SELL approach and the way it can be sup-
ported in C++ using the Pivot.

6. Sketch the design of a few SELLs: type-safe C++, Paral-
lel C++, and Real-time C++.

7. Conclusions

1



2 Ideals

For every specific problem area, we can design a special-
purpose language that exactly matches the desired syntax
and semantics of the domain and the desires of the pro-
grammers that will use that language. In an ideal world, no
general- purpose language can match such a special-purpose
language when applied in its specific problem area. When
a special-purpose language has been done perfectly, there is
a one-to-one correspondence between the fundamental con-
cepts of the application domain and the language constructs.
Given that, the language constructs can be minimal and di-
rectly reflect the terminology of the field as found in common
use and major textbooks.

This is not a new ideal. Fortran did a good job at that task
for arithmetic in the 1950s and COBOL successfully attacked
the business processing needs of the time. Since then, thou-
sands of languages have been designed for specific domains
and almost as many have been designed to try to be able to
effectively express that ideal for less specific domain. Lisp
and Simula originate the two main approaches to more di-
rectly express application domain concepts directly in code:
the functional and object-oriented approaches. In these lan-
guages, and in their numerous offspring, a set of concepts
is represented as a library of related functions or classes. In
such general-purpose and near-general-purpose languages
the ideal of the perfect language for the task takes the form of
libraries.

What do we expect from a well-designed special-purpose
language? Concise notation is the beginning. Consider a sim-
ple, common, and useful example:

A = k*B + C

First note the algebraic notation using operators. Notation is
important for concise expression of key ideas in a commu-
nity. This particular notation is based on almost 400 years of
history in the mathematics/scientific community.

Essentially all languages can handle A=k*B+C when the vari-
ables denote scalar values, such as integers and floating point
numbers. For vectors and matrices, things get more diffi-
cult for a general-purpose language (that doesn’t have built-
in vector and matrix types) because people who write that
kind of code expect performance that can be achieved only if
we do not introduce temporary variables for k*B and k*B+C.
We probably also need loop fusion (that is doing the ele-
ment * , +, and = operations in a minimal number of loops).
When the matrices and vectors are sparse or we want to
take advantage of known properties of the vectors (e.g. B is
upper-triangular), the library code needed to make such code
work pushes modern general purpose language to their limit
[17, 23] or beyond — most mainstream languages can’t effi-
ciently handle that last example. Move further and require
the computation of A=k*B+C for large vectors and matrices to
be computed in parallel on hundreds of processors. Now,
even an advanced library requires the support of a non-trivial
run-time support system [1]. We can go further still and take
advantage of semantic properties of operations, such as “re-
membering” that C was the result of an operation that leaves
all its elements identical. Then, we can use much simpler
add operation that doesn’t involve reading all the elements
of C. For other examples, preceding the numerical calculation

with a symbolic evaluation phase, say doing a symbolic dif-
ferentiation, can lead to immense improvements in accuracy
and performance. Here, we leave the domain where libraries
have been considered useful. Reasoning like that and exam-
ples like that (and many more realistic ones) have led to the
creation of a host of special-purpose languages for various
forms of scientific calculation [24].

So, the ideal notation offered by a general purpose language
is just the beginning. It can be the basis for comprehension,
for fast compilation, for performance (exploiting type infor-
mation and semantic properties), for reasoning about pro-
grams (by the implementation or associated tools), for pro-
grammer productivity, for making facilities accessible to pro-
fessionals who need to program in their field of expertise, yet
don’t want to become professional programmers (e.g., physi-
cists, engineers, animators, and graphical designers). Finally,
the clarity of the code can greatly ease maintenance.

Note that the ideals and strengths of special-purpose and
general-purpose languages can conflict. By definition, a
general-purpose language aims at allowing the programmer
to express just about anything. On the other hand, a special-
purpose language gains much of its strength from allowing a
programmer to express only what makes sense in its specific
domain. When it comes to program analysis and optimiza-
tion, this is a great strength of a special- purpose language.
For example, if an optimizer tries to do a symbolic differ-
entiation of a program in a language focused exclusively on
scientific computation, it does not have to worry about a pro-
grammer trying to differentiate the draw function of a graph-
ics system.

Convenient graphical interfaces are often associated with
special-purpose languages. They can be used as an extreme
example of direct representation of ideas or as a special- pur-
pose language. However, such interfaces can be used to
equal effect for code in a general-purpose language, so GUIs
will not be examined further here.

3 Problems

It is fun to design a new programming language. Doing
the initial implementation and trying the new language with
clever examples can be most exhilarating. However, it is
plain hard work to bring the implementation up to the level
needed for users who care nothing about language design
subtleties. Building supporting tools, such as debuggers and
profilers, is hard work and not intellectually stimulating for
most people who design programming languages. Real users
also need basic numeric libraries, basic graphical facilities, li-
braries for interfacing with code written in other languages,
“hand holding” tutorials, detailed manuals, etc. Doing each
of those things once can be interesting and most educational,
doing them all or repeatedly is tedious and often expensive.
Porting the implementation, tool base, and key applications
to new machines, platforms, and compilers repeatedly is not
only tedious, but also career death for many people. Basi-
cally, designing, implementing, maintaining and supporting
a language is tremendously expensive. Only a large user
community can shoulder the long-term parts of that.

The net effect is that on the order of 200 new languages are
developed each year and that about 200 languages become

2



unsupported each year. “Language death” doesn’t just hap-
pen to bad languages. For example, you can find a collec-
tion of 16 languages for high-performance computing in Par-
allel programming using C++ [24]. Most have very appealing
aspects, many are based on brilliant insights, all were sup-
ported by an enthusiastic research group, and all had years
of stable funding. None are in major use today. None are
supported by an organization outside the one that developed
them. All but one are dead1. Interestingly, the one survivor
(Charm++) is more of a library than a language.

In addition to the really ambitious language design projects,
thousands of researchers work on dialects and associated
tools for their research. Such dialects are not built from
scratch; instead, a compiler and key support tools are modi-
fied to serve the new dialect. Essentially all become unsup-
ported upon graduation, funding expiration, tenure, promo-
tion, transfer of maintenance responsibilities, change of fash-
ion, change of any part of the tool chain, change of manage-
ment, consolidation of IT operations, etc.

Some of these languages are designed for research only (or
claim to be), but many are aimed at non-research use (or
claim to be) and most language designers harbor dreams of
wide use for their languages. However, most of these new
languages and dialects never see non-research use. The ones
that do, are generally unloved by maintenance organizations.
That is not just prejudice and unwillingness to learn or to
change. There are perfectly good reasons for the lack of en-
thusiasm in maintenance organizations. For example, the
supply of reasonably priced support personnel tends to be
severely limited. Good designers and good researchers (typ-
ically with PhDs) rarely want to become maintainers with
a typical maintainer’s salary, work conditions, and career
prospects.

Each new language and dialect has its own tool chain that
needs to be kept current and in sync with other tools. The
cost of doing so for a minor dialect is typically higher than
for a major language — because the cost of the latter is amor-
tized over millions of users. These reasons are often solid in
economic and management terms, even though they can be
heartbreaking for the proponents of a new language or di-
alect. For example, the largest application using ML within
AT&T was rewritten in a non-research language and so was
the few uses of a very interesting rule-based language R++
that can be seen as an early precursor of aspect-oriented pro-
gramming [11].

Tool chain problems don’t just happen to “Mom&Pop lan-
guages”. I have seen major organizations abandon Ada for
just this reason. Similarly, education can be a major prob-
lem. If a language isn’t taught in universities (or only in a
few schools), good programmers become scarce and most or-
ganizations cannot afford to re-train new hires. Furthermore,
new programmers are sometimes overly impressed by their
favorite language and resists training. I have seen organiza-
tions abandon Fortran for that reason. The two effects are
mutually reinforcing.

However, most special-purpose languages, proprietary di-

1I’d love to be proven wrong on this, so if you have a
counter example, please tell me and we’ll celebrate this ex-
ceptional success together.

alects, etc. never get a large enough user base and tool set
to worry about decline. Most minor and research languages
simply never gain the tool support and availability on a wide
range of platforms that users of mainstream languages take
for granted. Unless a new language is really a minor dialect
of an existing language, almost all of the design and imple-
mentation effort is recreating facilities — such as debuggers,
profilers, database interfaces, and GUI interfaces — that tend
to lie outside the main interest of the language designers.
This repettetive reconstruction of “standard facilities” pro-
vided for other languages breeds lots of “good little ideas”
as people add improvements. Unfortunately, such “little im-
provements” tend to further isolate users. Since “further iso-
lates” can be read as “locks-in users” as well as “provides
better support than the competition”, there is often little re-
sistence to gratuitous replication and incompatibility. Com-
patibility is just hard work, and typically unrewarding.

How many users does it take to sustain an infrastructure?
Of course, that depends on a lot of things, but generally it
requires more people than work on a single application. In
fact, it typically takes at least a small company. That is more
— often significantly more — people than it took to create the
initial design and implementation of a language. If — as is
usual — these people have to be paid from the revenues from
sales and teaching, a special-purpose language now comes
under pressure to become more widely useful. That is, the
special-purpose language starts to offer facilities for general
computation, general data structures, access to “external sys-
tems”, database facilities, graphics facilities, etc. The result
can be summarized as “Every special-purpose programming
language wants to grow up and become a general-purpose
programming language.” Typically, this is a precursor to
“language death” (becase of instability, lack of design focus,
and added cost) or to a retreat into a commercially viable
niche that covers only a small part of the special-purpose lan-
guage’s natural application domain. This withdrawl is often
accompanied with a lot of commercial hype and a tendency
to hide and obscure genuine technical information.

Many (probably most) special-purpose languages suffer from
“edge effect” problems. The “edge effect” (also more evoca-
tively known as the “falling off the cliff” effect) comes when
a programmer needs to do something that isn’t supported by
the special-purpose language. For example, a programmer
using a language for specifying interactive graphics might
want to say “when viewed from a sufficient distance, groups
of objects may be considered one object”. The graphics sys-
tem could have provided such a feature, but in this case it
didn’t (and the difference in real-time response was about a
factor of 100). What does the programmer do? By defini-
tion, every special-purpose language has such “edges”. For
students and novices, the effect can be a nuisance; for profes-
sionals working on large projects (such as the airline control
application from which this graphics example was chosen),
the result can be the abandonment of the special-purpose lan-
guage in favor of an alternative, such as a graphics library
written in a general-purpose language. But what does a pro-
grammer do if changing tools isn’t an option? In a “pure”
special-purpose language, a new primitive operation or ob-
ject must be added. That’s not something every application
programmer can do because it may effect the basic model of
the special-purpose language. I have seen the time for adding
a simple feature vary from one day (ask a local expert and
wait for the overnight tool build) to half a year (wait for the

3



next release) or more. This kind of delay can kill a project,
so it must be considered among the risks when choosing or
designing tools. For a library — and for any tool that allows
a programmer to add code written in a general-purpose lan-
guage — the problem is minor.

The final nail in the coffin of many special-purpose languages
is that once it is designed and in use, it is relatively easy to
“emulate” its facilities in a general-purpose language. Of-
ten, the value of a special-purpose language is not really in
the language implementation or its particular syntax (though
programmers can be passionately devoted to a syntax). The
value is in the design, the programming model, the tech-
niques for use, and possibly some special algoritms or data
structures sustaining applications. Typically, those special-
purpose language “implementation details” can be separated
from the language and used directly from a general-purpose
language. This is all the easier because these key components
are written in some general-purpose language. All that is
needed for their direct use is a nice programming interface
in that general-purpose language. The definition of “nice”
will reflects the experience gained from the use of the special
purpose language.

Please note that a language is rarely “killed” by any one of
the problems mentioned. Typically, the language succumb to
a combination of problems. Also, this list is not intended to
be complete or necessary “fatal”: some special-purpose lan-
guages do survive and some fail because of reasons not listed
here. An exhaustive list of problems probably couldn’t be
compiled, and if it could it would be beyond the scope of this
paper.

3.1 Case study: R++

A detailed study of a few hundred new languages to provide
solid evidence for the observations made here would be use-
ful. However, I doubt it would dampen the enthusiasm for
designing new languages. Here, I’ll just present one small
example, and then proceed to an alternative approach to pro-
viding new facilities for programmers.

R++[11] is an unrecognized precursor to aspect-oriented pro-
gramming. Basically, it is an extension of C++ in which you
can define actions and triggers for actions. For example, a re-
tirement policy can be associated with an Employee class like
this:

rule Employee::retirement_policy {
age>=65 && status!=retired

=>
cout << name << " must retire...";

}

This is simple enough to be easy to teach. Furthermore, the
implementation was a small enough increment on C++ that
it was relatively easy to maintain. Since R++ is a superset of
the general-purpose language C++ there are no edge effects.
It was used in a reasonably large telecom operations system
application. Tutorials, academic papers, manuals, experience
reports, implementation, etc. were provided. You can find
them on the web [11].

For all practical purposes, it died in 1996. The reasons were
basically that the porting and training costs were too high

compared to the benefits. What do I mean by dead? Com-
pletely unused? Not necessarily. Ever so often, I see a ref-
erence to R++ and I’d be surprised if there wasn’t a project
somewhere using it. Probably, there are also a couple of re-
search groups trying it out. However, despite ideas that ap-
pear fundamentally sound, despite avoiding edge effects by
being embedded in a general-purpose language, and despite
having an implementation that did sustain a major applica-
tion, R++ still suffered many of the various problems men-
tioned in this section and failed to gain major use outside its
originating organization.

4 Alternatives

So, in most cases, designing a new language is not an eco-
nomically viable solution to the problem of how to provide
special-purpose facilities. A language often looks good for a
few years but maintenance, porting, education, etc. is too ex-
pensive and the result is death or at best stagnation of the tool
chain and the user community. As a technical/economical
choice, designing a new language most often is a mistake.
Most language design efforts soak up resources reinventing
a few wheels and then die having provided a poor return
on investment. The resources could have been better spent
on improvements to an existing major language and its li-
braries and tools. Furthermore, most new languages divide
a community by creating barriers to communication of new
ideas and not infrequently by generating hype that trigger
language wars and distrust of new ideas. Not all of the prob-
lems are the fault of the new language and new ideas must
be explored and exploited. So, what else can we do to bring
the ideal of direct expression of ideas in code into wider use?

So, let’s assume that we are in one of the many situations
where designing a new language is likely to be uneconomical
and to have undesirable effects on the spread of ideas. What
alternatives do we have when our task is to provide program-
mers with improved tools for expression ideas in code?

Here are some popular approaches:

1. Compiler options and pragmas

2. Libraries

3. Preprocessed languages

4. Dialects

Each can be an effective approach in some cases and each has
been used in ways that have been deemed successful. Here,
we must consider their fundamental and practical strengths
and weaknesses.

These are not the only possible approaches. For example, one
might consider:

1. Dynamically typed languages

2. A new, more general, general-purpose language

Dynamically typed languages are not considered here. The
the main reason is an interest in compile-time guarantees. Ba-
sically, dynamically -typed languages constitutes a different
world from the statically typed world that I focus on here.
Dealing with that world is beyond the scope of this paper.

4



One might consider building a new general purpose lan-
guage providing facilities that are so complete that every
special-purpose language can be expressed directly through
the mechanism of the general purpose language. That’s one
of the holy grails of general-purpose language design. In
fact, over the last 30 years or so, there has been a stream
of such langugages offering facilities for defining extended
syntax (e.g. through embedded parsers) and associating se-
mantics with the newly defined constructs. Such languages
are also beyond the scope of this paper. Part of the reason is
that providing such a language is beyond the means of most
organizations needing a special-purpose language. Another
problem is that (ironically) such languages themselves suffer
from the problems of being special-purpose languages with
small user communities and insufficient support. The suc-
cess rate for general-purpose languages is even lower than
the rate for special-purpose languages.

4.1 Compiler options and pragmas

People who add compiler options and/or pragmas rarely
think that as language design. In particular, (in the C and
C++ worlds) a #pragma can be ignored by a compiler. How-
ever, every new #pragma and compiler option introduces a
new dialect. It is something to consider when building a
system, when specifying a system configuration, when port-
ing a system, when documenting a system, and when try-
ing to understand application code. Assume for a moment
that options and #pragmas are not used for back-door lan-
guage extension. Then, they are simply insufficient for doing
anything really interesting in the direction of better expres-
sion of ideas. Most special-purpose languages require addi-
tions. Also, they often require restriction of use of certain
undesirable language features. That makes compiler options
a too crude a mechanism. Options tend to apply indiscrim-
inately; for example, we might want to eliminate the use of
goto. However, the option will then eliminate all gotos —
even the acceptable ones for breaking out of loops in a highly
optimized matrix implementation and the essential ones in
implementation of the state machines generated from a high-
level modeling library/language. What is needed is to dis-
tinguish between uses of an undesirable language feature in
user code and their use in the implementation of trusted com-
ponents. Compiler options are best left for conventional uses,
such as backwards compatibility switches; #pragmas are best
avoided.

4.2 Libraries

Libraries can provide expressive power and notational con-
venience that approximate that of built-in language features.
However, it is hard to ensure consistent use of a library (or
a set of libraries). It is even harder to ensure consistent use
of a subset of a library when — as is common — too much
has been bundled into a single unit of distribution. Other
language features can interfere with what a library attempts
to achieve. The C++ standard library is a classical exam-
ple. It provides well-behaved containers, but some program-
mers use arrays instead and thereby prevents any meaning-
ful guarantees to be made for the program as a whole.

When ambitious in what they try to achieve in terms of
generality or performance, libraries can become very elab-
orate and brittle. For example, some C++ template meta-

programming libraries aiming at very general support for
high-performance numerical computation reach their goal at
the cost of complete obscurity of implementation details that
becomes visible to users during debugging. Often, a library
breaks the zero-overhead principle in search for generality.

A library cannot, by itself, eliminate basic problems with host
language semantics. For example, in C and C++, aliasing
problems persists so that a library cannot provide guarantees
needed for confidence, transformations, and optimizations.
Often, a library is (at least partially) defined in terms of its
implementation; it is not specified as an entity separate from
its host language implementation. This is not a fundamental
problem, but it is a common problem, and often a serious one
in comparison to a special-purpose language.

4.3 Preprocessed languages

Generating code from a higher-level language into a lower-
level one has been popular for decades. For example early
C compilers generated assembly code; early C++ compilers
generated C code; GUI builders, CAD systems, IDL proces-
sors, modeling languages, etc., generate code in languages
such as C, C++, Java, C#. That is, the language source is
preprocessed into a host language. The resulting languages
and language processors are referred to by many names, such
as preprocessors, macros, genrators, wizards, builders, and
meta-languages. One way of distinguishing an implemen-
tation of a language implemented by such techniques from
a facility defined by such translation techniques is whether
you can ever get an error message from the target language
compiler. If you can it’s a preprocessor; if not it’s a compiler.
For example, by that criteria, the original C and C++ transla-
tors (into assembler and C) were compilers whereas Ratfor, C
macros, and Microsoft “wizards” rely on preprocessors. C++
templates are “right on the edge” in that they receive some
compiler support (and will recieve significantly more in the
future: concepts [21, 20]). However, compiler error messages
sometimes fail to refer to the original template source and
often do so spectacularly badly. In consequence, some pro-
grammers consider templates “like macros” and avoid them;
many more avoid uses they consider nontrivial. Here, we
consider preprocessed languages, rather than abstraction fa-
cilities integrated within a language.

The language (generator, macro-language, modeling lan-
guage, whatever) defined by a preprocessor becomes yet an-
other special-purpose language. It requires documentation,
training, tool support. In particular, you need to use a pre-
processor together with a matching tool chain and compiler.
Unless the preprocessor is integrated into the tool chain and
shipped with every implementation, this implies lock-in and
slow upgrades. It is not uncommon for the preprocessor not
to work with the most current version of the compilers and
tools or the underlying language. The main reason is that the
preprocessor implementer doesn’t get access to those com-
pilers significantly before their own users. This commonly
leads to users having to make a painful choice between us-
ing the preprocessor or the latest and greatest compiler and
other tools. This creates friction between the preprocessor
users and any non-preprocessor users they collaborate with.
The debugging, compatibility, and portability problems per-
sist because old compilers don’t just die. It can take a large
organization the better part of a decade to get everyone up-

5



graded to the latest version (of something), just to fall behind
again at the next release. For example, it took “forever” (al-
most a decade) to get C++ template implementations good
enough for mainstream use. However, some users still rely
on decade old compilers.

A preprocessed language tends to have problems interacting
the type system of the host language. Having the same type
system as the host language is often not good enough — af-
ter all, the purpose of a preprocessed language is to elegantly
express things that cannot be expressed elegantly in the host
language. Error detection and error reporting problems are
just the most obvious examples of this. Concepts (a type sys-
tem for types) [21, 18], as being developed to improve C++
templates’ support for generic programming and template
metaprogramming, is an example of a mechanism address-
ing the problem of mismatch of the type systems of a higher-
level language and a lower-level host language. Higher or-
der types fills some of the same role in the specification of
abstractions in functional languages.

So, a preprocessed language share many problems of with
a special-purpose language with a stand-alone implemen-
tation. In fact, as their tools become more complete and
their definition more precise and separate from the host
language, they grow into special-purpose languages. Con-
versely, if their implementation and type system support be-
comes more integrated with the host language, they cease to
be separate languages and become abstraction mechanisms
of the host language (C++ templates is a prominent example).
In addition, preprocessing languages tend to suffer the prob-
lems of libraries: Unless all code conforms to the conventions
of the preprocessed language, the guarantees the language
can rely on and offer weakens.

4.4 Dialects

Take a popular general-purpose language, add desired fea-
tures to a compiler and/or a run-time support system, and
you have your own private dialect. This may be the most
popular way of creating a new language. The result is not
quite a special-purpose language, but it has special-purpose
features embedded in a general-purpose language. Work-
ing in a production-quality general-purpose language imple-
mentation is hard, though. Many people will simultaneously
be making modifications in such an implementation. Fur-
thermore, compilers, debuggers, libraries, tools are required
parts of such implementations and major implementations
target many platforms. Consequently, most people who ex-
tend a language in this way do so in a minor — less messy
— implementation, modifying only the part of the tool chain
they need, and target only the platforms they care about. This
is reasonable — in many cases even essential — to allow peo-
ple to focus their efforts on the design and implementation
of the new facilities they want. Unfortunately, the effect is
that unless the major vendors adopt the new dialect, its de-
signers are left with a private language. This implies all the
usual private language costs — and the usual mortality rate.
In addition, it is essentially impossible to remove undesirable
features from a dialect. Doing so would destroy compatibil-
ity and basically move the language away from the dialect
classification and into the special-purpose language classifi-
cation.

5 The SELL approach

The analysis in sections 3 and 4 paints a grim picture of the
problems of applying language design and implementation
techniques to support software development. One conclu-
sion would be to leave the field to big corporations with deep
pockets: Let them do the design, development, and apply
their marketing muscle; then we live with the results, what-
ever they may be. An alternative conclusion is to withdraw
into some cosy ghetto of our own design and let the rest of
the world do what it likes without interference or input from
us. I like neither alternative and point to a way to dodge the
horns of this dilemma:

1. superset: Add libraries to provide application-specific
facilities, then

2. subset: Subtract features (outside the library implemen-
tation) to provide semantic guarantees

The result is a subset of a superset of a language called a Se-
mantically Enhanced Library Language. When subsetting we
can aim at a “clean and regular” language. Since a SELL
will aim for a narrower application domain than its host lan-
guages, we have a good chance of the result being simpler
than its host.

We must consider this approach in terms of expressiveness
(“can we really express things as well in a library as in a
special-purpose language?”) and tools (“will we get stuck
developing and maintaining a messy tool chain?”). The claim
is that the answers can be “yes” and “no” for a large enough
range of problems and a low enough cost to prefer the SELL
approach over the traditional approaches mentioned in sec-
tions 3 and 4. Obviously, the SELL approach is not com-
pletely new — in fact, it is an attempt to synthesize what
has worked best in the traditional approaches and dodge the
worst problems. Please also note that I don’t claim that the
other approaches to making special-purpose features avail-
able never work or that there are no other alternatives. That
would be absurd. What I do claim is that the success rate for
new languages — if measured by survival of a language for a
decade and use outside the group that originated it — is very
low and the costs higher than often realized.

The argument about expressiveness of libraries is based on a
pair of old Bell Labs sayings:

1. Library design is language design

2. Language design is library design

We need both. In other words, the expressiveness of a library
depends on the ability of a general-purpose language to de-
fine libraries. Functional programming, object-oriented pro-
gramming, and generic programming are prominent schools
of thought that give a prominent role to library building.

The skills needed to write a good library are very similar to
the skills needed for all high-end systems programming or
application building. Furthermore, when we write a library,
we can rely on existing infrastructure (compilers, debuggers,
libraries, education, etc.). The result is that libraries are cheap
to produce compared to alternatives.

However, the tools part could easily lead us into the debug-
ging, tool chain, and maintenance problems characteristic of

6



dialects and preprosessors. To avoid that we need a tool for
expressing constraints and high-level transformations that is
minimally invasive into the tool chain. To further keep the
tool problems under control, we need a general tool for do-
ing that and one that will fit into all tool chains. That is, we
need a general-purpose tool for analysing source code and
performing source-level transformations that relies on a stan-
dard interface to compilers.

5.1 C++

In principle, any general-purpose programming language
can be the host language for the SELL approach. Unsurpris-
ingly, my favorite/chosen host language is C++ [19, 8]

C++ has the virtues of stretching to a very broad range of
application areas, good performance, a large and lively user
community, and support for compilers, libraries, and tools
for essentially all platforms [22].

C++’s abstraction facilities provide adequate support for
object-oriented programming, generic programming, tradi-
tional procedural programming, and multi-paradigm pro-
graming combining elements of those. Classes plus tem-
plates plus overloading is the basis of expressiveness and
performance.

Obviously improvements are possible — even given the Dra-
conian compatibility constraints imposed by the huge user
community and the wide range of application areas. In par-
ticular, we hope that the next standard (C++0x) will offer con-
cepts (a type system for types), more general and flexible fa-
cilities for initilization, and remedies for many minor annoy-
ances [20]. Unfortunately, the compatibility constraints and
the use of C++ for very low-level system components pre-
cludes remedying obvious weaknesses, such as overly agres-
sive implicit conversions (incl. the array-to-pointer conver-
sion) and unchecked unions.

5.2 A brief overview of the Pivot

The Pivot is a general framework for the analysis and trans-
formation of C++ programs[13]. The Pivot is designed to
handle the complete ISO C++, especially more advanced uses
of templates and including some proposed C++0x features. It
is compiler independent.

There are lots of (more than 20) tools for static analysis and
transformation of C++ programs, e.g. [15, 2, 16, 12]. How-
ever, few — if any — handle all of ISO Standard C++ [8, 19],
most are specialized to particular forms of analysis or trans-
formation, and few will work well in combination with other
tools. The design of the Pivot is focussed on advanced uses
of templates as used in generic programming, template meta-
programming, and experimental use of libraries as the basis
of language extension. Since (static) types is central to such
libraries, the SELL approach requires a representation that
deals with types as first-class citizens and allows analysis and
transformation based on their properties. In the C++ com-
munity, this is discussed under the heading of concepts and is
likely to receive some language support in the next ISO C++
standard (C++0x) [21, 18, 20].

The central part of the Pivot is a fully typed abstract syntax

tree called IPR (Internal Program Representation):

C++ source Compiler

IPR generator

Object code

XPR

IPR

IPR Applications

IDL

XML

Information

Figure 1. An overview of The Pivot infrastructure

To get IPR from a program, we need a compiler — only a
compiler “knows” enough about a C++ program to represent
it completely with syntactic and type information in a use-
ful form. In particular, a simple parser doesn’t understand
types well enough to do a credible general job. We interface
to a compiler in some appropriate (to a specific compiler) and
minimally invasive fashion. A compiler-specific IPR gener-
ator produces IPR on a per-translation-unit basis. Applica-
tions interface to “code” through the IPR interface. So as
not to run the compiler all the time and to be able to store
and merge translation units without compiler intervention,
we can produce a persistent form of IPR called XPR (eXternal
Program Representation).

The IPR is complete and arguably minimal. Traversal of C++
code represented as IPR can be done in several ways, in-
cluding “ordinary graph traversal code”, visitors [6], itera-
tors [19], or tools such as Rose [15]. The needs of the appli-
cation — rather than the IPR — determines what traversal
method is most suitable.

Currently, the Pivot does not support an annotation lan-
guage. Pivot programs can annotate IPR nodes, but there
is no facility for the programmer to embed annotations in
the C++ source text. Providing such a facility is easy, but
once programmers starts to depend on such annotations,
they have created a new special-purpose language. We want
to explore how much can be done with the SELL approach,
relying only on standard conforming C++ source text.

6 Examples of SELLs

The proof of the pudding is in the eating, but this is not a
paper presenting you with a SELL for use; it is a presentation
of the general idea of SELLs. Therefore, I present only details
that will illustrate the idea of a SELL, not complete SELLs.

6.1 Safe C++

C++ inherits a host of opportunities for type violations from
C and adds a few of its own. It is possible — and not very
hard — to write type-safe code in C++. However, it is not

7



easy to know that no type violations exist in a program, es-
pecially in a large program written and maintained by many
programmers with a variety of backgrounds and a variety of
ideas of what constitutes safe code. So, how would we sup-
port a type-safe dialect of C++ that maintains the essential
expressiveness and efficiency of C++? In particular, we want
to be sure that there are no type violations in the code. We
can only be really sure if we can provide a tool (or combina-
tion of tools) that will detect all violations. In the absence of
tools, we must rely on humans to follow rules. That would
probably be better than the state of the art in most software
development organizations, but it would only be second best.

Consider the major insecurities in C++ code:

1. Buffer overruns — i.e., reading or writing outsider the
range of an array

2. Dereferencing an uninitialized pointer, a zero-valued
pointer, or a pointer to a deleted object

3. Misuse of a union — i.e. write a union variable as one
type and read it as another

4. Misuse of a cast — e.g. cast an int to a pointer type
where no object of that type exist where the new pointer
points

5. Misuse of void* — e.g. assign an int* to a void* and
cast that void* to a double*

6. Deleting an object twice, not deleting an object after use,
or using a pointer after deletion.

The obvious approach for avoiding these problems is to pro-
vide a library (or a set of libraries) that saves the program-
mer from having to use these error-prone features. For ex-
ample, instead of using arrays, the programmer can use a
range-checked vector and instead of a union a user can use a
tagged union or an Any type. Casts (with exception of the dy-
namicaly type-safe dynamic_cast) and void*s are rarely use-
ful outside low-level and easily encapsulated uses, so they
can simply be avoided. If we use counted pointers, mem-
ory leaks won’t happen (depending on how cyclic data struc-
tures are handled). Since pointers are checked, we don’t ac-
cess through invalid pointers and double deletion are easily
detected.

Basically, errors that cannot be detected until run-time are
systematically turned into exceptions, making Safe C++ a dy-
namically type safe language. Exceptions may not be your fa-
vorite language feature, but they are useful in most contexts
and are universally used for reporting run-time type viola-
tions in languages deemed type-safe.

So, we can fairly easily write code that doesn’t suffer from
the obvious type-safety problems. What is outlined here
is a SELL where the superset is created by adding checked
vectors, “smart” checked pointers, a tagged union (or an Any
type). However, nothing has been gained if users persist us-
ing the unsafe-features in unsafe ways. For example, we can
write safe code, but someone might just do something like
this:

double* horrible(int i)
{

int v[80];
char* p = new char[200];

double* q = new double[200];
Shape* pc = new Circle(Point(10,20),20);
delete[] p;
p[100] = ’c’;
p[i] = ’x’;
v[100] = 666;
pc->rotate(45);
pc->draw();
f(pc);
void* vp = v;
delete vp;
delete[] p;
return q;

}

Obviously, the subsetting (enforcement) part of the SELL de-
sign must be to detect and eliminate the unsafe uses of the
host language. Please note that the tool that does that must
distinguish between the use of the “banned” features or uses
of features within the implementation of the extensions and
direct use by the user. In this case, a dumb tool (such as a
compiler option) banning all uses of pointer would prevent
the use of vector that uses pointers internally. Instead, we
could use the Pivot to catch only the uses of pointers outside
our supporting classes. That done, our code would have to
be rewritten to look something like:

unique_ptr<vector<double>> messy(int i)
{

vector <int> v(80);
string p(200);
vector<double> q(200);
scoped_ptr<Shape> pc(new Circle(Point(10,20),20));
p[100] = ’c’; // ok
p[i] = ’x’; // checked at run time
v[100] = 666; // caught at run time
pc->rotate(45);
pc->draw();
f(pc);
return unique_ptr<vector<double>>(q);

}

This is much better (ignoring the messy use of “magic con-
stants”), but Safe C++ could have problems for real-world
programming in many areas where C++ is used: We have not
dealt with performance and compatibility. Actually, this code
hints of a very significant concern for performance in the li-
brary design: scoped_ptr deletes its object at the end of scope
and prevents f from keeping a reference to that object. Sim-
ilarly, unique_ptr cooperates with vector to ensure that the
elements of q are transferred out of messy and not destroyed
as part of q upon exit. We didn’t just rely on counted pointers
of a garbage collector to deal with resource problems.

Using the Pivot, we could do better, though. By default, both
uses of pc in messy must be checked for validity (assuming
that a scoped_ptr can be a null pointer). However, a bit of
simple flow analysis can eliminate the second check, and a
slighly more clever analysis will reveal that no checking is
actually necessary: We can see that pc has not been properly
initialized and not assigned to — and so can the Pivot. This
kind of analysis has been used experimentally for private lan-
guages and dialects [9]. Given the Pivot, we can apply this for
a library or for “raw C++”.

Compatibility is a harder problem. What if f is not known to
be safe? What if we can’t rewrite or recompile all the code of a
system? What if layout compatibility of some data structures

8



is required? Safe C++ as presented here is just an illustration,
not a full-blown SELL.

6.2 Parallel C++

With the emergence of cheap multiprocessors, clusters, and
multi-core chips, concurrency is increasingly important.
Many languages and dialects have been designed to address
the concurrency needs of high-performance scientific com-
puting. Here I will build on a library, STAPL [1] [14], that of-
fers parallel operations on containers in the spirit of the STL.
For example:

void f(pvector<double>& v)
{

prange<double> r = find_all(v.range(),criteria);
sort(r);
cout << r; // ordinary serial output of elements

}

Imagine that v has 500 million elements and that the program
runs on a serious supercomputer, such as Blue Gene\L[3]
(where STAPL is in fact used). The find_all will execute in
parallel on as many processors as the STAPL run-time system
deems reasonable finding elements that meets criteria. If
find_all finds lots of elements, then sort will also use many
processors.

Here we have a sophisticated library combined with an even
more advanced run-time support system. What can the Pivot
do to help? For starters, it can produce the information that
the run-time support system needs to function well. Sec-
ondly, it can provide classical flow analysis and aliasing in-
formation. Finally, it can be programmed to recognize us-
age patterns to allow algorithm substitution (as in the initial
matrix algebra example) and alert the programmer to likely
problems or opportunities.

6.3 Real-time C++

The problems of real-time code for embedded systems com-
bine concerns for correnctness, reliability, and performance
in constrained circumstances. Some problems and solutions
overlap with those of Safe C++ but others are unique in that
they require that every operation is performed in a known
constant time (or less). Naturally, not all real-time and em-
bedded systems are written under this Draconian rule, but
let’s see how we can address those that do. Some C++ opera-
tons become unusable:

1. free store (general new and delete)

2. exceptions (assuming inability to easily predict the cost
of a throw)

3. class hierarchy navigation (dynamic_cast in the absence
of a constant time implementation [7])

First, we add a suitable support library:

1. a fixed size Array class (no conversion to pointer, knows
its own size)

2. some safe pointer classes

3. memory allocation classes that guarantee constant time
allocation (and deallocation if allowed) — pools, stacks,
etc.

4. ...

Next, we use the Pivot to eliminate dangerous operations (as
listed in §6.1) from user code.

In principle, this will do the job. However, we can do more.
For most programs of this sort, we can do whole-program
analysis. Such programs tend to be relatively small and not
allow dynamic linking. Thus, the Pivot could be used to al-
low exceptions for error reporting: we can verify that every
exception is caught and calculate the upper bound for each
throw. This is a special — and espicially hard — example
of using a tool to verify that resource consumption is within
acceptable bounds.

In general, there are lots more that the Pivot can do in the
context of embedded systems. Some depends on a specific
application, so the boundary between SELL and application
support blurrs. For example, it is not uncommon for an em-
bedded program to be more permissive about the facilities
that can be used during a startup phase. The SELL can define
what “startup” means (e.g. called from start_up) and only
apply the stringent rules outside that.

7 Conclusions

The first half of this paper outlines the problems facing pro-
grammers providing and using a special-purpose language
defined in the most common ways: as a separate language,
as compiler options, as libraries, using a pre-processor for
a general-purpose language, and as a dialect. The picture
painted is bleak, leading to a suggested alternative: Semanti-
cally Enhanced Library Languages (SELLs) The SELL approach
offers a practical and economical alternative to the more com-
mon ways of implementing extensions, dialects, and special-
purpose languages. By using libraries, it limits the problems
with compatibility and tool chains. By adding tool support,
it enhances the appeal of libraries.

8 Acknowlegements

Thanks to Gabriel Dos Reis and my students for reading
drafts of this paper and making many detailed suggestions.
Also thanks to the anonymous reviewers for making more
major suggestions, some of which will require several more
papers.

9 References

[1] Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim
Smith, Gabriel Tanase, Nathan Thomas, Nancy Amato,
Lawrence Rauchwerger: STAPL: An Adaptive, Generic
Parallel C++ Library In Wkshp. on Lang. and Comp.
for Par. Comp. (LCPC), pp. 193-208, Cumberland Falls,
Kentucky, Aug 2001.

[2] Otto Skrove Bagge, Karl Trygve Kalleberg, Magne Hav-
eraaen, Eelco Visser: Design of the CodeBoost Transforma-
tion System for Domain-Specific Optimisation of C++ Pro-
grams. http://www.codeboost.org/.

[3] IBM: http://www.research.ibm.com/bluegene/.

9



[4] William R. Mark, et al: Cg: A System for Programming
Graphics Hardware in a C-like Language. Proceedings of
SIGGRAPH 2003.

[5] M. Fernandez, et al: SilkRoute: A framework for publishing
relational data in XML. ACM Trans. Database Syst. 27(4):
438-493 (2002)

[6] Erich Gamma, et al: Design Patterns. Addison-Wesley,
1994.

[7] Michael Gibbs and Bjarne Stroustrup: Fast Dynamic
Casting. Software—Practice & Experience. Vol 35, Issue
686. 2005.

[8] International Organization for Standards, International
Standard ISO/IEC 14882. Programming Languages — C++,
2nd ed., 2003. Wiley 2003. ISBN 0-470-84674-7.

[9] Trevor Jim, et al: Cyclone: A Safe Dialect of C. USENIX
Annual Technical Conference, pages 275–288, Monterey,
CA, June 2002.

[10] Lengauer, et al: Domain-specific program generation. Re-
vised papers deom Dagstuhl seminar. March 2003.
LNCS 3016.

[11] Diane J. Litman, Anil K. Mishra, and Peter F. Patel-
Schneider: Modeling Dynamic Collections of Interdepen-
dent Objects Using Path-Based Rules. Proc. 12th An-
nual ACM Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA-
97). October 1997. http://www.research.att.com/sw/
tools/r++/ and http://www.bell-labs.com/project/
r++/.

[12] George C. Necula, et al: CIL: Intermediate Language and
Tools for Analysis and Transformation. http://manju.cs.
berkeley.edu/cil/.

[13] The pivot is a program analysis and transformation in-
frastructure being developed at Texas A&M University.

[14] Steven Saunders, Lawrence Rauchwerger: ARMI:
An Adaptive, Platform Independent Communication Li-
brary In Proc. ACM SIGPLAN Symp. Prin. Prac. Par.
Prog. (PPOPP), pp. 12, San Diego, CA, Jun 2003.
http://parasol.tamu.edu/groups/rwergergroup/
research/stapl/.

[15] Markus Schordan and and Daniel Quinlan. A Source-
to-Source Architecture for User-Defined Optimizations. In
Proc. of the Joint Modular Languages Conference
(JMLC’03), Volume 2789 of Lecture Notes in Computer
Science, pp. 214-223, Springer Verlag, June 2003. (Rose).

[16] S. Schupp, D. P. Gregor, D. R. Musser, and S.-M. Liu. Se-
mantic and behavioral library transformations. Information
and Software Technology, 44(13):797 810, October 2002.
(Simplicissimus).

[17] Jeremy G. Siek Andrew Lumsdaine: The Matrix Template
Library: A Generic Programming Approach to High Perfor-
mance Numerical Linear Algebra. ISCOPE’98, vol. 1505 of
Lecture Notes in Computer Science, 1998.

[18] Jeremy Siek, Douglas Gregor, Ronald Garcia, Jeremiah
Willcock, Jaakko Järvi, and Andrew Lumsdaine. Concept
for C++0x. Technical Report N1758=05-0018, ISO/IEC
SC22/JTC1/WG21, January 2005.

[19] B. Stroustrup, The C++ Programming Language, special
ed., Addison-Wesley, 2000. ISBN 0-201-70073-5 .

[20] B. Stroustrup: The design of C++0x. The C/C++ Users
Journal. May 2005.

[21] B. Stroustrup, G. Dos Reis: A concept design. Technical
Report N1782=05-0042, ISO/IEC SC22/JTC1/WG21,
April 2005.

[22] B. Stroustrup: Examples of C++ applications: http://
www.research.att.com/~bs/applications.html. Some
C++ compilers: http://www.research.att.com/~bs/
compilers.html.

[23] Tod Veldhiusen: Arrays in Blitz++ ISCOPE’98, vol. 1505
of Lecture Notes in Computer Science, 1998.

[24] Wilson and Lu (editors): Parallel programming using C++.
Addison-Wesley. 1996. ISBN 0-262-73118-5.

10


