
Outline

Lecture #2 on Object-Oriented Modeling

Thierry Géraud

EPITA Research and Development Laboratory (LRDE)

2006

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 1 / 38

Outline

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 2 / 38

Outline

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 2 / 38

Outline

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 2 / 38

Outline

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 2 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Inheritance

Consider that:

inheritance is a key concept of object-orientation

a lot of different kinds of inheritance exist
with various meanings/semantics (read Meyer for details)

the most prominent form is:
“class inheritance” related to “sub-typing”

mapping the “is a” relationship

“polymorphism of methods” and “abstract data types”
are also key concepts of object-orientation
and rely on inheritance

see also:
http://en.wikipedia.org/wiki/Inheritance_

(object-oriented_programming)
Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 3 / 38

http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Inheritance and Polymorphism

Two points of view

type theory:
it defines the notion of “sub-typing”
and “sub-classing” reflects (tries to reflect) this notion

semantics:
verifying “is a” is mandatory to get class inheritance
however it is not enough to get proper inheritance
having various semantics explain the different kinds of
inheritance

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 4 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 5 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

UML?

The Unified Modeling Language:

is an object modeling and specification language
both textual and graphical

is the language we should talk and understand

comes from:
James Rumbaugh (OMT)
Grady Booch (Booch method)
Ivar Jacobson (Objectory)
Richard Soley (Object Management Group, OMG)

see also:
http:

//en.wikipedia.org/wiki/Unified_Modeling_Language
Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 6 / 38

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

UML...

This lecture does not aim at teaching UML!

Resources from the Internet

the “official” site:
http://www.uml.org/

from Cetus (the OO portal):
http://www.cetus-links.org/oo_uml.html

at a glance (one single page):
Allen Holub’s UML Quick Reference
http://www.holub.com/goodies/uml/index.html

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 7 / 38

http://www.uml.org/
http://www.cetus-links.org/oo_uml.html
http://www.holub.com/goodies/uml/index.html

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Books on UML

“The Unified Modeling Language User Guide,” by Grady
Booch, James Rumbaugh, and Ivar Jacobson, 2nd ed.,
Addison-Wesley Professional, 2005.

“The Unified Modeling Language Reference Manual,” by
James Rumbaugh, Ivar Jacobson, and Grady Booch, 2nd
ed., Addison-Wesley Professional, 2004.

“The Complete UML Training Course,” by Grady Booch,
James Rumbaugh, and Ivar Jacobson, Prentice Hall, 2000.

and many more...

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 8 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 9 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Different Ways of Describing a Program

three different ways

FUNCTIONAL point of view:
what is it doing?
for instance, its list of main tasks
or of more “atomic” functionalities...

STATIC point of view:
what’s in it?
for instance, a list of classes
and the methods of every class, etc.

DYNAMIC point of view:
what happens?
when you click on this button, then...

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 10 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

One Program, Three Axes

consider that

a program is in a space

this space has three axes:
functional
static
dynamic

describing one axis is not sufficient

you have to describe the three of them!

all the axes are tightly linked altogether

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 11 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

One Program, One major axis?

to specify (and/or describe) a program

there is no major axis!

however

OO modeling is very “static-oriented”... ...because one models
class hierarchies!

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 12 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

An Important Static Diagram

entity/relationship diagram → UML class diagram

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 13 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 14 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

A Class in UML (1/3)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 15 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

A Class in UML (2/3)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 16 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Relationships between Classes in UML (1/3)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 17 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Relationships between Classes in UML (2/3)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 18 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Relationships between Classes in UML (3/3)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 19 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Inheritance Tree and Object in UML

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 20 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Misc

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 21 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 22 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Hints

First

draw entities and their relationships
split your program into several diagrams

so that one diagram shows one idea
so that each diagram is comprehensive

Then (and only then)

show public stuff

Afterwards (and on specific separate diagrams)

depict details

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 23 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Exercise

< live! >

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 24 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 25 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Variable and Type

C translation
int i; i : int
int i = 3; i : int = 3

there is no ambiguity when we write:

variable : type = definition

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 26 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Procedure

C translation
int f(float); f : float -> int
int f(float arg); f : (arg : float) -> int

the variable (entity; here a procedure) is named f

the type of f is float -> int
read: “takes float and gives int”

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 27 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Type Definition

C translation
typedef def t; type t = def

Consider that t is just an alias (a name) for the type def

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 28 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Enumeration

C
typedef enum { monday, /*...*/ sunday } day;

translation
type day = enum monday, .., sunday

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 29 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Structure (1/2)

C
struct bar { bool b; double d; };

translation
type bar = { b : bool, d : double }

The “{ ... } ” notation means that we group a set of fields.

Each field has a name (here b and d) and a type (resp.
bool and double).

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 30 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Structure (2/2)

a struct is a “product type”

with:

type day = enum monday, .., sunday
type month = enum january, .., december
type ydate = { d : day, m : month }

the values of ydate are:
(monday, january)
(tuesday, january)
...
(sunday, december)

we have:

card(ydate) = card(day) × card(month)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 31 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Union—or variant (1/2)

C
union bar { bool b; double d; };

translation
type bar = [b : bool | d : double]

The “[...] ” notation means that we have exactly one of
the fields.

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 32 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Union—or variant (2/2)

we have a “sum type”

with:

type ydate = [d : day, m : month]

the values of ydate are:
monday
...
sunday
january
...
december)

we have:

card(ydate) = card(day) + card(month)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 33 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Method

C
struct bar { int i; int f(float); };

translation
type bar = { i : int, f : float -> int }

The “{ ... } ” notation means that we group a set of fields.

Each field has a name (here i and d) and a type (resp.
int and double).

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 34 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

About fields

In:
type bar = { i : int, f : float -> int };

we have two fields:

τ1 which is “i : int ”

and τ2 which is “f : float -> int ”

we can write:

bar = { τ1, τ2 }

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 35 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 36 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

The Cornerstone (1/2)

consider the function foo:

foo : t -> void

and the variable v:

v : t’

what the relationship between the couple of types t and t’
should be so that the following call is valid?

foo(v)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 37 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

The Cornerstone (2/2)

we want:

t’ to be included in t

t to be substituted by t’

t’ to be a sub-type of t

t’ <: t

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 38 / 38

Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

A Language to Rewrite C/C++ Code
Substitution

Simple Test

with:

type t = { i : int, f : int -> float }
foo : (arg : t) -> float =

arg.f(arg.i)
end

is the following program correct?

type t’ = { i : int, f : int -> float, b : bool }
var : t’ // = initialization
res : float = foo(var)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 39 / 38

	Outline
	Main Talk
	Introduction
	Class Diagrams in UML
	Notation
	How to Describe a Program?
	A Quick Tour of Class Diagrams
	Hints

	Practising Inheritance
	Inheritance and typing
	A Language to Rewrite C/C++ Code
	Substitution

