Evidence Theory [episode 2] Implementation Issues and Applications

David Lesage <david@lrde.epita.fr>

LRDE seminar, May 28, 2003

Table of Contents

Fed up with TV series?	4
Episode 1	5
Episode 2	6
Episode 3	8
Belief State and Decision after 3 episodes	10
Implementation	14
Mass Functions representation	15
Mass Functions representation	
	19

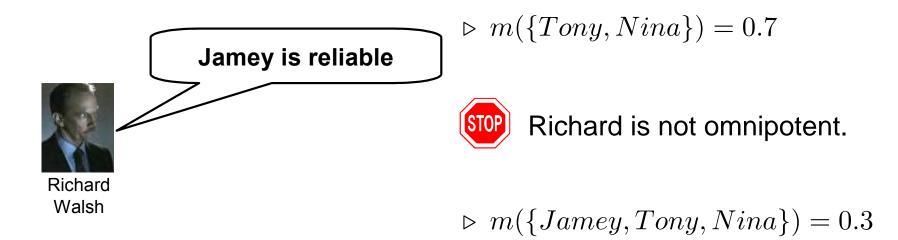
Table of Contents	
Combination & fusion issues	
Evidenz: an evidence theory engine	29
Evidenz characteristics	30
Performances	31
Evidenz engine future improvements	35
Applications	38
Document classification	39
Cytology (Adhoc ²)	42
Satellite image classification	46
Conclusion	50
Questions?	51

Seferences	52
------------	-----------

Fed up with TV series?

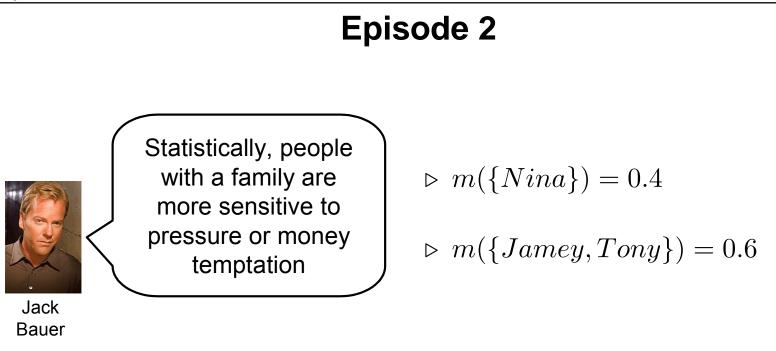
Someone is a traitor...

Jamey Farrell


Tony Almeida

Nina Myers

- 1 variable: traitor = { Jamey, Tony, Nina }
- belief mass on focal element X = belief that X contains the traitor
- potentials = episodes


Episode 1

• Reminder:

$$\sum_{A\subseteq\Omega}m(A)=1$$

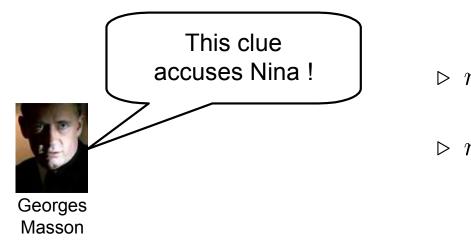
$$ep_1 = \{\{Tony, Nina\}, \{Jamey, Tony, Nina\}\}$$

$$ep_2 = \{\{Nina\}, \{Jamey, Tony\}\}$$

→ Statistical support

• Combination of ep_1 and ep_2

 $ep_1 = \{\{T, N\}[0.7], \{J, T, N\}[0.3]\}$ $ep_2 = \{\{N\}[0.4], \{J, T\}[0.6]\}$


- Reminder: Combination
 - focal elements intersections
 - $m_{D=A\cap B=A\cap C} = m_A \times m_B + m_A \times m_C$
- Generated focals elements:

$$ep_{1\oplus 2} = \{\{N\}, \{T\}, \{J, T\}\}$$

Belief Masses:

$$m({Nina}) = 0.7 \times 0.4 + 0.3 \times 0.4 = 0.4$$
$$m({Tony}) = 0.7 \times 0.6 = 0.42$$
$$m({Jamey, Tony}) = 0.3 \times 0.6 = 0.18$$

Episode 3

 $\triangleright \ m(\{Nina\}) = 0.8$

$$> m({Jamey, Tony}) = 0.2$$

$$ep_3 = \{\{Nina\}, \{Jamey, Tony\}\}$$

• Combination of ep_3 and $ep_{1\oplus 2}$

 $ep_3 = \{\{N\}[0.8], \{J,T\}[0.2]\}$ $ep_{1\oplus 2} = \{\{N\}[0.4], \{T\}[0.42], \{J,T\}[0.18]\}$

Generated focals elements:

$$ep_{1\oplus 2\oplus 3} = \{\{N\}, \{T\}, \{J, T\}\}$$

 \triangleright Conflict C:

$$\{N\} \cap \{T\} = \emptyset \text{ and } \{N\} \cap \{J,T\} = \emptyset$$

 $C = 0.8 \times 0.42 + 0.8 \times 0.18 + 0.2 \times 0.4 = 0.56$
isses:

Belief Masses:

$$m(\{Nina\}) = \frac{0.8 \times 0.4}{1-C} \simeq 0.73$$
$$m(\{Tony\}) = \frac{0.2 \times 0.42}{1-C} \simeq 0.19$$
$$m(\{Jamey, Tony\}) = \frac{0.2 \times 0.18}{1-C} \simeq 0.08$$

Belief State and Decision after 3 episodes

• Reminder:

$$bel_A = \sum_{\emptyset \neq X \subseteq A} m(X)$$
$$pl_A = 1 - bel_{\overline{A}} = \sum_{X \cap A \neq \emptyset} m(X)$$

$$ep_{1\oplus 2\oplus 3} = \{\{N\}[0.73], \{T\}[0.19], \{J, T\}[0.08]\}$$

▷ {Jamey}

 $bel_{\{Jamey\}} = 0$ $pls_{\{Jamey\}} = 0.08$

▷ **{Tony}**

 $bel_{\{Tony\}} = 0.19$ $pls_{\{Tony\}} = 0.19 + 0.08 = 0.27$

▷ {Nina}

 $bel_{\{Nina\}} = 0.73$ $pls_{\{Nina\}} = 0.73$

→ Take care about interpretations !

Fed up with TV series?

• Decision \rightarrow probability construction (Smets et al., 1992)

$$BetP(x,m) = \sum_{x \in A \subseteq \Omega} \frac{m(A)}{|A|}$$

$$ep_{1\oplus 2\oplus 3} = \{\{N\}[0.73], \{T\}[0.19], \{J,T\}[0.08]\}$$

▷ {Jamey}

$$BetP(J) = \frac{0.08}{2} = 0.04$$

⊳ **{Tony}**

$$BetP(T) = 0.19 + \frac{0.08}{2} = 0.24$$

▷ {Nina}

BetP(N) = 0.73

Is this theory right? To be continued...

illustrations from "24" TV series: http://www.fox.com/24/

Implementation

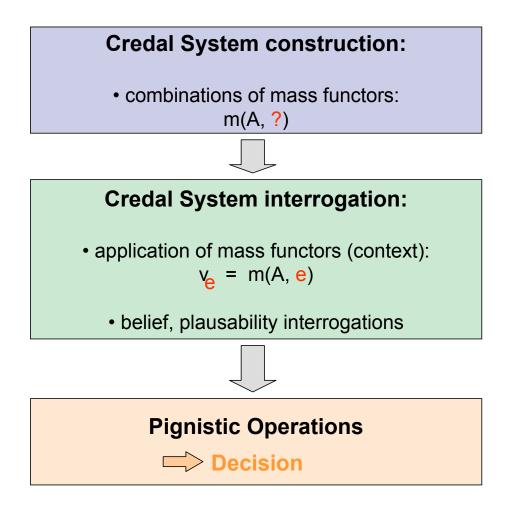
- Mass Functions representation
- Focal Elements representation
- Potentials representation
- Combination & fusion issues

Mass Functions representation

- Mass function = distribution of belief on Ω
- \triangleright In theory:

mass functions assign mass values to sets.

\triangleright In reality:

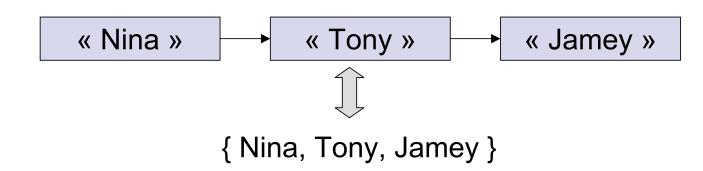

masses depend on context (events).

Example, in the field of **Medical Diagnosis**:

Combining "general rules" (potentials), and applying the system obtained on multiple cases, according to patient's characteristics.

→ Need for functors

→ Model principles:

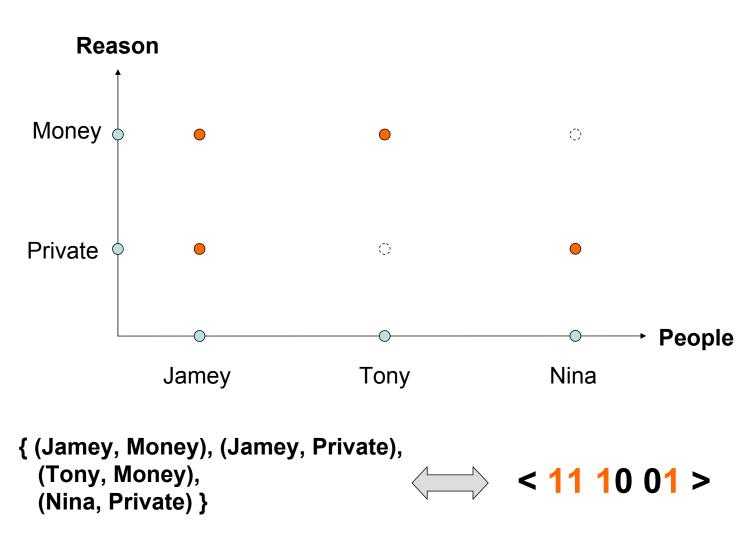

• Consequences of this model

- Different levels of evaluation
- Approximations impossible

Focal Elements representation

- Focal Element = set of variable configurations → hypothesis
- > Operations: set intersections, projections, extensions
- \triangleright Size issues
- ▷ Efficiency issues

• Lists?



▷ speed, size, ordering problems

• Ordered sets?

▷ solve only ordering problems

• Bitsets?

Bitsets properties

- ▷ efficient operations on sets
- ▷ set bit number = configurations number
- \triangleright constant size:

$$S = \prod_{i=1}^{nbvars} \#X_i bits$$

ex: for 23 binary variables, $size(FS) = 2^{23}$ bits = 1 Mo

▷ Index ⇔ Configuration correspondancy formulas
 ▷ Independence towards original representation !

- Other representations
 - ▷ Normal forms

Disjunctive forms

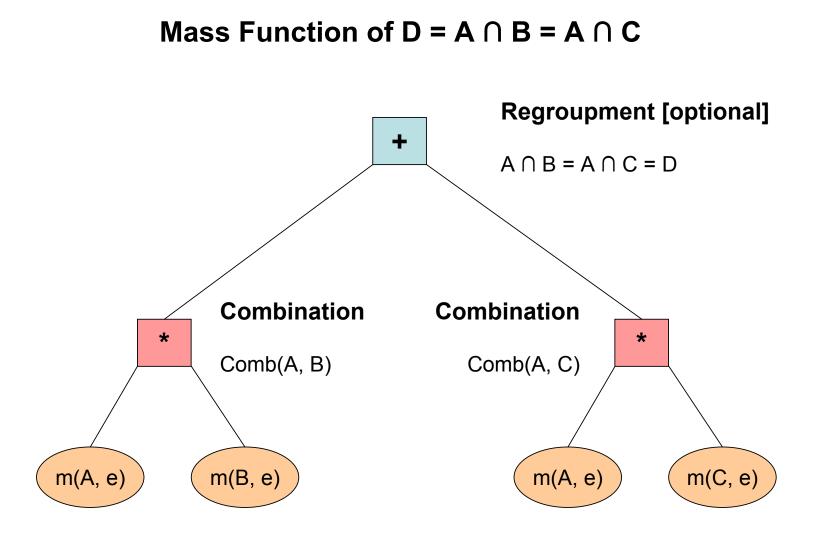
$$r(A) = \bigcup_{i=1}^{h1} \bigcap_{j=1}^{n} S_j^i$$
$$S_j^i \in \Theta_{x_j}$$

Conjunctive forms

$$r(A) = \bigcap_{i=1}^{h1} \bigcup_{j=1}^{n} S_j^i$$
$$S_j^i \in \Theta_{x_j}$$

Potentials representation

- Potential = collection of pairs (F_i, m_i)
 with F_i ∈ FS and m_i mass function → 1 source of information
 - Operations on potentials: combinations, fusions
 - ▷ Need for efficient research and combination → regroupments


▷ Lists? research: O(n) regroupment: O(n²)
 ▷ Balanced Trees? research: O(log(n)) regroupment: O(n×log(n))
 ▷ Hash Tables? research: O(1) regroupment: O(n²/s)

Example of a combination of 2 potentials of 1000 focal elements with 1000 configurations:

balanced trees (AVL)	6 seconds
lists	14 hours 22 minutes

Combination & fusion issues

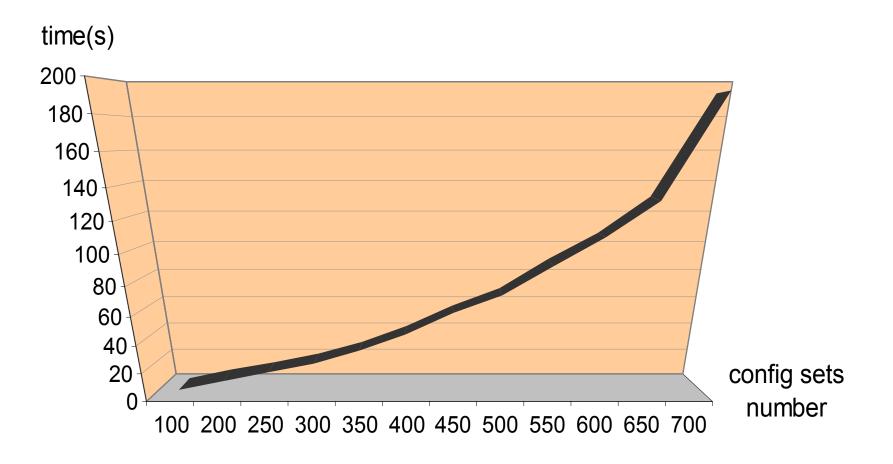
- \triangleright New potentials creation \rightarrow focal elements creation (by intersection)
- \triangleright New mass functions creation \rightarrow functors creation
- Mass functions combinations and regroupment

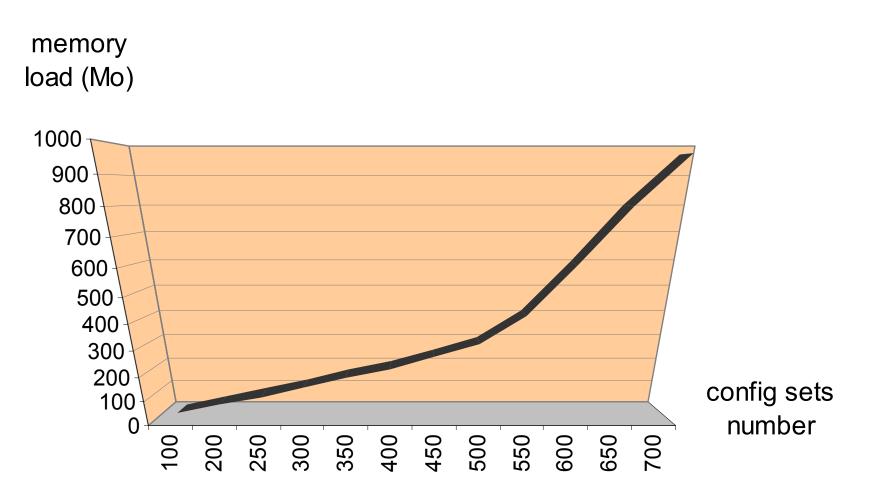
- ▷ **indirections** due to functors !
- example, with 1 potential P, 10 focal elements of 10 configurations, on 1 variable with 10 realisations, after 5 combinations:

construction time	1 second
memory load	1 Mo
original focal elements	10
final focal elements	163
interrogation time (1 Focal element)	2 minutes
mass regroupments (plus indirections)	1.6059×10^{9}
mass combinations (times indirections)	3.2642×10^{9}

• optimization?

Evidenz: an evidence theory engine


- Existing engines: research prototypes, written in Lisp... (Haenni and Lehmann, 2001) (Saffiotti and Umkehrer, 1991)
 - Evidenz characteristics
 - ▷ Performances
 - > Evidenz engine future improvements

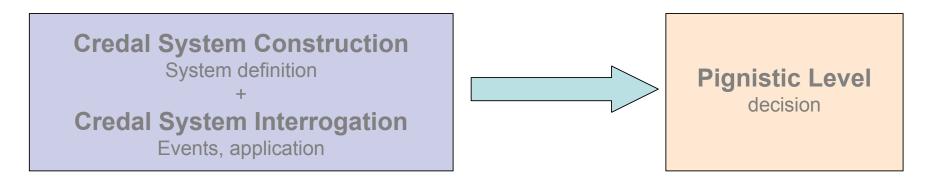

Evidenz characteristics

- ▷ TBM exact modeling (Smets et al., 1992)
- ▷ written in C++ (dynamic version)
- b focal elements represented by bitsets (Boost)
- generic towards configurations representation
- potentials represented by balanced trees (STL maps)

Performances

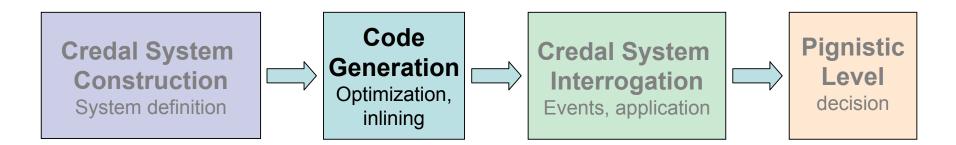
- Study of \neq factors influence on execution **time** and **memory load**:
 - \triangleright variables
 - variable realisations
 - b focal elements per potential
 - configurations per focal element
 - one combination of 2 potentials randomly generated
- example, on focal elements per potential influence:
 - ▷ 2 variables with 500 realisations
 - ▷ 100 configurations per focal element
 - ▷ 100 to 700 focal elements per potential

• Performance study conclusions


- Time and memory load evolutions are exponential towards all the factors
- Problems become quickly infeasible !
- ▷ In practice, applications are **much more** reasonable...

Evidenz engine future improvements

- Heuristics for **optimizing elimination sequences** (using **Join trees**)
- Decision algorithms, like **decision trees**
- Memoizing (set intersections and mass functions)


• 2 use cases:

▶ Need of quick, unique application:

> Approximations

> Need of multiple applications on different events:

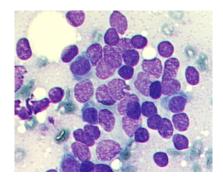
code generation: generates an optimal system at the end of credal definition phase

Applications

- Document classification
- Cytology (Adhoc²)
- Satellite image classification

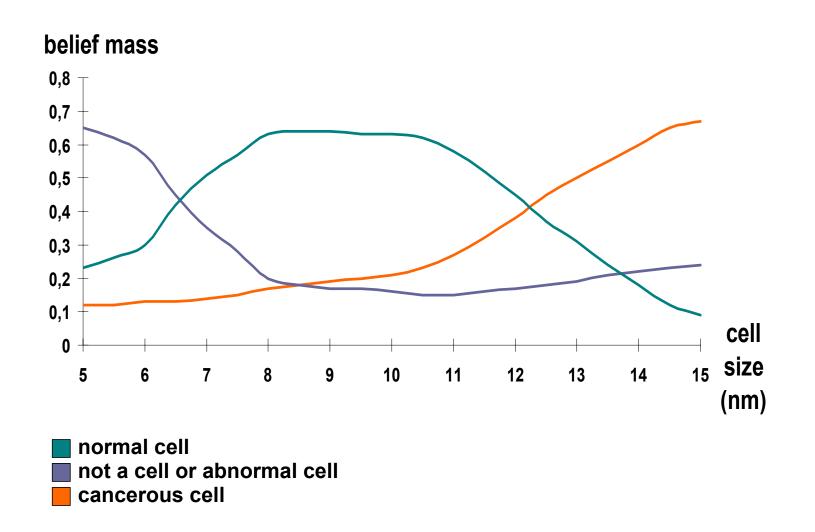
Document classification

- Automatic classification and data extraction
 - ▷ to associate a model to a document
- A document contains **anchors**: logos, text boxes...
- Each anchor corresponds to one or several models

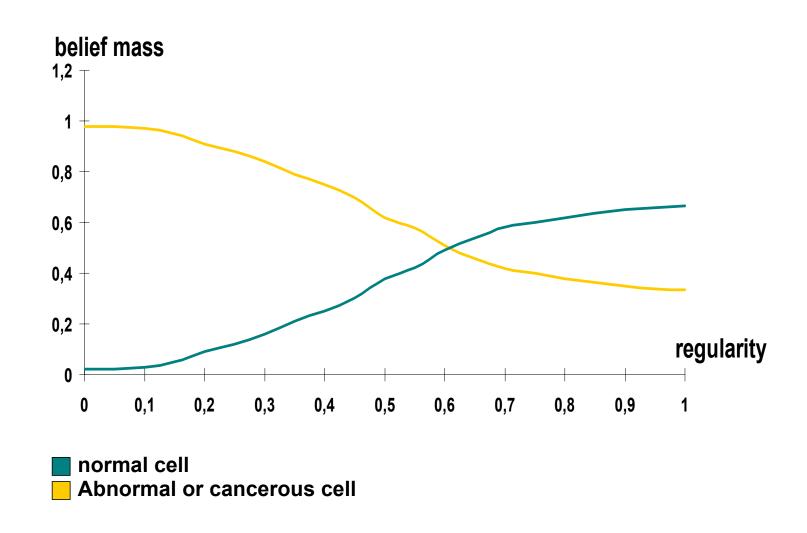

		—— Cerfa logo
cerfa	N° 2725	Document reference
Nº 11284 ¥ 03 Formalaite obligatoire en verite de Tarticle R83 W du code général des impôts	Liberté - Égaliné - Fraternité République Française	RF logo
Im	pôt de Solidarité sur la Fortune 2002	Document title
dépendait votre domicile au 1 Pour tous renseignements con	n et les annexes en vous situant au 1 [∞] janvier 2002. Renvoyez un exemplaire à la recette des impôts dont l [∞] janvier 2002, au plus tard le 15 juin 2002, accompagné du paiement de l'impôt. nnectez-vous au portail fiscal : www.impots.gouv.fr ou adressez-vous à votre centre des impôts. À souscrire exclusivement en EUROS	
1 VOTRE ÉTAT	CIVIL (écrire en capitales d'imprimerie). Pour l'épouse : lignes A, B et C (voir notice page 11)	
Nom, prénom 1 (du mari pour un couple)	M, MME, MLE	
Nom d'usage (facultatif) 2	lopeou	
Date de naissance	Lieu de naissance 4	Form box 1
Si vous êtes veuve, 5 divorcée ou séparée	Nett de traiseaue Précete	
• Épouse, Parte- naire lié(e) por un PACS ou Concubin(e) Date de B	Non de naissance C	
naissance	SSE AU 1* JANVIER 2002	
Bâtiment, appartement 6 N° et nom de la voie 7	RÉS	Form box 2
	CODE POSTAL COMMUNE (et pays per les redevièles dezi albie à l'étranger)	
F L	8L,, ,,, K	

• Modelisation:

▷ 1 variable: $document_model = \{model_1, model_2, model_3, ..., model_k\}$ ▷ potentials = anchors


- Anchor recognition → belief masses for model sets
 - ▷ combining anchor masses → global belief for each document model

Cytology (Adhoc²)

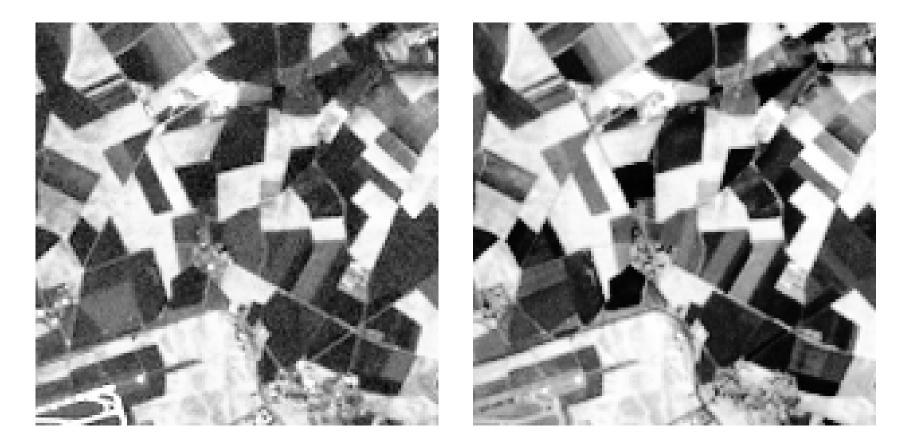


- Cancerous cells detection
 - > diagnosis help
 - $\triangleright \neq$ factors:
 - * cell/nucleus size
 - * cell/nucleus regularity
 - * color...

• Fuzzy, subjective decision rules

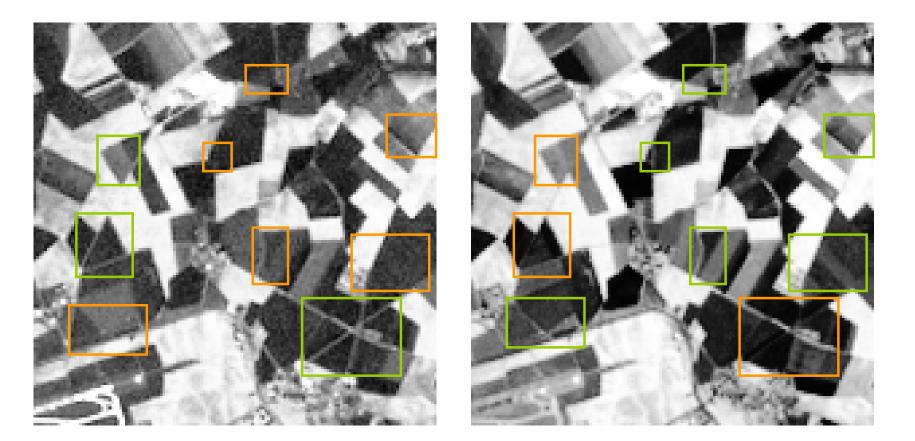
Size factor

Regularity factor


• Modelisation:

1 variable: *cell_type* = {*normal*, *abnormal*, *not_a_cell*, *cancerous*}
potentials = criters: size, regularity, color...

- Cell characteristics → belief masses for cell type sets
 - \triangleright combining criters \rightarrow global belief for each cell type
 - ▷ justified decision, quantified ignorance...


Satellite image classification

- Satellite images composed of several layers:
 - ▷ 7 layers according to wave length
 - \triangleright Different visions of the same image \rightarrow different informations

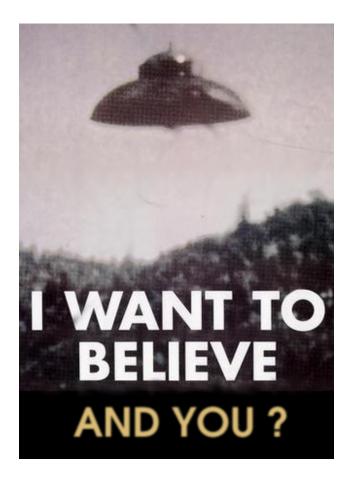
Layer x

Layer y

Layer x

Layer y

• Modelisation:


1 variable: *pixel_type* = {*forest, water, road, building, ...*}
potentials = layers

- Pixel gray level (context) → belief masses for pixel type sets
 - \triangleright combining layers \rightarrow global belief for each pixel type

Conclusion

- Theory designed for dealing with uncertainty
 - Modelisation power
 - Computational complexity
- Evidenz engine
 - Code generation and algorithmic extension/improvement
- Future research applications:
 - ▷ Adhoc² cytology project
 - Satellite image classification

Questions?

References

Burrus, N. (2003). Evidence theory [part 1]. Irde seminar oral presentation.

- Burrus, N. and Lesage, D. (2003). Evidence theory. Technical report, EPITA Research And Development Laboratory, Paris, France.
- Haenni, R. and Lehmann, N. (2001). Implementing belief function computations. Technical Report 01-28, Department of Informatics, University of Fribourg.
- Saffiotti, A. and Umkehrer, E. (1991). Pulcinella: a general tool for propagating uncertainty in valuation networks. pages 323–331.
- Smets, P., Hsia, Y., Saffiotti, A., Kennes, R., Xu, H., and Umkehrer, E. (1992). The transferable belief model. pages 91–98.