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Introduction

Filtering

Filtering images
@ is a low-level process

@ can be linear or not (1)

@ is often useful
e either to get “better” data
e.g., with enhanced contrast, less noise, etc.

@ or to transform data to make it suitable for further
processing
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Introduction

New Approach

An image is a function.

We have

@ sampling : image values are only known at given points
lp with p = (r,c) € N2

@ quantization : image values belong to a restricted set
for instance [0, 255] for a gray-level with 8 bit encoding

An image is a digital signal
(contrary: analog).
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Introduction

Background

This lecture background is

digital signal processing.
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Dirac Delta Function (1/2)

The Dirac delta function, denoted by T, is defined by:

JRECHCEEEC

—00

where s is a test function.
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Dirac Delta Function (2/2)

Please note that:
@ 1 is not a function,
@ it is a distribution (or generalized function).

We have:
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Weird Definition (1/2)

Just think of 7 being something like:

1) = { 1xo0 ift=0

0 ift # 0.

but it cannot be a proper definition!
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Weird Definition (2/2)

Here « is a constantin R or C.
We do not have o] = T, but:

a x oo Ift=0
1) = { 0 ift # 0.

Indeed we should have [* «af(t)dt being equal to a.
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Dirac Representation

1.2 T T T
_3
0.8 — —
o6f -
04f -
_5
0.0
02t . . , ]
2 1 0 1 2

X

Thierry G éraud



Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Foreword

Understand that the Dirac delta function is the most important
distribution we can think of.
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Sinc (1/2)

The (unnormalized, historical, mathematical) sinc function is:

. in(t
sinc(t) = S”l( ).
The normalized sinc function is:
. i t
sinc(t) = M
it
SO that; -
/ sinc(t)dt = 1.
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Sinc (2/2)

Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Sign Function (1/2)

The sign function is:

-1 ift<O
sgm(t) = ¢ 0 ift=0
1 ift>0.
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Sign Function (2/2)
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Heaviside Step Function (1/2)

1 0 ift<O
u(t) = §(1+sgn(t)) =< 1/2 ift=0
1 ift > 0.

We have:

Put differently u = 1.
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Heaviside Step Function (2/2)
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Rect (1/2)

The rectangular function is:
1 if [t| <1/2
rect(t) = ¢ 1/2 ifjt|=1/2
0 if [t| >1/2.

We have:

rect(t) = u(t+1/2)u(1/2 —t).
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Tri (1/2)

The triangular function is:

o 1=t ifjtl <1
rit) = { 0 ift|>1.
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About the Dirac Delta Function
Some Useful Functions and Distributions

Tri (2/2)
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Dirac Delta Function as a Limit

We can define 1 as a limit of functions d,, in the sense that:

lim /OO s(t)du(t)dt = s(0).

a—=0 J_

We can choose d, in:
t — N(0;«)(t)  normal distribution
t — rect(t/a)/a rectangular function
t — tri(t/a)/a  triangular function
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Dirac Comb (1/2)

The Dirac comb is:

M) = D 1(t—KT).
k=—o0
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

Dirac Comb (2/2)
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

URLSs (1/2)

@ Distribution
http://en.wikipedia.org/wiki/Distribution_(mathematics)
@ Dirac delta

http://en.wikipedia.org/wiki/Dirac_delta_function

@ Dirac comb

http://en.wikipedia.org/wiki/Dirac_comb
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Distributions
About the Dirac Delta Function
Some Useful Functions and Distributions

URLS (2/2)

@ Sign
http://en.wikipedia.org/wiki/Sign_function

@ Sinc
http://en.wikipedia.org/wiki/Sinc_function

@ Tri
http://en.wikipedia.org/wiki/Triangularfunction

@ Rect

http://en.wikipedia.org/wiki/Rectangular_function

@ Heaviside step
http://en.wikipedia.org/wiki/Heaviside_step_function
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Fourier and Convolution

Fourier Series

You know that:

s(x) = %ao + i (an cos(nx) + by sin(nx))
n=1

_ i Sn einx.

N=—o0

its generalization is...
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Fourier and Convolution

Discrete Fourier Transform

...the discrete Fourier transform of a discrete function s:

N-1
Sk = Z ane—|27rnk/N
n=0
1 N1
_ = i2wnk /N
where a, = kzo f e
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Fourier and Convolution

Fourier Transform

In the continuous case, S is the Fourier transform of s:

S(f) = /OO s(t)e "2 dt

—00

s(t) = /OO S(f) &2 g

— 00

where f is a frequency.
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Fourier and Convolution

Notations

We will denote with capital letters the Fourier transforms.

Considering that F is the Fourier operator on the set of
complex-valued functions:

S = F(s).
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Fourier and Convolution

Some Nice Properties

Parseval’s theorem:

/OO Is(t)Pdt = /OO IS(f)[? df .

—0o0 —00

Amazing:
g(t) = ae~(t-A)?/2

is an eigenvalue of F.
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Fourier and Convolution

Convolution (1/2)

The convolution of two functions h and s is the function:

S(t) = h(t) #s(t) = /OO h(r)s(t — 7)dr.

—00

The convolution operator is denoted by “x”.
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Fourier and Convolution

Convolution (2/2)

FIXME: figure.
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Fourier and Convolution

Exercise

Show that:

rect x rect = tri.
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Fourier and Convolution

Convolution Properties

We have:
commutativity axb =bxa
associativity ax(bxc) = (axb)xc
distributivity ax(b+c) = (axb)+(axc)

associativity with scalar «(b xc) = (ab)*c = b x (ac)

Differentiation rule:

D(axb) = D(a) *xb = axD(b).
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Fourier and Convolution

Dirac and Convolution (1/2)

We have:

(1%8)(t) = /OO 1(r)s(t — r)dr = s(t) V.

SOT xS = s:

1 is the neutral element for the x operator.
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Fourier and Convolution

Dirac and Convolution (2/2)

Let us note by:
fo(t) = 7(t —t)

the translation to t’ of the Dirac delta function
put differently it is a Dirac impulse centered at t’

We have:
(Tlexs)(t) = [, (7 —t)s(t—7)dT
= s(t—t).

Convolving a function with a Dirac delta function centered at t’
means shifting this function at the value t = t’.
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Fourier and Convolution

Convolution and Fourier = a Theorem

The convolution theorem is:
F(axb) = F(a)F(b)
We also have:

F(ab) = F(a) x F(b)
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Fourier and Convolution

Dirac and Fourier
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Fourier and Convolution

Some Fourier Transforms (1/2)

f

rect(at)  5sinc(f)
sinc(at)  grect(f)
sinc?(at) &tri(f)
tri(at) asinc?(f)
1(t) 1(F)

1(t) 1(f)

cos(at)  1/2(1(f — 5&) + 1(f + 5%)
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Fourier and Convolution

Some Fourier Transforms (2/2)

A remarkable Fourier transform:

F®) = 3 3 ot —k/T) = =yt

k=—oc0
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Fourier and Convolution

@ Fourier series
http://en.wikipedia.org/wiki/Fourier_series

@ Discrete Fourier transform
http://en.wikipedia.org/wiki/Discrete_fourier_transform

@ Fourier transform
http://en.wikipedia.org/wiki/Fourier_transform

@ Parseval’'s theorem
http://en.wikipedia.org/wiki/Parseval’s_theorem

@ Convolution
http://en.wikipedia.org/wiki/Convolution

@ Convolution theorem
http://en.wikipedia.org/wiki/Convolution_theorem
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Sampling

Analog Function

Consider an analog function:

:{F :]f(t)

FIXME: figure.
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Sampling

From Analog to Digital (1/2)

A discrete function sy is sampled from s with the sampling
frequency fqy = 1/T:

Sa(t) = 2kt_o S(KT)T(t —KT)
= s(t) x (1)
So:
S(f) = 1y, (f)
S(f) = Dok T(f —Kfg)
SR s S(F) % 1(f — Kia)
D ke oo S(f —Kfg)

Sa(f)

R R KR

Thierry G éraud Introduction to Image Processing #5/7



Sampling

From Analog to Digital (2/2)

FIXME: figure.

Thierry G éraud Introduction to Image Processing #5/7



Sampling

From Digital to Analog (1/2)

An analog function s; is reconstructed from the digital one sy:

Sa(f) = Sq(f) x rect( f

20"
So:
Sa(t) o sq(t) * sinc(t/T)
o< (3Re_oo S(KT) T(t —KT)) * sinc(t/T)
X Y oke o (S(KT)T(t —KT) = sinc(t/T))
% SR (s(KT)sinc(HT) )
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Sampling

From Digital to Analog (2/2)

FIXME: figure.
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Sampling

Shanon Sampling Theorem (1/2)

The minimum sampling frequency to be able to perfectly
reconstruct an analog signal is twice the maximum signal
frequency.

So we should have:
fd > 2fmax.

Practically this condition is (usually) never satisfied.
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Sampling

Shanon Sampling Theorem (2/2)

FIXME: figure.
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Sampling

Aliasing

The right image is anti-aliased:
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Sampling

Removing the Moire Effect (1/3)

An image with aliasing presence (left) and a detail (right):

3

¥8910001262108"
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Sampling

Removing the Moire Effect (2/3)

The original Fourier spectrum (left) and after removing folded
peaks (right):
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Sampling

Removing the Moire Effect (3/3)

The result (right) compared to the original (left):

-lii.l*_r -

AL 1O
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Sampling

@ Signal processing
http://en.wikipedia.org/wiki/Signal_processing
@ Sampling
http://en.wikipedia.org/wiki/Sampling_(signal_processing)
@ Shannon’s sampling theorem
http:
/len.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
@ Aliasing
http://en.wikipedia.org/wiki/Aliasing
@ Anti-aliasing
http://en.wikipedia.org/wiki/Anti-aliasing_filter
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Convolution and Linear Filtering

Discrete Convolution

The convolution between a and b:

s'(t) = h(t) xs(t) = /OO h(r)s(t —7)dr.

—00

can be turned into a discrete convolution:

s'lt] = (hxs)[t] = Z hir]sit—7] = > hit —7]s[7]

T=—00 T=—00

where t and 7 are now € Z.
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Convolution and Linear Filtering

Discrete Convolution in 2D (1/2)

s'Ir]c] (h +s)[r][c]
2or=—co 2uo=—oo NIIE]S[F = 1']lc —¢']

= 2r= oo 2uo=—oo NIF ='llc — cs[r][c]]
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Convolution and Linear Filtering

Discrete Convolution in 2D (2/2)

FIXME: figure.
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Convolution and Linear Filtering

Linear Filters (1/2)

A filter ¢ is linear if

plasy + Bs2) = a¢(s1) + Bo(s2)

for all « and @ scalars, and s; and S, functions.

¢ is a linear filter < h, exists suchas ¢ = hy*

Put differently:
@ we can write ¢(s) = hyg * s

@ convolutions are the only linear filters.
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Convolution and Linear Filtering

Linear Filters (2/2)

Consider that a filter ¢ is a black box.
If this filter is linear, we want to know hy.

When you input the Dirac delta function (an impulse) into the
black box, the resulting function (signal) is:

h¢*T:h¢.

h, is the impulse response of ¢.
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Gradients
Laplacian

Some 2D Linear Filters

Dirac Delta Function

Before all:

1 fr=0andc=0
0 otherwise.

el = {
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Gradients
Laplacian

Some 2D Linear Filters

Outline

e Some 2D Linear Filters
@ Gradients
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Gradients
Laplacian

Some 2D Linear Filters

Gradients as Linear Filters (1/3)

Consider the gradient of a 2D function s:
s
OX
Vs =
s
oy
The gradient is linear; with ¢v(s) = Vs, we have:

dv(asy + B8S2) = aov(s1) + Bov(s2)

...S0 it can be expressed with convolutions!
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Gradients
Laplacian

Some 2D Linear Filters

Gradients as Linear Filters (2/3)

Assuming that sampling is isotropic (Tx = Ty = 1), some
discrete approximations of the gradient are:

Vs[r]lc] ~ V¥s[r][c] = ( 2%:“3 _ :H][—Cl_][fﬂ )
or.
vsilel ~ vsiiel = (S5~ S )

and even:

Vs|r][c] ~

yanteg [I‘][C] + vposts[r][c] _ s[r][c—i—l];s[r][c—l]
> slr+1]fe]~ sfr=1][c]
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Gradients
Laplacian

Some 2D Linear Filters

Gradients as Linear Filters (3/3)

With:

VS:(h/VX*Shg*S>

and considering the “post” version:

VXs]rllc] ~ sr]lc +1] — s[r][c]
~ hX[0][-1]s[r — 0][c — (—1)]
+ h/X[O][O] s[r — 0][c — O]
we have:
1 ifr=0 and c=-1
hX[r]lc] = { -1 ifr=0 and c=0

0 otherwise
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Introduction
Distributions
Fourier and Convolution Gradients
Sampling Laplacian
Convolution and Linear Filtering
Some 2D Linear Filters

Gradients lllustrated (1/2)

LENA (left) and the x gradient (right):
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Gradients
Laplacian

Some 2D Linear Filters

Gradients lllustrated (1/2)

crops of resp. the x gradient (left) and the y gradient (right):

LR i P O
= g
I = N, P ,.-’I - o e
# y . A . _-_a_?rf 4
L i
i il
i : =5
_,.-’-" A
.'-'. ..._ F '
e
B R
o -l s

Please note that, to better view images, contrast is enhanced and values are inverted

(the lowest values are now the brightest).
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Gradients
Laplacian

Some 2D Linear Filters

Graphical Representation

To depict functions we use a graphical representation:

olofo
h* =[1]-1]0
ojofo

In such representations, the origin is always centered and we
do not represent null values that lay outside the window.
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Gradients
Laplacian

Some 2D Linear Filters

Gradient Magnitude (1/2)

The magnitude is often approximated with a L, norm, so:
oS oS
Vs| = | — — |
Vsl = |51+ 15
For instance with the “post” version:

| VPeSis[[r]le] = |s[r+1][c] - s[rllc]| + [s[rllc+1] —s[r][c]|
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Gradients
Laplacian

Some 2D Linear Filters

Gradient Magnitude (2/2)

Warning: magnitude is also video inverted here.
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Gradients
Laplacian

Some 2D Linear Filters

Other Versions of Gradient Magnitude (1/3)

Many versions of the gradient magnitude exist... for instance
this one (the Roberts filter):

| VPSS [[r][c] = |s[r+d][c+1] —s[r][c]| + | s[r]lc+1] — s[r+1][c] |
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Gradients
Laplacian

Some 2D Linear Filters

Other Versions of Gradient Magnitude (2/3)

A noise-"insensitive” version of the gradient magnitude is the

Sobel filter:
-1/0(1
1
hSobel = 2 2102
-1/0(1

Exercise: explain why it is less sensitive to noise.
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Gradients
Laplacian

Some 2D Linear Filters

Other Versions of Gradient Magnitude (3/3)

Result of the Sobel filter:

Warning: magnitude is also video inverted here.

Exercise: explain why contours/edges look thicker here than in
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Gradients
Laplacian

Some 2D Linear Filters

Extracting Object Contours (1/2)

Extracting contours/edges can be performed thru thresholding
the gradient magnitude:

Exercise: is it great?
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Introduction
Distributions
Fourier and Convolution Gradients
Sampling Laplacian
Convolution and Linear Filtering
Some 2D Linear Filters

Extracting Object Contours (2/2)

Full size:

Exercise: is it great?
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Gradients
Laplacian

Some 2D Linear Filters

Outline

e Some 2D Linear Filters

@ Laplacian
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Gradients
Laplacian

Some 2D Linear Filters

Definition

The Laplacian of s is:

s, s
ox2  dy?

Exercise: express ha.
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Gradients
Laplacian

Some 2D Linear Filters

Solution

You should end up with:

0[-1]0
ha =|-1] 4 | -1
0-1]0
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Gradients
Laplacian

Some 2D Linear Filters

Filtering (1/2)

Result:
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Gradients
Laplacian

Some 2D Linear Filters

Filtering (2/2)

Crop:

Exercise:
@ find how to sharpen image contours/edges,
@ express hgparpen in function of a strength parameter.
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Gradients
Laplacian

Some 2D Linear Filters

Edge Sharpening (1/2)

Contour/edge sharpening results:
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Gradients
Laplacian

Some 2D Linear Filters

Edge Sharpening (2/2)

Contour/edge sharpening results:
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