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Filtering

Filtering images

is a low-level process

can be linear or not (!)

is often useful

either to get “better” data
e.g., with enhanced contrast, less noise, etc.

or to transform data to make it suitable for further
processing
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New Approach

An image is a function.

We have

sampling : image values are only known at given points
Ip with p = (r , c) ∈ N2

quantization : image values belong to a restricted set
for instance [0, 255] for a gray-level with 8 bit encoding

An image is a digital signal
(contrary: analog).
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Background

This lecture background is

digital signal processing.
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Dirac Delta Function (1/2)

The Dirac delta function, denoted by ↑, is defined by:∫ ∞

−∞
s(t) ↑(t) dt = s(0)

where s is a test function.
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Dirac Delta Function (2/2)

Please note that:

↑ is not a function,

it is a distribution (or generalized function).

We have: ∫ ∞

−∞
↑(t) dt = 1.
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Weird Definition (1/2)

Just think of ↑ being something like:

↑(t) =

{
1 × ∞ if t = 0
0 if t 6= 0.

but it cannot be a proper definition!
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Weird Definition (2/2)

Here α is a constant in R or C.

We do not have α↑ = ↑, but:

↑(t) =

{
α × ∞ if t = 0
0 if t 6= 0.

Indeed we should have
∫∞
−∞ α↑(t)dt being equal to α.
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Dirac Representation
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Foreword

Understand that the Dirac delta function is the most important
distribution we can think of.
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Sinc (1/2)

The (unnormalized, historical, mathematical) sinc function is:

sinc(t) =
sin(t)

t
.

The normalized sinc function is:

sinc(t) =
sin(πt)

πt
.

so that: ∫ ∞

−∞
sinc(t) dt = 1.
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Sign Function (1/2)

The sign function is:

sgm(t) =


−1 if t < 0
0 if t = 0
1 if t > 0.
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Heaviside Step Function (1/2)

u(t) =
1
2
(1 + sgn(t)) =


0 if t < 0
1/2 if t = 0
1 if t > 0.

We have:

u(t) =

∫ t

−∞
↑(τ) dτ.

Put differently u̇ = ↑.
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Rect (1/2)

The rectangular function is:

rect(t) =


1 if |t | < 1/2
1/2 if |t | = 1/2
0 if |t | > 1/2.

We have:

rect(t) = u(t + 1/2) u(1/2− t).
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Tri (1/2)

The triangular function is:

tri(t) =

{
1− t if |t | < 1
0 if |t | ≥ 1.
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Dirac Delta Function as a Limit

We can define ↑ as a limit of functions dα in the sense that:

lim
α→0

∫ ∞

−∞
s(t) dα(t) dt = s(0).

We can choose dα in:
t → N (0;α)(t) normal distribution
t → rect(t/α)/α rectangular function
t → tri(t/α)/α triangular function
... ...
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Dirac Comb (1/2)

The Dirac comb is:

↑↑T (t) =
∞∑

k=−∞
↑(t − kT ).
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URLs (1/2)

Distribution
http://en.wikipedia.org/wiki/Distribution_(mathematics)

Dirac delta
http://en.wikipedia.org/wiki/Dirac_delta_function

Dirac comb
http://en.wikipedia.org/wiki/Dirac_comb
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URLs (2/2)

Sign
http://en.wikipedia.org/wiki/Sign_function

Sinc
http://en.wikipedia.org/wiki/Sinc_function

Tri
http://en.wikipedia.org/wiki/Triangularfunction

Rect
http://en.wikipedia.org/wiki/Rectangular_function

Heaviside step
http://en.wikipedia.org/wiki/Heaviside_step_function
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Fourier Series

You know that:

s(x) =
1
2

a0 +
∞∑

n=1

(an cos(nx) + bn sin(nx))

=
∞∑

n=−∞
Sn einx .

its generalization is...
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Discrete Fourier Transform

...the discrete Fourier transform of a discrete function s:

sk =
N−1∑
n=0

an e−i2πnk/N

where an =
1
N

N−1∑
k=0

fk ei2πnk/N
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Fourier Transform

In the continuous case, S is the Fourier transform of s:

S(f ) =

∫ ∞

−∞
s(t) e−i2πft dt

s(t) =

∫ ∞

−∞
S(f ) ei2πft df .

where f is a frequency.
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Notations

We will denote with capital letters the Fourier transforms.

Considering that F is the Fourier operator on the set of
complex-valued functions:

S = F(s).
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Some Nice Properties

Parseval’s theorem:∫ ∞

−∞
|s(t)|2 dt =

∫ ∞

−∞
|S(f )|2 df .

F2(s)(t) = s(−t)

F∗ = F−1

Amazing:
g(t) = αe−(t−β)2/2

is an eigenvalue of F .
Thierry G éraud Introduction to Image Processing #5/7
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Convolution (1/2)

The convolution of two functions h and s is the function:

s′(t) = h(t) ∗ s(t) =

∫ ∞

−∞
h(τ) s(t − τ) dτ.

The convolution operator is denoted by “∗”.
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Convolution (2/2)

FIXME: figure.
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Exercise

Show that:

rect ∗ rect = tri .
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Convolution Properties

We have:

commutativity a ∗ b = b ∗ a
associativity a ∗ (b ∗ c) = (a ∗ b) ∗ c
distributivity a ∗ (b + c) = (a ∗ b) + (a ∗ c)
associativity with scalar α(b ∗ c) = (αb) ∗ c = b ∗ (αc)

Differentiation rule:

D(a ∗ b) = D(a) ∗ b = a ∗ D(b).
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Dirac and Convolution (1/2)

We have:

(↑ ∗ s) (t) =

∫ ∞

−∞
↑(τ) s(t − τ) dτ = s(t) ∀t .

So ↑ ∗ s = s:

↑ is the neutral element for the ∗ operator.
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Dirac and Convolution (2/2)

Let us note by:
↑t ′(t) = ↑(t − t ′)

the translation to t ′ of the Dirac delta function
put differently it is a Dirac impulse centered at t ′

We have:

(↑t ′ ∗ s) (t) =
∫∞
−∞ ↑(τ − t ′) s(t − τ) dτ

= s(t − t ′).

Convolving a function with a Dirac delta function centered at t ′

means shifting this function at the value t = t ′.
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Convolution and Fourier = a Theorem

The convolution theorem is:

F(a ∗ b) = F(a)F(b)

We also have:

F(a b) = F(a) ∗ F(b)
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Dirac and Fourier

∫ ∞

−∞
1(t) e−i2πft dt = ↑(f ).
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Some Fourier Transforms (1/2)

F
rect(αt) 1

|α|sinc( f
α)

sinc(αt) 1
|α| rect( f

α)

sinc2(αt) 1
|α| tri(

f
α)

tri(αt) 1
|α|sinc2( f

α)

1(t) ↑(f )
↑(t) 1(f )
cos(αt) 1/2(↑(f − α

2π ) + ↑(f + α
2π )
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Some Fourier Transforms (2/2)

A remarkable Fourier transform:

F(↑↑T )(t) =
1
T

∞∑
k=−∞

δ(f − k/T ) =
1
T
↑↑1/T (f ).
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URLs

Fourier series
http://en.wikipedia.org/wiki/Fourier_series

Discrete Fourier transform
http://en.wikipedia.org/wiki/Discrete_fourier_transform

Fourier transform
http://en.wikipedia.org/wiki/Fourier_transform

Parseval’s theorem
http://en.wikipedia.org/wiki/Parseval’s_theorem

Convolution
http://en.wikipedia.org/wiki/Convolution

Convolution theorem
http://en.wikipedia.org/wiki/Convolution_theorem
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Analog Function

Consider an analog function:

s :

{
R → R
t 7→ s(t)

FIXME: figure.
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From Analog to Digital (1/2)

A discrete function sd is sampled from s with the sampling
frequency fd = 1/T :

sd(t) =
∑∞

k=−∞ s(kT ) ↑(t − kT )
= s(t) × ↑↑T (t).

So:
Sd(f ) ∝ S(f ) ∗ ↑↑fd (f )

∝ S(f ) ∗
∑∞

k=−∞ ↑(f − kfd)
∝

∑∞
k=−∞ S(f ) ∗ ↑(f − kfd)

∝
∑∞

k=−∞ S(f − kfd)
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From Analog to Digital (2/2)

FIXME: figure.
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From Digital to Analog (1/2)

An analog function sa is reconstructed from the digital one sd :

Sa(f ) = Sd(f ) × rect(
f

2fd
).

So:

sa(t) ∝ sd(t) ∗ sinc(t/T )
∝

(∑∞
k=−∞ s(kT ) ↑(t − kT )

)
∗ sinc(t/T )

∝
∑∞

k=−∞ ( s(kT ) ↑(t − kT ) ∗ sinc(t/T ) )

∝
∑∞

k=−∞

(
s(kT ) sinc( t−kT

T )
)
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From Digital to Analog (2/2)

FIXME: figure.
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Shanon Sampling Theorem (1/2)

The minimum sampling frequency to be able to perfectly
reconstruct an analog signal is twice the maximum signal

frequency.

So we should have:
fd > 2 fmax.

Practically this condition is (usually) never satisfied.
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Shanon Sampling Theorem (2/2)

FIXME: figure.
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Aliasing

The right image is anti-aliased:
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Removing the Moire Effect (1/3)

An image with aliasing presence (left) and a detail (right):

Thierry G éraud Introduction to Image Processing #5/7



Introduction
Distributions

Fourier and Convolution
Sampling

Convolution and Linear Filtering
Some 2D Linear Filters

Removing the Moire Effect (2/3)

The original Fourier spectrum (left) and after removing folded
peaks (right):
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Removing the Moire Effect (3/3)

The result (right) compared to the original (left):
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URLs

Signal processing
http://en.wikipedia.org/wiki/Signal_processing

Sampling
http://en.wikipedia.org/wiki/Sampling_(signal_processing)

Shannon’s sampling theorem
http:

//en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem

Aliasing
http://en.wikipedia.org/wiki/Aliasing

Anti-aliasing
http://en.wikipedia.org/wiki/Anti-aliasing_filter
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Discrete Convolution

The convolution between a and b:

s′(t) = h(t) ∗ s(t) =

∫ ∞

−∞
h(τ) s(t − τ) dτ.

can be turned into a discrete convolution:

s′[t ] = (h ∗ s)[t ] =
∞∑

τ=−∞
h[τ ] s[t − τ ] =

∞∑
τ=−∞

h[t − τ ] s[τ ]

where t and τ are now ∈ Z.
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Discrete Convolution in 2D (1/2)

s′[r ][c] = (h ∗ s)[r ][c]
=

∑∞
r ′=−∞

∑∞
c′=−∞ h[r ′][c′] s[r − r ′][c − c′]

=
∑∞

r ′=−∞
∑∞

c′=−∞ h[r − r ′][c − c′] s[r ′][c′]
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Discrete Convolution in 2D (2/2)

FIXME: figure.
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Linear Filters (1/2)

A filter φ is linear if

φ(α s1 + β s2) = α φ(s1) + β φ(s2)

for all α and β scalars, and s1 and S2 functions.

φ is a linear filter ⇔ hφ exists such as φ = hφ ∗

Put differently:

we can write φ(s) = hφ ∗ s

convolutions are the only linear filters.
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Linear Filters (2/2)

Consider that a filter φ is a black box.

If this filter is linear, we want to know hφ.

When you input the Dirac delta function (an impulse) into the
black box, the resulting function (signal) is:

hφ ∗ ↑ = hφ.

hφ is the impulse response of φ.
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Gradients
Laplacian

Dirac Delta Function

Before all:

↑[r ][c] =

{
1 if r = 0 and c = 0
0 otherwise.
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Gradients as Linear Filters (1/3)

Consider the gradient of a 2D function s:

∇s =

 δs
δx

δs
δy


The gradient is linear; with φ∇(s) = ∇s , we have:

φ∇(αs1 + βs2) = α φ∇(s1) + β φ∇(s2)

...so it can be expressed with convolutions!
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Gradients as Linear Filters (2/3)

Assuming that sampling is isotropic (Tx = Ty = 1), some
discrete approximations of the gradient are:

∇s [r ][c] ≈ ∇antes [r ][c] =

(
s[r ][c] − s[r ][c − 1]
s[r ][c] − s[r − 1][c]

)
or:

∇s [r ][c] ≈ ∇posts [r ][c] =

(
s[r ][c + 1] − s[r ][c]
s[r + 1][c] − s[r ][c]

)
and even:

∇s [r ][c] ≈ ∇antes [r ][c] + ∇posts [r ][c]

2
=

(
s[r ][c+1]− s[r ][c−1]

2
s[r+1][c]− s[r−1][c]

2

)
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Gradients as Linear Filters (3/3)

With:

∇s =
(

h/x
∇ ∗ sh/y

∇ ∗ s
)

and considering the “post” version:

∇/x s [r ][c] ≈ s[r ][c + 1] − s[r ][c]

≈ h/x [0][−1] s[r − 0][c − (−1)]

+ h/x [0][0] s[r − 0][c − 0]

we have:

h/x [r ][c] =


1 if r = 0 and c = −1

−1 if r = 0 and c = 0
0 otherwise
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Gradients Illustrated (1/2)

LENA (left) and the x gradient (right):

Thierry G éraud Introduction to Image Processing #5/7



Introduction
Distributions

Fourier and Convolution
Sampling

Convolution and Linear Filtering
Some 2D Linear Filters

Gradients
Laplacian

Gradients Illustrated (1/2)

crops of resp. the x gradient (left) and the y gradient (right):

Please note that, to better view images, contrast is enhanced and values are inverted

(the lowest values are now the brightest).
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Graphical Representation

To depict functions we use a graphical representation:

h/x =

0 0 0
1 -1 0
0 0 0

In such representations, the origin is always centered and we
do not represent null values that lay outside the window.
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Gradient Magnitude (1/2)

The magnitude is often approximated with a L1 norm, so:

|∇s | = | δs
δx
| + | δs

δy
|.

For instance with the “post” version:

|∇posts | [r ][c] = | s[r +1][c] − s[r ][c] | + | s[r ][c+1] − s[r ][c] |
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Gradient Magnitude (2/2)

Warning: magnitude is also video inverted here.

Thierry G éraud Introduction to Image Processing #5/7



Introduction
Distributions

Fourier and Convolution
Sampling

Convolution and Linear Filtering
Some 2D Linear Filters

Gradients
Laplacian

Other Versions of Gradient Magnitude (1/3)

Many versions of the gradient magnitude exist... for instance
this one (the Roberts filter):

|∇robertss | [r ][c] = | s[r+1][c+1]− s[r ][c] | + | s[r ][c+1]− s[r+1][c] |
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Other Versions of Gradient Magnitude (2/3)

A noise-”insensitive” version of the gradient magnitude is the
Sobel filter:

h/x
Sobel = 1

4

-1 0 1
-2 0 2
-1 0 1

Exercise: explain why it is less sensitive to noise.
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Other Versions of Gradient Magnitude (3/3)

Result of the Sobel filter:

Warning: magnitude is also video inverted here.

Exercise: explain why contours/edges look thicker here than in
previous examples. Thierry G éraud Introduction to Image Processing #5/7
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Extracting Object Contours (1/2)

Extracting contours/edges can be performed thru thresholding
the gradient magnitude:

Exercise: is it great?
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Extracting Object Contours (2/2)

Full size:

Exercise: is it great?
Thierry G éraud Introduction to Image Processing #5/7
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Thierry G éraud Introduction to Image Processing #5/7



Introduction
Distributions

Fourier and Convolution
Sampling

Convolution and Linear Filtering
Some 2D Linear Filters

Gradients
Laplacian

Definition

The Laplacian of s is:

∆s =
δ2s
δx2 +

δ2s
δy2

Exercise: express h∆.
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Solution

You should end up with:

h∆ =

0 -1 0
-1 4 -1
0 -1 0
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Filtering (1/2)

Result:
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Filtering (2/2)

Crop:

Exercise:

find how to sharpen image contours/edges,

express hsharpen in function of a strength parameter.
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Edge Sharpening (1/2)

Contour/edge sharpening results:
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Edge Sharpening (2/2)

Contour/edge sharpening results:
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