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Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Inheritance

Consider that:

inheritance is a key concept of object-orientation

a lot of different kinds of inheritance exist
with various meanings/semantics (read Meyer for details)

the most prominent form is:
“class inheritance” related to “sub-typing”

mapping the “is a” relationship

“polymorphism of methods” and “abstract data types”
are also key concepts of object-orientation
and rely on inheritance

see also:
http://en.wikipedia.org/wiki/Inheritance_

(object-oriented_programming)
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Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Inheritance and Polymorphism

Two points of view

type theory:
it defines the notion of “sub-typing”
and “sub-classing” reflects (tries to reflect) this notion

semantics:
verifying “is a” is mandatory to get class inheritance
however it is not enough to get proper inheritance
having various semantics explain the different kinds of
inheritance
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UML?

The Unified Modeling Language:

is an object modeling and specification language
both textual and graphical

is the language we should talk and understand

comes from:
James Rumbaugh (OMT)
Grady Booch (Booch method)
Ivar Jacobson (Objectory)
Richard Soley (Object Management Group, OMG)

see also:
http:

//en.wikipedia.org/wiki/Unified_Modeling_Language
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UML...

This lecture does not aim at teaching UML!

Resources from the Internet

the “official” site:
http://www.uml.org/

from Cetus (the OO portal):
http://www.cetus-links.org/oo_uml.html

at a glance (one single page):
Allen Holub’s UML Quick Reference
http://www.holub.com/goodies/uml/index.html
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Books on UML

“The Unified Modeling Language User Guide,” by Grady
Booch, James Rumbaugh, and Ivar Jacobson, 2nd ed.,
Addison-Wesley Professional, 2005.

“The Unified Modeling Language Reference Manual,” by
James Rumbaugh, Ivar Jacobson, and Grady Booch, 2nd
ed., Addison-Wesley Professional, 2004.

“The Complete UML Training Course,” by Grady Booch,
James Rumbaugh, and Ivar Jacobson, Prentice Hall, 2000.

and many more...
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Different Ways of Describing a Program

three different ways

FUNCTIONAL point of view:
what is it doing?
for instance, its list of main tasks
or of more “atomic” functionalities...

STATIC point of view:
what’s in it?
for instance, a list of classes
and the methods of every class, etc.

DYNAMIC point of view:
what happens?
when you click on this button, then...
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One Program, Three Axes

consider that

a program is in a space

this space has three axes:
functional
static
dynamic

describing one axis is not sufficient

you have to describe the three of them!

all the axes are tightly linked altogether
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One Program, One major axis?

to specify (and/or describe) a program

there is no major axis!

however

OO modeling is very “static-oriented”... ...because one models
class hierarchies!
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An Important Static Diagram

entity/relationship diagram → UML class diagram

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 13 / 38



Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Outline

1 Introduction
Notation
How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

2 Class Diagrams in UML

3 Practising Inheritance

4 Inheritance and typing
A Language to Rewrite C/C++ Code
Substitution
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Hints

First

draw entities and their relationships
split your program into several diagrams

so that one diagram shows one idea
so that each diagram is comprehensive

Then (and only then)

show public stuff

Afterwards (and on specific separate diagrams)

depict details

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 23 / 38



Introduction
Class Diagrams in UML

Practising Inheritance
Inheritance and typing

Exercise

< live! >
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Variable and Type

C translation
int i; i : int
int i = 3; i : int = 3

there is no ambiguity when we write:

variable : type = definition
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Procedure

C translation
int f(float); f : float -> int
int f(float arg); f : (arg : float) -> int

the variable (entity; here a procedure) is named f

the type of f is float -> int
read: “takes float and gives int”
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Type Definition

C translation
typedef def t; type t = def

Consider that t is just an alias (a name) for the type def
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Enumeration

C
typedef enum { monday, /*...*/ sunday } day;

translation
type day = enum monday, .., sunday
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Structure (1/2)

C
struct bar { bool b; double d; };

translation
type bar = { b : bool, d : double }

The “{ ... } ” notation means that we group a set of fields.

Each field has a name (here b and d) and a type (resp.
bool and double ).
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Structure (2/2)

a struct is a “product type”

with:

type day = enum monday, .., sunday
type month = enum january, .., december
type ydate = { d : day, m : month }

the values of ydate are:
(monday, january)
(tuesday, january)
...
(sunday, december)

we have:

card(ydate ) = card(day ) × card(month )
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Union—or variant (1/2)

C
union bar { bool b; double d; };

translation
type bar = [ b : bool | d : double ]

The “[ ... ] ” notation means that we have exactly one of
the fields.
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Union—or variant (2/2)

we have a “sum type”

with:

type ydate = [ d : day, m : month ]

the values of ydate are:
monday
...
sunday
january
...
december)

we have:

card(ydate ) = card(day ) + card(month )
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Method

C
struct bar { int i; int f(float); };

translation
type bar = { i : int, f : float -> int }

The “{ ... } ” notation means that we group a set of fields.

Each field has a name (here i and d) and a type (resp.
int and double ).
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About fields

In:
type bar = { i : int, f : float -> int };

we have two fields:

τ1 which is “i : int ”

and τ2 which is “f : float -> int ”

we can write:

bar = { τ1, τ2 }
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The Cornerstone (1/2)

consider the function foo:

foo : t -> void

and the variable v:

v : t’

what the relationship between the couple of types t and t’
should be so that the following call is valid?

foo(v)
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The Cornerstone (2/2)

we want:

t’ to be included in t

t to be substituted by t’

t’ to be a sub-type of t

t’ <: t
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Simple Test

with:

type t = { i : int, f : int -> float }
foo : (arg : t) -> float =

arg.f(arg.i)
end

is the following program correct?

type t’ = { i : int, f : int -> float, b : bool }
var : t’ // = initialization
res : float = foo(var)
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