Lecture #2 on Object-Oriented Modeling

Thierry Géraud

EPITA Research and Development Laboratory (LRDE)

2006

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 1/38

Outline

o Introduction

@ Notation

@ How to Describe a Program?

@ A Quick Tour of Class Diagrams
@ Hints

2/38

Lecture #2 on Object-Oriented Modeli

Outline

o Introduction

@ Notation

@ How to Describe a Program?

@ A Quick Tour of Class Diagrams
@ Hints

e Class Diagrams in UML

2/38

Lecture #2 on Object-Oriented Modeli

Outline

o Introduction

@ Notation

@ How to Describe a Program?

@ A Quick Tour of Class Diagrams
@ Hints

e Class Diagrams in UML

e Practising Inheritance

Lecture #2 on Object-Oriented Modeli

2/38

Outline

Outline

Introduction

@ Notation

@ How to Describe a Program?

@ A Quick Tour of Class Diagrams
@ Hints

e Class Diagrams in UML
e Practising Inheritance

e Inheritance and typing
@ A Language to Rewrite C/C++ Code

@ Substitution

Lecture #2 on Object-Oriented Modeli

Introduction

Inheritance

Consider that:
@ inheritance is a key concept of object-orientation

@ a lot of different kinds of inheritance exist
with various meanings/semantics (read Meyer for details)

@ the most prominent form is:
“class inheritance” related to “sub-typing”
mapping the “is a” relationship
@ “polymorphism of methods” and “abstract data types”

e are also key concepts of object-orientation
e and rely on inheritance

see also:
http://en.wikipedia.org/wiki/Inheritance_
(object-oriented_programming)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

Introduction

Inheritance and Polymorphism

Two points of view

@ type theory:

o it defines the notion of “sub-typing”
e and “sub-classing” reflects (tries to reflect) this notion

@ semantics:

e verifying “is a” is mandatory to get class inheritance
e however it is not enough to get proper inheritance

e having various semantics explain the different kinds of
inheritance

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

Notation

Class Diagrams in How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Outline

@ Notation

e Class Diagrams in UML

Lecture #2 on Object-Oriented Modelin:

Notation
Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

The Unified Modeling Language:

@ is an object modeling and specification language
both textual and graphical

@ is the language we should talk and understand

@ comes from:

James Rumbaugh (OMT)

Grady Booch (Booch method)

Ivar Jacobson (Objectory)

Richard Soley (Object Management Group, OMG)

see also:
http:
/len.wikipedia.org/wiki/Unified_Modeling_Language

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language

Notation
Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

This lecture does not aim at teaching UML!

Resources from the Internet

@ the “official” site:
http://www.uml.org/

@ from Cetus (the OO portal):
http://www.cetus-links.org/oo_uml.html

@ at a glance (one single page):
Allen Holub’s UML Quick Reference
http://www.holub.com/goodies/uml/index.html

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

http://www.uml.org/
http://www.cetus-links.org/oo_uml.html
http://www.holub.com/goodies/uml/index.html

Notation

Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Books on UML

@ “The Unified Modeling Language User Guide,” by Grady
Booch, James Rumbaugh, and Ivar Jacobson, 2nd ed.,
Addison-Wesley Professional, 2005.

@ “The Unified Modeling Language Reference Manual,” by
James Rumbaugh, Ivar Jacobson, and Grady Booch, 2nd
ed., Addison-Wesley Professional, 2004.

@ “The Complete UML Training Course,” by Grady Booch,
James Rumbaugh, and Ivar Jacobson, Prentice Hall, 2000.

@ and many more...

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

Notation
Class Diagrams in UML How to Describe a Program?

A Quick Tour of Class Diagrams

Hints

Outline

@ How to Describe a Program?

e Class Diagrams in UML

Lecture #2 on Object-Oriented Modelin:

Thierry G ér

Notation
Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

Different Ways of Describing a Program

three different ways

@ FUNCTIONAL point of view:
e what is it doing?
for instance, its list of main tasks
or of more “atomic” functionalities...

@ STATIC point of view:
e what's in it?
for instance, a list of classes
and the methods of every class, etc.

@ DYNAMIC point of view:

e what happens?
when you click on this button, then...

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

Notation

Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

One Program, Three Axes

consider that
@ a program is in a space

@ this space has three axes:

e functional
@ static
e dynamic

@ describing one axis is not sufficient

you have to describe the three of them!

@ all the axes are tightly linked altogether

Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

Notation
Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

One Program, One major axis?

to specify (and/or describe) a program

there is no major axis!

however

OO modeling is very “static-oriented”... ... because one models
class hierarchies!

Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 12 /38

Notation
Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

An Important Static Diagram

entity/relationship diagram — UML class diagram

Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

Notation

Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Outline

@ A Quick Tour of Class Diagrams

e Class Diagrams in UML

Thierry G ér Lecture #2 on Object-Oriented Modelin:

Notation

Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

A Class in UML (1/3)

Chame

attr: Atype class

op (par: Type): Rtype

Thierry G ér Lecture #2 on Object-Oriented Modelin:

Notation
Class Diagrams in How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

A Class in UML (2/3)

= with initial value

public attritbu

«stereotypeName«
Cname
{tag = value}

= + attrName: Chame = expression
attrName: Chame
=+ — attrName[*]: Chname

visioility

: I with return type
on subsequent operations

+ opName (p:C1,q:C2):.C3 publ
«constructors» Sterec

opName (v:Cname=default) col ation with default value
optional named Responsibilities compartment name
compartment text description compartment list element

Thierry G éraud riented Modelin

Notation
Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

Relationships between Classes in UML (1/3)

Aname o
lation

4[‘3 generalization
- -
_______ {x realization

-

________ — dependenc

Lecture #2 on Object-Oriented Modeling

Notation
Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

Relationships between Classes in UML (2/3)

| Tkinteger | template pa
FArray "~ -~~~ ’ T has type Classifier by default

The parameters are used Ik template

inthetemplate body. 1 T

In this template, the

multiplicity of the array [-

s fixed by the V|r|d|r|g \ . explicit bindling

N «bind» (Address,24)
~
implicit binding This class has
(=) 55 Nas

This class has an FArray<Point,3> AddressList its ©wn name
anorymous name

Lecture #2 on

Notation
Class Diagrams in How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

Relationships between Classes in UML (3/3)

3 multiplicity ro
! ~ \
| . b class
4 A
{ordered} # oname 0.1 name
= <>| gname:Chame
<Aname A \
N h
"N \
| \\ on - qualifier
composition | \
name iation name:
clirection
A
1 ®
1 N
I \
1= N
| T N
1 ~ A
AC T~ association class
name ___ (all one element)

Thierry G éraud

Notation
Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

Inheritance Tree and Object in UML

direct style tree style

oname: Class[Role object

Thierry G éraud Lecture #2 on riented Modeling

Notation
Class Diagrams in How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

text

{ expression } constraint

Lecture #2 on Object-Oriented Modelin:

Notation

Class Diagrams in How to Describe a Program?
A Quick Tour of Class Diagrams
Hints

Outline

@ Hints

e Class Diagrams in UML

Lecture #2 on Object-Oriented Modelin:

Notation
Class Diagrams in UML How to Describe a Program?
A Quick Tour of Class Diagrams

Hints

First

@ draw entities and their relationships
@ split your program into several diagrams

@ so that one diagram shows one idea
@ so that each diagram is comprehensive

Then (and only then)
@ show public stuff

Afterwards (and on specific separate diagrams)
@ depict details

Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

Practising Inheritance

Exercise

< live! >

Lecture #2 on Object-Oriented Modelin:

A Language to Rewrite C/C++ Code
Substitution
Inheritance and typing

Outline

e Inheritance and typing
@ A Language to Rewrite C/C++ Code

Thierry G ér Lecture #2 on Object-Oriented Modelin:

A Language to Rewrite C/C++ Code
Substitution

Inheritance and typing

Variable and Type

C translation
int i; i :int
int i = 3; i :int =3

there is no ambiguity when we write:

variable : type = definition

Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 26 /38

A Language to Rewrite C/C++ Code
Substitution
Inheritance and typing

Procedure

C translation
int f(float); f . float -> int
int f(float arg); f : (arg : float) -> int

@ the variable (entity; here a procedure) is named f

@ thetype of f is float -> int
read: “takes float and gives int”

Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

A Language to Rewrite C/C++ Code
Substitution

Inheritance and typing

Type Definition

C translation
typedef def t; type t = def

Consider that t is just an alias (a name) for the type def

Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 28/38

A Language to Rewrite C/C++ Code
Substitution
Inheritance and typing

Enumeration

C

typedef enum { monday, /*...*/ sunday } day;
translation

type day = enum monday, .., sunday

Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

A Language to Rewrite C/C++ Code
Substitution
Inheritance and typing

Structure (1/2)

C

struct bar { bool b; double d; };
translation

type bar = { b : bool, d : double }

@ The *{ ... } " notation means that we group a set of fields.

@ Each field has a name (here b and d) and a type (resp.
bool and double).

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 30/38

A Language to Rewrite C/C++ Code
Substitution
Inheritance and typing

Structure (2/2)

a struct is a “product type”

with:
type day = enum monday, .., sunday
type month = enum january, .., december

type ydate = { d : day, m : month }
the values of ydate are:

@ (monday, january)

@ (tuesday, january)

° ..

@ (sunday, december)
we have:

card(ydate) = card(day) x card(month)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

A Language to Rewrite C/C++ Code
Substitution

Inheritance and typing

Union—or variant (1/2)

C

union bar { bool b; double d; };
translation

type bar = [b : bool | d : double]

@ The “[...]” notation means that we have exactly one of
the fields.

Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 32/38

A Language to Rewrite C/C++ Code
Substitution

Inheritance and typing

Union—or variant (2/2)

we have a “sum type”

with:
type ydate = [d : day, m : month]
the values of ydate are:
@ monday
9 ..
@ sunday
@ january
9 ..
@ december)
we have:

card(ydate) = card(day) + card(month)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

A Language to Rewrite C/C++ Code
Substitution
Inheritance and typing

Method

C

struct bar { int i; int f(float); };
translation

type bar = { i : int, f : float -> int }

@ The *{ ... } " notation means that we group a set of fields.

@ Each field has a name (here i and d) and a type (resp.
int and double).

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006 34/38

A Language to Rewrite C/C++ Code
Substitution
Inheritance and typing

About fields

In:
type bar = { i : int, f : float -> int };
we have two fields:
@ 7 whichis “i : int
@ and = whichis “f : float -> int

we can write:

bar = {m,m}

EPITA-LRDE 2006

Lecture #2 on Object-Oriented Modeling

A Language to Rewrite C/C++ Code
Substitution
Inheritance and typing

Outline

e Inheritance and typing

@ Substitution

Thierry G ér Lecture #2 on Object-Oriented Modelin:

A Language to Rewrite C/C++ Code
Substitution

Inheritance and typing

The Cornerstone (1/2)

consider the function foo:
foo : t -> void
and the variable v:
vt

what the relationship between the couple of typest and t’
should be so that the following call is valid?

foo(v)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

A Language to Rewrite C/C++ Code
Substitution

Inheritance and typing

The Cornerstone (2/2)

we want:
@ t' tobeincludedint
@ t to be substituted by t’

@ t' to be a sub-type of t
<t

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

A Language to Rewrite C/C++ Code
Substitution
Inheritance and typing

Simple Test

with:

type t = {i:int, f: int -> float }
foo : (arg : t) -> float =
arg.f(arg.i)
end

is the following program correct?

type t = { i :int, f : int -> float, b : bool }
var : t' // = initialization

res : float = foo(var)

Thierry G éraud Lecture #2 on Object-Oriented Modeling EPITA-LRDE 2006

	Outline
	Main Talk
	Introduction
	Class Diagrams in UML
	Notation
	How to Describe a Program?
	A Quick Tour of Class Diagrams
	Hints

	Practising Inheritance
	Inheritance and typing
	A Language to Rewrite C/C++ Code
	Substitution

